Biomechanical comparison of all-polyethylene total knee replacement and its metal-backed equivalent on periprosthetic tibia using the finite element method

. 2024 Feb 23 ; 19 (1) : 153. [epub] 20240223

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38396020
Odkazy

PubMed 38396020
PubMed Central PMC10893603
DOI 10.1186/s13018-024-04631-0
PII: 10.1186/s13018-024-04631-0
Knihovny.cz E-zdroje

BACKGROUND: Total knee arthroplasty (TKA) with all-polyethylene tibial (APT) components has shown comparable survivorship and clinical outcomes to that with metal-backed tibial (MBT). Although MBT is more frequently implanted, APT equivalents are considered a low-cost variant for elderly patients. A biomechanical analysis was assumed to be suitable to compare the response of the periprosthetic tibia after implantation of TKA NexGen APT and MBT equivalent. METHODS: A standardised load model was used representing the highest load achieved during level walking. The geometry and material models were created using computed tomography data. In the analysis, a material model was created that represents a patient with osteopenia. RESULTS: The equivalent strain distribution in the models of cancellous bone with an APT component showed values above 1000 με in the area below the medial tibial section, with MBT component were primarily localised in the stem tip area. For APT variants, the microstrain values in more than 80% of the volume were in the range from 300 to 1500 με, MBT only in less than 64% of the volume. CONCLUSION: The effect of APT implantation on the periprosthetic tibia was shown as equal or even superior to that of MBT despite maximum strain values occurring in different locations. On the basis of the strain distribution, the state of the bone tissue was analysed to determine whether bone tissue remodelling or remodelling would occur. Following clinical validation, outcomes could eventually modify the implant selection criteria and lead to more frequent implantation of APT components.

Zobrazit více v PubMed

Gustke KA, Gelbke MK. All-polyethylene tibial component use for elderly, low-demand total knee arthroplasty patients. J Arthroplasty. 2017;32:2421–2426. doi: 10.1016/j.arth.2017.02.077. PubMed DOI

Robertsson O, Lidgren L, Sundberg M, W-Dahl A. The Swedish Knee arthroplasty register—annual report 2020; 2020. PubMed PMC

Kendall J, Pelt CE, Imlay B, Yep P, Mullen K, Kagan R. Revision risk for total knee arthroplasty polyethylene designs in patients 65 years of age or older: an analysis from the american joint replacement registry. J Bone Jt Surg. 2022;104:1548–1553. doi: 10.2106/JBJS.21.01251. PubMed DOI

Apostolopoulos V, Nachtnebl L, Mahdal M, Pazourek L, Boháč P, Janíček P, et al. Clinical outcomes and survival comparison between NexGen all-poly and its metal-backed equivalent in total knee arthroplasty. Int Orthop. 2023 doi: 10.1007/s00264-023-05772-3. PubMed DOI PMC

Longo UG, Ciuffreda M, D’Andrea V, Mannering N, Locher J, Denaro V. All-polyethylene versus metal-backed tibial component in total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc. 2017;25:3620–3636. doi: 10.1007/s00167-016-4168-0. PubMed DOI

Apostolopoulos V, Tomáš T, Boháč P, Marcián P, Mahdal M, Valoušek T, et al. Biomechanical analysis of all-polyethylene total knee arthroplasty on periprosthetic tibia using the finite element method. Comput Methods Programs Biomed. 2022;220:106834. doi: 10.1016/j.cmpb.2022.106834. PubMed DOI

Arab AZEA, Merdji A, Benaissa A, Roy S, Bachir Bouiadjra B-A, Layadi K, et al. Finite-Element analysis of a lateral femoro-tibial impact on the total knee arthroplasty. Comput Methods Progr Biomed. 2020;192:105446. doi: 10.1016/j.cmpb.2020.105446. PubMed DOI

Bori E, Armaroli F, Innocenti B. Biomechanical analysis of femoral stems in hinged total knee arthroplasty in physiological and osteoporotic bone. Comput Methods Progr Biomed. 2022;213:106499. doi: 10.1016/j.cmpb.2021.106499. PubMed DOI

Zimmer Biomet, NexGen® CR-Flex and LPS-Flex Knees; 2016.

Gheorghiu N, Socea B, Dimitriu M, Bacalbasa N, Stan G, Orban H. A finite element analysis for predicting outcomes of cemented total knee arthroplasty. Exp Ther Med. 2021;21:267. doi: 10.3892/etm.2021.9698. PubMed DOI PMC

Kohn MD, Sassoon AA, Fernando ND. Classifications in brief: Kellgren–Lawrence classification of osteoarthritis. Clin Orthop Relat Res. 2016;474:1886–1893. doi: 10.1007/s11999-016-4732-4. PubMed DOI PMC

Australian Orthopaedic Association National Joint Replacement Registry. Annual Report. Adelaide. AOA 2020: Table KT2 10 Most Used Femoral Prostheses in Primary Total Knee Replacement.

Marcián P, Konecný O, Borák L, Valasek J, Rehak K, Krpalek D, Florian Z. On the level of computational models in biomechanics depending on gained data from CT/MRI and micro-CT; 2011.

Feczko PZ, Pijls BG, van Steijn MJ, van Rhijn LW, Arts JJ, Emans PJ. Tibial component rotation in total knee arthroplasty. BMC Musculoskelet Disord. 2016;17:87. doi: 10.1186/s12891-016-0940-z. PubMed DOI PMC

Hatfield GL, Hubley-Kozey CL, Astephen Wilson JL, Dunbar MJ. The effect of total knee arthroplasty on knee joint kinematics and kinetics during gait. J Arthroplasty. 2011;26:309–318. doi: 10.1016/j.arth.2010.03.021. PubMed DOI

Rahman J, Tang Q, Monda M, Miles J, McCarthy I. Gait assessment as a functional outcome measure in total knee arthroplasty: a cross-sectional study. BMC Musculoskelet Disord. 2015;16:66. doi: 10.1186/s12891-015-0525-2. PubMed DOI PMC

Cawley DT, Kelly N, McGarry JP, Shannon FJ. Cementing techniques for the tibial component in primary total knee replacement. Bone Jt J. 2013;95-B:295–300. doi: 10.1302/0301-620X.95B3.29586. PubMed DOI

Gray HA, Taddei F, Zavatsky AB, Cristofolini L, Gill HS. Experimental validation of a finite element model of a human cadaveric tibia. J Biomech Eng. 2008;130:031016. doi: 10.1115/1.2913335. PubMed DOI

Zaribaf FP. Medical-grade ultra-high molecular weight polyethylene: past, current and future. Mater Sci Technol. 2018;34:1940–1953. doi: 10.1080/02670836.2018.1469455. DOI

Osman R, Swain M. A critical review of dental implant materials with an emphasis on titanium versus zirconia. Materials. 2015;8:932–958. doi: 10.3390/ma8030932. PubMed DOI PMC

Klarstrom D, Crook P, Sharif A. Cobalt alloys: alloying and thermomechanical processing. Reference module in materials science and materials engineering [Internet]. Elsevier; 2017 [cited 2021 Sep 4]. p. B9780128035818093000. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780128035818092134

Dunne N. Mechanical properties of bone cements. Orthopaedic Bone Cements [Internet]. Elsevier; 2008 [cited 2022 Apr 6], pp. 233–64. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9781845693763500113

Marcián P, Borák L, Zikmund T, Horáčková L, Kaiser J, Joukal M, et al. On the limits of finite element models created from (micro)CT datasets and used in studies of bone-implant-related biomechanical problems. J Mech Behav Biomed Mater. 2021;117:104393. doi: 10.1016/j.jmbbm.2021.104393. PubMed DOI

Rungruangbaiyok C, Azari F, van Lenthe GH, Vander Sloten J, Tangtrakulwanich B, Chatpun S. Finite element investigation of fracture risk under postero-anterior mobilization on a lumbar bone in elderly with and without osteoporosis. J Med Biol Eng. 2021;41:285–294. doi: 10.1007/s40846-021-00607-1. DOI

Dreyer MJ, Trepczynski A, Hosseini Nasab SH, Kutzner I, Schütz P, Weisse B, et al. European society of biomechanics S.M. Perren award 2022: standardized tibio-femoral implant loads and kinematics. J Biomech. 2022;141:111171. doi: 10.1016/j.jbiomech.2022.111171. PubMed DOI

Guezmil M, Bensalah W, Mezlini S. Tribological behavior of UHMWPE against TiAl6V4 and CoCr28Mo alloys under dry and lubricated conditions. J Mech Behav Biomed Mater. 2016;63:375–385. doi: 10.1016/j.jmbbm.2016.07.002. PubMed DOI

Frost HM. The mechanostat: a proposed pathogenic mechanism of osteoporoses and the bone mass effects of mechanical and nonmechanical agents. Bone Miner. 1987;2:73–85. PubMed

Frost HM. Skeletal structural adaptations to mechanical usage (SATMU): 1. Redefining Wolff’s law: the bone modeling problem. Anat Rec. 1990;226:403–413. doi: 10.1002/ar.1092260402. PubMed DOI

Frost HM. Skeletal structural adaptations to mechanical usage (SATMU): 2. Redefining Wolff’s law: the remodeling problem. Anat Rec. 1990;226:414–422. doi: 10.1002/ar.1092260403. PubMed DOI

Tyrovola JB, Odont X. The, “mechanostat theory” of frost and the OPG/RANKL/RANK system: the “mechanostat ” and the OPG/RANKL/RANK. J Cell Biochem. 2015;116:2724–2729. doi: 10.1002/jcb.25265. PubMed DOI

Selvan DR, Santini AJA, Davidson JS, Pope JA. The medium-term survival analysis of an all-polyethylene tibia in a single-series cohort of over 1000 knees. J Arthroplasty. 2020;35:2837–2842. doi: 10.1016/j.arth.2020.05.017. PubMed DOI

Herschmiller T, Bradley KE, Wellman SS, Attarian DE. Early to midterm clinical and radiographic survivorship of the all-polyethylene versus modular metal-backed tibia component in primary total knee replacement. J Surg Orthop Adv. 2019;28:108–114. PubMed

Gioe TJ, Maheshwari AV. The all-polyethylene tibial component in primary total knee arthroplasty. J Bone Jt Surg. 2010;92:478–487. doi: 10.2106/JBJS.I.00842. PubMed DOI

Sabeh K, Alam M, Rosas S, Hussain S, Schneiderbauer M. Cost analysis of all-polyethylene compared to metal-backed implants in total knee arthroplasty. Surg Technol Int. 2018;32:249–255. PubMed

Thompson SM, Yohuno D, Bradley WN, Crocombe AD. Finite element analysis: a comparison of an all-polyethylene tibial implant and its metal-backed equivalent. Knee Surg Sports Traumatol Arthrosc. 2016;24:2560–2566. doi: 10.1007/s00167-015-3923-y. PubMed DOI

Brihault J, Navacchia A, Pianigiani S, Labey L, De Corte R, Pascale V, et al. All-polyethylene tibial components generate higher stress and micromotions than metal-backed tibial components in total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc. 2016;24:2550–2559. doi: 10.1007/s00167-015-3630-8. PubMed DOI

Zimmer. Innex Knee System Primary [Internet]. 2005. Available from: https://www.zimmerbiomet.com/content/dam/zimmer-web/documents/en-GB/pdf/medical-professionals/knee/innex-knee-system-primary-brochure.pdf

Zhang Q, Chen Z, Zhang Z, Jin Z, Muratoglu OK, Varadarajan KM. Leveraging subject-specific musculoskeletal modeling to assess effect of anterior cruciate ligament retaining total knee arthroplasty during walking gait. Proc Inst Mech Eng H. 2020;234:1445–1456. doi: 10.1177/0954411920947204. PubMed DOI

Kutzner I, Bender A, Dymke J, Duda G, von Roth P, Bergmann G. Mediolateral force distribution at the knee joint shifts across activities and is driven by tibiofemoral alignment. Bone Jt J. 2017;99-B:779–787. doi: 10.1302/0301-620X.99B6.BJJ-2016-0713.R1. PubMed DOI

Completo A, Simões JA, Fonseca F, Oliveira M. The influence of different tibial stem designs in load sharing and stability at the cement–bone interface in revision TKA. Knee. 2008;15:227–232. doi: 10.1016/j.knee.2008.01.008. PubMed DOI

Shelburne KB, Pandy MG, Anderson FC, Torry MR. Pattern of anterior cruciate ligament force in normal walking. J Biomech. 2004;37:797–805. doi: 10.1016/j.jbiomech.2003.10.010. PubMed DOI

Shelburne KB, Pandy MG, Torry MR. Comparison of shear forces and ligament loading in the healthy and ACL-deficient knee during gait. J Biomech. 2004;37:313–319. doi: 10.1016/j.jbiomech.2003.07.001. PubMed DOI

Nikkhoo M, Hassani K, Tavakoli Golpaygani A, Karimi A. Biomechanical role of posterior cruciate ligament in total knee arthroplasty: a finite element analysis. Comput Methods Prog Biomed. 2020;183:105109. doi: 10.1016/j.cmpb.2019.105109. PubMed DOI

Smith CR, Vignos MF, Lenhart RL, Kaiser J, Thelen DG. The influence of component alignment and ligament properties on tibiofemoral contact forces in total knee replacement. J Biomech Eng. 2016;138:021017. doi: 10.1115/1.4032464. PubMed DOI PMC

Harper KD, Clyburn TA, Incavo SJ, Lambert BS. DEXA overestimates bone mineral density in adults with knee replacements. Sports Med Health Sci. 2020;2:211–215. doi: 10.1016/j.smhs.2020.10.002. PubMed DOI PMC

Delsmann MM, Schmidt C, Mühlenfeld M, Jandl NM, Boese CK, Beil FT, et al. Prevalence of osteoporosis and osteopenia in elderly patients scheduled for total knee arthroplasty. Arch Orthop Trauma Surg. 2021;142:3957–3964. doi: 10.1007/s00402-021-04297-x. PubMed DOI PMC

Lems WF, Raterman HG, van den Bergh JPW, Bijlsma HWJ, Valk NK, Zillikens MC, et al. Osteopenia: a diagnostic and therapeutic challenge. Curr Osteoporos Rep. 2011;9:167–172. doi: 10.1007/s11914-011-0062-3. PubMed DOI PMC

Spinarelli A, Petrera M, Vicenti G, Pesce V, Patella V. Total knee arthroplasty in elderly osteoporotic patients. Aging Clin Exp Res. 2011;23:78–80. PubMed

Hanreich C, Martelanz L, Koller U, Windhager R, Waldstein W. Sport and physical activity following primary total knee arthroplasty: a systematic review and meta-analysis. J Arthroplasty. 2020;35:2274–2285.e1. doi: 10.1016/j.arth.2020.04.013. PubMed DOI

Au AG, Liggins AB, Raso VJ, Amirfazli A. A parametric analysis of fixation post shape in tibial knee prostheses. Med Eng Phys. 2005;27:123–134. doi: 10.1016/j.medengphy.2004.09.010. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...