Biomechanical comparison of all-polyethylene total knee replacement and its metal-backed equivalent on periprosthetic tibia using the finite element method
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
PubMed
38396020
PubMed Central
PMC10893603
DOI
10.1186/s13018-024-04631-0
PII: 10.1186/s13018-024-04631-0
Knihovny.cz E-zdroje
- Klíčová slova
- All-polyethylene tibial component, Computational modeling, FEA, Finite element method, Knee replacement, Metal-backed tibial component, TKR, Total knee arthroplasty,
- MeSH
- analýza metodou konečných prvků MeSH
- kovy MeSH
- lidé MeSH
- polyethylen MeSH
- protézy - design MeSH
- protézy kolene * MeSH
- senioři MeSH
- tibie diagnostické zobrazování chirurgie MeSH
- totální endoprotéza kolene * MeSH
- Check Tag
- lidé MeSH
- senioři MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- kovy MeSH
- polyethylen MeSH
BACKGROUND: Total knee arthroplasty (TKA) with all-polyethylene tibial (APT) components has shown comparable survivorship and clinical outcomes to that with metal-backed tibial (MBT). Although MBT is more frequently implanted, APT equivalents are considered a low-cost variant for elderly patients. A biomechanical analysis was assumed to be suitable to compare the response of the periprosthetic tibia after implantation of TKA NexGen APT and MBT equivalent. METHODS: A standardised load model was used representing the highest load achieved during level walking. The geometry and material models were created using computed tomography data. In the analysis, a material model was created that represents a patient with osteopenia. RESULTS: The equivalent strain distribution in the models of cancellous bone with an APT component showed values above 1000 με in the area below the medial tibial section, with MBT component were primarily localised in the stem tip area. For APT variants, the microstrain values in more than 80% of the volume were in the range from 300 to 1500 με, MBT only in less than 64% of the volume. CONCLUSION: The effect of APT implantation on the periprosthetic tibia was shown as equal or even superior to that of MBT despite maximum strain values occurring in different locations. On the basis of the strain distribution, the state of the bone tissue was analysed to determine whether bone tissue remodelling or remodelling would occur. Following clinical validation, outcomes could eventually modify the implant selection criteria and lead to more frequent implantation of APT components.
Zobrazit více v PubMed
Gustke KA, Gelbke MK. All-polyethylene tibial component use for elderly, low-demand total knee arthroplasty patients. J Arthroplasty. 2017;32:2421–2426. doi: 10.1016/j.arth.2017.02.077. PubMed DOI
Robertsson O, Lidgren L, Sundberg M, W-Dahl A. The Swedish Knee arthroplasty register—annual report 2020; 2020. PubMed PMC
Kendall J, Pelt CE, Imlay B, Yep P, Mullen K, Kagan R. Revision risk for total knee arthroplasty polyethylene designs in patients 65 years of age or older: an analysis from the american joint replacement registry. J Bone Jt Surg. 2022;104:1548–1553. doi: 10.2106/JBJS.21.01251. PubMed DOI
Apostolopoulos V, Nachtnebl L, Mahdal M, Pazourek L, Boháč P, Janíček P, et al. Clinical outcomes and survival comparison between NexGen all-poly and its metal-backed equivalent in total knee arthroplasty. Int Orthop. 2023 doi: 10.1007/s00264-023-05772-3. PubMed DOI PMC
Longo UG, Ciuffreda M, D’Andrea V, Mannering N, Locher J, Denaro V. All-polyethylene versus metal-backed tibial component in total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc. 2017;25:3620–3636. doi: 10.1007/s00167-016-4168-0. PubMed DOI
Apostolopoulos V, Tomáš T, Boháč P, Marcián P, Mahdal M, Valoušek T, et al. Biomechanical analysis of all-polyethylene total knee arthroplasty on periprosthetic tibia using the finite element method. Comput Methods Programs Biomed. 2022;220:106834. doi: 10.1016/j.cmpb.2022.106834. PubMed DOI
Arab AZEA, Merdji A, Benaissa A, Roy S, Bachir Bouiadjra B-A, Layadi K, et al. Finite-Element analysis of a lateral femoro-tibial impact on the total knee arthroplasty. Comput Methods Progr Biomed. 2020;192:105446. doi: 10.1016/j.cmpb.2020.105446. PubMed DOI
Bori E, Armaroli F, Innocenti B. Biomechanical analysis of femoral stems in hinged total knee arthroplasty in physiological and osteoporotic bone. Comput Methods Progr Biomed. 2022;213:106499. doi: 10.1016/j.cmpb.2021.106499. PubMed DOI
Zimmer Biomet, NexGen® CR-Flex and LPS-Flex Knees; 2016.
Gheorghiu N, Socea B, Dimitriu M, Bacalbasa N, Stan G, Orban H. A finite element analysis for predicting outcomes of cemented total knee arthroplasty. Exp Ther Med. 2021;21:267. doi: 10.3892/etm.2021.9698. PubMed DOI PMC
Kohn MD, Sassoon AA, Fernando ND. Classifications in brief: Kellgren–Lawrence classification of osteoarthritis. Clin Orthop Relat Res. 2016;474:1886–1893. doi: 10.1007/s11999-016-4732-4. PubMed DOI PMC
Australian Orthopaedic Association National Joint Replacement Registry. Annual Report. Adelaide. AOA 2020: Table KT2 10 Most Used Femoral Prostheses in Primary Total Knee Replacement.
Marcián P, Konecný O, Borák L, Valasek J, Rehak K, Krpalek D, Florian Z. On the level of computational models in biomechanics depending on gained data from CT/MRI and micro-CT; 2011.
Feczko PZ, Pijls BG, van Steijn MJ, van Rhijn LW, Arts JJ, Emans PJ. Tibial component rotation in total knee arthroplasty. BMC Musculoskelet Disord. 2016;17:87. doi: 10.1186/s12891-016-0940-z. PubMed DOI PMC
Hatfield GL, Hubley-Kozey CL, Astephen Wilson JL, Dunbar MJ. The effect of total knee arthroplasty on knee joint kinematics and kinetics during gait. J Arthroplasty. 2011;26:309–318. doi: 10.1016/j.arth.2010.03.021. PubMed DOI
Rahman J, Tang Q, Monda M, Miles J, McCarthy I. Gait assessment as a functional outcome measure in total knee arthroplasty: a cross-sectional study. BMC Musculoskelet Disord. 2015;16:66. doi: 10.1186/s12891-015-0525-2. PubMed DOI PMC
Cawley DT, Kelly N, McGarry JP, Shannon FJ. Cementing techniques for the tibial component in primary total knee replacement. Bone Jt J. 2013;95-B:295–300. doi: 10.1302/0301-620X.95B3.29586. PubMed DOI
Gray HA, Taddei F, Zavatsky AB, Cristofolini L, Gill HS. Experimental validation of a finite element model of a human cadaveric tibia. J Biomech Eng. 2008;130:031016. doi: 10.1115/1.2913335. PubMed DOI
Zaribaf FP. Medical-grade ultra-high molecular weight polyethylene: past, current and future. Mater Sci Technol. 2018;34:1940–1953. doi: 10.1080/02670836.2018.1469455. DOI
Osman R, Swain M. A critical review of dental implant materials with an emphasis on titanium versus zirconia. Materials. 2015;8:932–958. doi: 10.3390/ma8030932. PubMed DOI PMC
Klarstrom D, Crook P, Sharif A. Cobalt alloys: alloying and thermomechanical processing. Reference module in materials science and materials engineering [Internet]. Elsevier; 2017 [cited 2021 Sep 4]. p. B9780128035818093000. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780128035818092134
Dunne N. Mechanical properties of bone cements. Orthopaedic Bone Cements [Internet]. Elsevier; 2008 [cited 2022 Apr 6], pp. 233–64. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9781845693763500113
Marcián P, Borák L, Zikmund T, Horáčková L, Kaiser J, Joukal M, et al. On the limits of finite element models created from (micro)CT datasets and used in studies of bone-implant-related biomechanical problems. J Mech Behav Biomed Mater. 2021;117:104393. doi: 10.1016/j.jmbbm.2021.104393. PubMed DOI
Rungruangbaiyok C, Azari F, van Lenthe GH, Vander Sloten J, Tangtrakulwanich B, Chatpun S. Finite element investigation of fracture risk under postero-anterior mobilization on a lumbar bone in elderly with and without osteoporosis. J Med Biol Eng. 2021;41:285–294. doi: 10.1007/s40846-021-00607-1. DOI
Dreyer MJ, Trepczynski A, Hosseini Nasab SH, Kutzner I, Schütz P, Weisse B, et al. European society of biomechanics S.M. Perren award 2022: standardized tibio-femoral implant loads and kinematics. J Biomech. 2022;141:111171. doi: 10.1016/j.jbiomech.2022.111171. PubMed DOI
Guezmil M, Bensalah W, Mezlini S. Tribological behavior of UHMWPE against TiAl6V4 and CoCr28Mo alloys under dry and lubricated conditions. J Mech Behav Biomed Mater. 2016;63:375–385. doi: 10.1016/j.jmbbm.2016.07.002. PubMed DOI
Frost HM. The mechanostat: a proposed pathogenic mechanism of osteoporoses and the bone mass effects of mechanical and nonmechanical agents. Bone Miner. 1987;2:73–85. PubMed
Frost HM. Skeletal structural adaptations to mechanical usage (SATMU): 1. Redefining Wolff’s law: the bone modeling problem. Anat Rec. 1990;226:403–413. doi: 10.1002/ar.1092260402. PubMed DOI
Frost HM. Skeletal structural adaptations to mechanical usage (SATMU): 2. Redefining Wolff’s law: the remodeling problem. Anat Rec. 1990;226:414–422. doi: 10.1002/ar.1092260403. PubMed DOI
Tyrovola JB, Odont X. The, “mechanostat theory” of frost and the OPG/RANKL/RANK system: the “mechanostat ” and the OPG/RANKL/RANK. J Cell Biochem. 2015;116:2724–2729. doi: 10.1002/jcb.25265. PubMed DOI
Selvan DR, Santini AJA, Davidson JS, Pope JA. The medium-term survival analysis of an all-polyethylene tibia in a single-series cohort of over 1000 knees. J Arthroplasty. 2020;35:2837–2842. doi: 10.1016/j.arth.2020.05.017. PubMed DOI
Herschmiller T, Bradley KE, Wellman SS, Attarian DE. Early to midterm clinical and radiographic survivorship of the all-polyethylene versus modular metal-backed tibia component in primary total knee replacement. J Surg Orthop Adv. 2019;28:108–114. PubMed
Gioe TJ, Maheshwari AV. The all-polyethylene tibial component in primary total knee arthroplasty. J Bone Jt Surg. 2010;92:478–487. doi: 10.2106/JBJS.I.00842. PubMed DOI
Sabeh K, Alam M, Rosas S, Hussain S, Schneiderbauer M. Cost analysis of all-polyethylene compared to metal-backed implants in total knee arthroplasty. Surg Technol Int. 2018;32:249–255. PubMed
Thompson SM, Yohuno D, Bradley WN, Crocombe AD. Finite element analysis: a comparison of an all-polyethylene tibial implant and its metal-backed equivalent. Knee Surg Sports Traumatol Arthrosc. 2016;24:2560–2566. doi: 10.1007/s00167-015-3923-y. PubMed DOI
Brihault J, Navacchia A, Pianigiani S, Labey L, De Corte R, Pascale V, et al. All-polyethylene tibial components generate higher stress and micromotions than metal-backed tibial components in total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc. 2016;24:2550–2559. doi: 10.1007/s00167-015-3630-8. PubMed DOI
Zimmer. Innex Knee System Primary [Internet]. 2005. Available from: https://www.zimmerbiomet.com/content/dam/zimmer-web/documents/en-GB/pdf/medical-professionals/knee/innex-knee-system-primary-brochure.pdf
Zhang Q, Chen Z, Zhang Z, Jin Z, Muratoglu OK, Varadarajan KM. Leveraging subject-specific musculoskeletal modeling to assess effect of anterior cruciate ligament retaining total knee arthroplasty during walking gait. Proc Inst Mech Eng H. 2020;234:1445–1456. doi: 10.1177/0954411920947204. PubMed DOI
Kutzner I, Bender A, Dymke J, Duda G, von Roth P, Bergmann G. Mediolateral force distribution at the knee joint shifts across activities and is driven by tibiofemoral alignment. Bone Jt J. 2017;99-B:779–787. doi: 10.1302/0301-620X.99B6.BJJ-2016-0713.R1. PubMed DOI
Completo A, Simões JA, Fonseca F, Oliveira M. The influence of different tibial stem designs in load sharing and stability at the cement–bone interface in revision TKA. Knee. 2008;15:227–232. doi: 10.1016/j.knee.2008.01.008. PubMed DOI
Shelburne KB, Pandy MG, Anderson FC, Torry MR. Pattern of anterior cruciate ligament force in normal walking. J Biomech. 2004;37:797–805. doi: 10.1016/j.jbiomech.2003.10.010. PubMed DOI
Shelburne KB, Pandy MG, Torry MR. Comparison of shear forces and ligament loading in the healthy and ACL-deficient knee during gait. J Biomech. 2004;37:313–319. doi: 10.1016/j.jbiomech.2003.07.001. PubMed DOI
Nikkhoo M, Hassani K, Tavakoli Golpaygani A, Karimi A. Biomechanical role of posterior cruciate ligament in total knee arthroplasty: a finite element analysis. Comput Methods Prog Biomed. 2020;183:105109. doi: 10.1016/j.cmpb.2019.105109. PubMed DOI
Smith CR, Vignos MF, Lenhart RL, Kaiser J, Thelen DG. The influence of component alignment and ligament properties on tibiofemoral contact forces in total knee replacement. J Biomech Eng. 2016;138:021017. doi: 10.1115/1.4032464. PubMed DOI PMC
Harper KD, Clyburn TA, Incavo SJ, Lambert BS. DEXA overestimates bone mineral density in adults with knee replacements. Sports Med Health Sci. 2020;2:211–215. doi: 10.1016/j.smhs.2020.10.002. PubMed DOI PMC
Delsmann MM, Schmidt C, Mühlenfeld M, Jandl NM, Boese CK, Beil FT, et al. Prevalence of osteoporosis and osteopenia in elderly patients scheduled for total knee arthroplasty. Arch Orthop Trauma Surg. 2021;142:3957–3964. doi: 10.1007/s00402-021-04297-x. PubMed DOI PMC
Lems WF, Raterman HG, van den Bergh JPW, Bijlsma HWJ, Valk NK, Zillikens MC, et al. Osteopenia: a diagnostic and therapeutic challenge. Curr Osteoporos Rep. 2011;9:167–172. doi: 10.1007/s11914-011-0062-3. PubMed DOI PMC
Spinarelli A, Petrera M, Vicenti G, Pesce V, Patella V. Total knee arthroplasty in elderly osteoporotic patients. Aging Clin Exp Res. 2011;23:78–80. PubMed
Hanreich C, Martelanz L, Koller U, Windhager R, Waldstein W. Sport and physical activity following primary total knee arthroplasty: a systematic review and meta-analysis. J Arthroplasty. 2020;35:2274–2285.e1. doi: 10.1016/j.arth.2020.04.013. PubMed DOI
Au AG, Liggins AB, Raso VJ, Amirfazli A. A parametric analysis of fixation post shape in tibial knee prostheses. Med Eng Phys. 2005;27:123–134. doi: 10.1016/j.medengphy.2004.09.010. PubMed DOI