Simulated microgravity reduces proliferation and reorganizes the cytoskeleton of human umbilical cord mesenchymal stem cells
Jazyk angličtina Země Česko Médium print-electronic
Typ dokumentu časopisecké články
PubMed
32901501
PubMed Central
PMC8549910
DOI
10.33549/physiolres.934472
PII: 934472
Knihovny.cz E-zdroje
- MeSH
- buněčná diferenciace fyziologie MeSH
- buněčný cyklus fyziologie MeSH
- cytoskelet metabolismus MeSH
- kultivované buňky MeSH
- lidé MeSH
- mezenchymální kmenové buňky cytologie metabolismus MeSH
- mikrofilamenta metabolismus MeSH
- mikrotubuly metabolismus MeSH
- proliferace buněk fyziologie MeSH
- pupečník cytologie metabolismus MeSH
- simulace stavu beztíže * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
The cytoskeleton plays a key role in cellular proliferation, cell-shape maintenance and internal cellular organization. Cells are highly sensitive to changes in microgravity, which can induce alterations in the distribution of the cytoskeletal and cell proliferation. This study aimed to assess the effects of simulated microgravity (SMG) on the proliferation and expression of major cell cycle-related regulators and cytoskeletal proteins in human umbilical cord mesenchymal stem cells (hucMSCs). A WST-1 assay showed that the proliferation of SMG-exposed hucMSCs was lower than a control group. Furthermore, flow cytometry analysis demonstrated that the percentage of SMG-exposed hucMSCs in the G0/G1 phase was higher than the control group. A western blot analysis revealed there was a downregulation of cyclin A1 and A2 expression in SMG-exposed hucMSCs as well. The expression of cyclin-dependent kinase 4 (cdk4) and 6 (cdk6) were also observed to be reduced in the SMG-exposed hucMSCs. The total nuclear intensity of SMG-exposed hucMSCs was also lower than the control group. However, there were no differences in the nuclear area or nuclear-shape value of hucMSCs from the SMG and control groups. A western blot and quantitative RT-PCR analysis showed that SMG-exposed hucMSCs experienced a downregulation of bata-actin and alpha-tubulin compared to the control group. SMG generated the reorganization of microtubules and microfilaments in hucMSCs. Our study supports the idea that the downregulation of major cell cycle-related proteins and cytoskeletal proteins results in the remodeling of the cytoskeleton and the proliferation of hucMSCs.
Zobrazit více v PubMed
ALESHCHEVA G, SAHANA J, MA X, HAUSLAGE J, HEMMERSBACH R, EGLI M, INFANGER M, BAUER J, GRIMM D. Changes in morphology, gene expression and protein content in chondrocytes cultured on a random positioning machine. PLoS One. 2013;8:e79057. doi: 10.1371/journal.pone.0079057. PubMed DOI PMC
BENAVIDES DAMM T, RICHARD S, TANNER S, WYSS F, EGLI M, FRANCO-OBREGON A. Calcium-dependent deceleration of the cell cycle in muscle cells by simulated microgravity. FASEB J. 2013;27:2045–2054. doi: 10.1096/fj.12-218693. PubMed DOI
BENAVIDES DAMM T, WALTHER I, WÜEST SL, SEKLER J, EGLI M. Cell cultivation under different gravitational loads using a novel random positioning incubator. Biotechnol Bioeng. 2014;111:1180–1190. doi: 10.1002/bit.25179. PubMed DOI PMC
BERTOLI C, SKOTHEIM JM, DE BRUIN RA. Control of cell cycle transcription during G1 and S phases. Nat Rev Mol Cell Biol. 2013;14:518–528. doi: 10.1038/nrm3629. PubMed DOI PMC
BONELLI M, LA MONICA S, FUMAROLA C, ALFIERI R. Multiple effects of CDK4/6 inhibition in cancer: From cell cycle arrest to immunomodulation. Biochem Pharmacol. 2019;170:113676. doi: 10.1016/j.bcp.2019.113676. PubMed DOI
CAZZANIGA A, MAIER JAM, CASTIGLIONI S. Impact of simulated microgravity on human bone stem cells: New hints for space medicine. Biochem Biophys Res Commun. 2016;473:181–186. doi: 10.1016/j.bbrc.2016.03.075. PubMed DOI
CHEN Z, LUO Q, LIN C, KUANG D, SONG G. Simulated microgravity inhibits osteogenic differentiation of mesenchymal stem cells via depolymerizing F-actin to impede TAZ nuclear translocation. Sci Rep. 2016;6:30322. doi: 10.1038/srep30322. PubMed DOI PMC
CRUCIANI S, GARRONI G, VENTURA C, DANANI A, NEČAS A, MAIOLI M. Stem cells and physical energies: can we really drive stem cell fate? Physiol Res. 2019;68(Suppl 4):S375–S384. doi: 10.33549/physiolres.934388. PubMed DOI
DEVARASETTY M, WANG E, SOKER S, SKARDAL A. Mesenchymal stem cells support growth and organization of host-liver colorectal-tumor organoids and possibly resistance to chemotherapy. Biofabrication. 2017;9:021002. doi: 10.1088/1758-5090/aa7484. PubMed DOI PMC
DOAN CC, LE TL, HOANG NS, DOAN NT, LE VD, DO MS. Differentiation of umbilical cord lining membrane-derived mesenchymal stem cells into endothelial-like cells. Iran Biomed J. 2014;18:67–75. doi: 10.1155/2013/749587. PubMed DOI PMC
DOAN CC, LE TL, HOANG NS, NGUYEN DK, NGUYEN HC, LE VD, DO MS. Differentiation of human umbilical cord lining membrane-derived mesenchymal stem cells into hepatocyte-like cells. Int Sch Res Notices. 2013;2013:749587. doi: 10.1155/2013/749587. DOI
FISCHER M, SKOWRON M, BERTHOLD F. Reliable transcript quantification by real-time reverse transcriptase-polymerase chain reaction in primary neuroblastoma using normalization to averaged expression levels of the control genes HPRT1 and SDHA. J Mol Diagn. 2005;7:89–96. doi: 10.1016/s1525-1578(10)60013-x. PubMed DOI PMC
GARRIDO-CASTRO AC, GOEL S. CDK4/6 Inhibition in breast cancer: mechanisms of response and treatment failure. Curr Breast Cancer Rep. 2017;9:26–33. doi: 10.1007/s12609-017-0232-0. PubMed DOI PMC
GORGOGIETAS VA, TSIALTAS I, SOTIRIOU N, LASCHOU VC, KARRA AG, LEONIDAS DD, CHROUSOS GP, PROTOPAPA E, PSARRA AG. Potential interference of aluminum chlorohydrate with estrogen receptor signaling in breast cancer cells. J Mol Biochem. 2018;7:1–13. PubMed PMC
GRIFFONI C, Di MOLFETTA S, FANTOZZI L, ZANETTI C, PIPPIA P, TOMASI V, SPISNI E. Modification of proteins secreted by endothelial cells during modeled low gravity exposure. J Cell Biochem. 2011;112:265–272. doi: 10.1002/jcb.22921. PubMed DOI
HABELA CW, SONTHEIMER H. Cytoplasmic volume condensation is an integral part of mitosis. Cell Cycle. 2007;6:1613–1620. doi: 10.4161/cc.6.13.4357. PubMed DOI PMC
HUANG Y, DAI ZQ, LING SK, ZHANG HY, WAN YM, LI YH. Gravity, a regulation factor in the differentiation of rat bone marrow mesenchymal stem cells. J Biomed Sci. 2009;16:87. doi: 10.1186/1423-0127-16-87. PubMed DOI PMC
IMURA T, OTSUKA T, KAWAHARA Y, YUGE L. “Microgravity” as a unique and useful stem cell culture environment for cell-based therapy. Regen Ther. 2019;12:2–5. doi: 10.1016/j.reth.2019.03.001. PubMed DOI PMC
JI P, AGRAWAL S, DIEDERICHS S, BÄUMER N, BECKER A, CAUVET T, KOWSKI S, BEGER C, WELTE K, BERDEL WE, SERVE H, MÜLLER-TIDOW C. Cyclin A1, the alternative A-type cyclin, contributes to G1/S cell cycle progression in somatic cells. Oncogene. 2005;24:2739–2744. doi: 10.1038/sj.onc.1208356. PubMed DOI
KALASZCZYNSKA I, GENG Y, IINO T, MIZUNO S, CHOI Y, KONDRATIUK I, SILVER DP, WOLGEMUTH DJ, AKASHI K, SICINSKI P. Cyclin A is redundant in fibroblasts but essential in hematopoietic and embryonic stem cells. Cell. 2009;138:352–365. doi: 10.1016/j.cell.2009.04.062. PubMed DOI PMC
KLADNICKÁ I, ČEDÍKOVÁ M, KRIPNEROVÁ M, DVOŘÁKOVÁ J, KOHOUTOVÁ M, TŮMA Z, MÜLLEROVÁ D, KUNCOVÁ J. Mitochondrial respiration of adipocytes differentiating from human mesenchymal stem cells derived from adipose tissue. Physiol Res. 2019;68(Suppl 3):S287–S296. doi: 10.33549/physiolres.934353. PubMed DOI
KOLLMANN K, BRIAND C, BELLUTTI F, SCHICHER N, BLUNDER S, ZOJER M, HOELLER C. The interplay of CDK4 and CDK6 in melanoma. Oncotarget. 2019;10:1346–1359. doi: 10.18632/oncotarget.26515. PubMed DOI PMC
LEGUY CAD, DELFOS R, POURQUIE MJBM, POELMA C, KROONEMAN J, WESTERWEEL J, Van LOON JJWA. Fluid motion for micro-gravity simulations in a random positioning machine. Gravit Space Biol. 2011;25:36–39.
LIVAK KJ, SCHMITTGEN TD. Analysis of relative gene expression data using Real-Time Quantitative PCR and the 2-ΔΔCt method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI
MAO X, CHEN Z, LUO Q, ZHANG B, SONG G. Simulated microgravity inhibits the migration of mesenchymal stem cells by remodeling actin cytoskeleton and increasing cell stiffness. Cytotechnology. 2016;68:2235–2243. doi: 10.1007/s10616-016-0007-x. PubMed DOI PMC
MARINO L, CASTALDI MA, ROSAMILIO R, RAGNI E, VITOLO R, FULGIONE C, CASTALDI SG, SERIO B, BIANCO R, GUIDA M, SELLERI C. Mesenchymal stem cells from the Wharton’s jelly of the human umbilical cord: biological properties and therapeutic potential. Int J Stem Cells. 2019;12:218–226. doi: 10.15283/ijsc18034. PubMed DOI PMC
NAKASEKO Y, YANAGIDA M. Cytoskeleton in the cell cycle. Nature. 2001;412:291–292. doi: 10.1038/35085684. PubMed DOI
PLETT PA, ABONOUR R, FRANKOVITZ SM, ORSCHELL CM. Impact of modeled microgravity on migration, differentiation, and cell cycle control of primitive human hematopoietic progenitor cells. Exp Hematol. 2004;32:773–781. doi: 10.1016/j.exphem.2004.03.014. PubMed DOI
REA G, CRISTOFARO F, PANI G, PASCUCCI B, GHUGE SA, CORSETTO PA, IMBRIANI M, VISAI L, RIZZO AM. Microgravity-driven remodeling of the proteome reveals insights into molecular mechanisms and signal networks involved in response to the space flight environment. J Proteomics. 2016;137:3–18. doi: 10.1016/j.jprot.2015.11.005. PubMed DOI
SAMBANDAM Y, TOWNSEND MT, PIERCE JJ, LIPMAN CM, HAQUE A, BATEMAN TA, REDDY SV. Microgravity control of autophagy modulates osteoclastogenesis. Bone. 2014;61:125–131. doi: 10.1016/j.bone.2014.01.004. PubMed DOI PMC
SON HN, CHI HNQ, CHUNG DC, LONG LT. Morphological changes during replicative senescence in bovine ovarian granulosa cells. Cell Cycle. 2019;18:1490–1497. doi: 10.1080/15384101.2019.1624108. PubMed DOI PMC
TAN X, XU A, ZHAO T, ZHAO Q, ZHANG J, FAN C, DENG Y, FREYWALD A, GENTH H, XIANG J. Simulated microgravity inhibits cell focal adhesions leading to reduced melanoma cell proliferation and metastasis via FAK/RhoA-regulated mTORC1 and AMPK pathways. Sci Rep. 2018;8:3769. doi: 10.1038/s41598-018-20459-1. PubMed DOI PMC
TIGAN AS, BELLUTTI F, KOLLMANN K, TEBB G, SEXL V. CDK6-a review of the past and a glimpse into the future: from cell-cycle control to transcriptional regulation. Oncogene. 2016;35:3083–3091. doi: 10.1038/onc.2015.407. PubMed DOI
TOUCHSTONE H, BRYD R, LOISATE S, THOMPSON M, KIM S, PURANAM K, SENTHILNATHAN AN, PU X, BEARD R, RUBIN J, ALWOOD J, OXFORD JT, UZER G. Recovery of stem cell proliferation by low intensity vibration under simulated microgravity requires LINC complex. NPJ Microgravity. 2019;5:11. doi: 10.1038/s41526-019-0072-5. PubMed DOI PMC
TRÁVNÍČKOVÁ M, BAČÁKOVÁ L. Application of adult mesenchymal stem cells in bone and vascular tissue engineering. Physiol Res. 2018;67:831–850. doi: 10.33549/physiolres.933820. PubMed DOI
WANG C, CHEN H, LUO H, ZHU L, ZHAO Y, TIAN H, WANG R, SHANG P, ZHAO Y. Microgravity activates p38 MAPK-C/EBPbeta pathway to regulate the expression of arginase and inflammatory cytokines in macrophages. Inflamm Res. 2015;64:303–311. doi: 10.1007/s00011-015-0811-3. PubMed DOI
WEISS ML, TROYER DL. Stem cells in the umbilical cord. Stem Cell Rev. 2006;2:155–162. doi: 10.1007/s12015-006-0022-y. PubMed DOI PMC
YAN M, WANG Y, YANG M, LIU Y, QU B, YE Z, LIANG W, SUN X, LUO Z. The effects and mechanisms of clinorotation on proliferation and differentiation in bone marrow mesenchymal stem cells. Biochem Biophys Res Commun. 2015;460:327–332. doi: 10.1016/j.bbrc.2015.03.034. PubMed DOI
ZHAO J, FU W, LIAO H, DAI L, JIANG Z, PAN Y, HUANG H, MO Y, LI S, YANG G, YIN J. The regulatory and predictive functions of miR-17 and miR-92 families on cisplatin resistance of non-small cell lung cancer. BMC Cancer. 2015;15:731. doi: 10.1186/s12885-015-1713-z. PubMed DOI PMC