Inter-laboratory mass spectrometry dataset based on passive sampling of drinking water for non-target analysis
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu dataset, časopisecké články, práce podpořená grantem
Grantová podpora
AUFF- T-2017-FLS-7-4
Aarhus Universitets Forskningsfond (Aarhus University Research Foundation)
PubMed
34429429
PubMed Central
PMC8384892
DOI
10.1038/s41597-021-01002-w
PII: 10.1038/s41597-021-01002-w
Knihovny.cz E-zdroje
- MeSH
- algoritmy MeSH
- hmotnostní spektrometrie * MeSH
- laboratoře MeSH
- pitná voda analýza MeSH
- průběh práce MeSH
- Publikační typ
- časopisecké články MeSH
- dataset MeSH
- práce podpořená grantem MeSH
- Názvy látek
- pitná voda MeSH
Non-target analysis (NTA) employing high-resolution mass spectrometry is a commonly applied approach for the detection of novel chemicals of emerging concern in complex environmental samples. NTA typically results in large and information-rich datasets that require computer aided (ideally automated) strategies for their processing and interpretation. Such strategies do however raise the challenge of reproducibility between and within different processing workflows. An effective strategy to mitigate such problems is the implementation of inter-laboratory studies (ILS) with the aim to evaluate different workflows and agree on harmonized/standardized quality control procedures. Here we present the data generated during such an ILS. This study was organized through the Norman Network and included 21 participants from 11 countries. A set of samples based on the passive sampling of drinking water pre and post treatment was shipped to all the participating laboratories for analysis, using one pre-defined method and one locally (i.e. in-house) developed method. The data generated represents a valuable resource (i.e. benchmark) for future developments of algorithms and workflows for NTA experiments.
Consiglio Nazionale delle Ricerche Istituto di Ricerca Sulle Acque Via De Blasio 5 70132 Bari Italy
Eawag Swiss Federal Institute of Aquatic Science and Technology 8600 Duebendorf Switzerland
Eurolab Srl Via Monsignore Rodolfi 22 IT 36022 Cassola 6 Italy
INRAE UR RiverLy F 69625 Villeurbanne France
Masaryk University Faculty of Science RECETOX Kamenice 753 5 625 00 Brno Czech Republic
National and Kapodistrian University of Athens Athens Greece
Norwegian Institute for Water Research Gaustadalléen 21 0349 Oslo Norway
OSU EFLUVE Univ Paris Est Creteil CNRS F 94010 Creteil France
Univ Paris Est Creteil Ecole des Ponts LEESU F 94010 Creteil France
Zobrazit více v PubMed
Schulze, B. et al. An assessment of Quality Assurance/Quality Control Efforts in High Resolution Mass Spectrometry Non-Target Workflows for Analysis of Environmental Samples. Trends Anal. Chem. 133, 116063 (2020).
Bletsou AA, Jeon J, Hollender J, Archontaki E, Thomaidis NS. Targeted and non-targeted liquid chromatography-mass spectrometric workflows for identification of transformation products of emerging pollutants in the aquatic environment. Trends Anal. Chem. 2015;66:32–44. doi: 10.1016/j.trac.2014.11.009. DOI
Martínez-Bueno MJ, Gómez Ramos MJ, Bauer A, Fernández-Alba AR. An overview of non-targeted screening strategies based on high resolution accurate mass spectrometry for the identification of migrants coming from plastic food packaging materials. Trends Anal. Chem. 2019;110:191–203. doi: 10.1016/j.trac.2018.10.035. DOI
Milman BL, Zhurkovich IK. The chemical space for non-target analysis. Trends Anal. Chem. 2017;97:179–187. doi: 10.1016/j.trac.2017.09.013. DOI
Oberacher H, Arnhard K. Current status of non-targeted liquid chromatography-tandem mass spectrometry in forensic toxicology. Trends Anal. Chem. 2016;84, Part B:94–105. doi: 10.1016/j.trac.2015.12.019. DOI
Albergamo V, et al. Nontarget Screening Reveals Time Trends of Polar Micropollutants in a Riverbank Filtration System. Environ. Sci. Technol. 2019;53:7584–7594. doi: 10.1021/acs.est.9b01750. PubMed DOI PMC
Samanipour S, Martin JW, Lamoree MH, Reid MJ, Thomas KV. Letter to the Editor: Optimism for Nontarget Analysis in Environmental Chemistry. Environ. Sci. Technol. 2019;53:5529–5530. doi: 10.1021/acs.est.9b01476. PubMed DOI
Hohrenk LL, et al. Comparison of Software Tools for Liquid Chromatography–High-Resolution Mass Spectrometry Data Processing in Nontarget Screening of Environmental Samples. Anal. Chem. 2020;92:1898–1907. doi: 10.1021/acs.analchem.9b04095. PubMed DOI
Schymanski EL, et al. Identifying Small Molecules via High Resolution Mass Spectrometry: Communicating Confidence. Environ. Sci. Technol. 2014;48:2097–2098. doi: 10.1021/es5002105. PubMed DOI
Schymanski EL, et al. Non-target screening with high-resolution mass spectrometry: critical review using a collaborative trial on water analysis. Anal. Bioanal. Chem. 2015;407:6237–55. doi: 10.1007/s00216-015-8681-7. PubMed DOI
Tian Z, et al. A ubiquitous tire rubber–derived chemical induces acute mortality in coho salmon. Science. 2021;37:185–189. doi: 10.1126/science.abd6951. PubMed DOI
Ulrich EM, et al. EPA’s non-targeted analysis collaborative trial (ENTACT): genesis, design, and initial findings. Anal. Bioanal. Chem. 2019;411:853–866. doi: 10.1007/s00216-018-1435-6. PubMed DOI PMC
Rostkowski P, et al. The strength in numbers: comprehensive characterization of house dust using complementary mass spectrometric techniques. Anal. Bioanal. Chem. 2019;411:1957–1977. doi: 10.1007/s00216-019-01615-6. PubMed DOI PMC
Hollender J, Schymanski EL, Singer HP, Ferguson PL. Nontarget Screening with High Resolution Mass Spectrometry in the Environment: Ready to Go? Environ. Sci. Technol. 2017;51:11505–11512. doi: 10.1021/acs.est.7b02184. PubMed DOI
Hites RA, Jobst KJ. Response to “Letter to the Editor: Optimism for Nontarget Analysis in Environmental Chemistry”. Environ. Sci. Technol. 2019;53:5531–5533. doi: 10.1021/acs.est.9b02473. PubMed DOI
Samanipour, S., Reid, M. J. & Thomas, K. V. Statistical Variable Selection: An Alternative Prioritization Strategy during the Nontarget Analysis of LC-HR-MS Data. Anal. Chem. 89, 10, 5585–5591 (2017). PubMed
Samanipour S, Reid MJ, Bæk K, Thomas KV. Combining a Deconvolution and a Universal Library Search Algorithm for the Nontarget Analysis of Data-Independent Acquisition Mode Liquid Chromatography−High-Resolution Mass Spectrometry Results. Environ. Sci. Technol. 2018;52:4694–4701. doi: 10.1021/acs.est.8b00259. PubMed DOI
Samanipour S, et al. Machine learning combined with non-targeted LC-HRMS analysis for a risk warning system of chemical hazards in drinking water: A proof of concept. Talanta. 2019;195:426–432. doi: 10.1016/j.talanta.2018.11.039. PubMed DOI
Escher BI, Stapleton HM, Schymanski EL. Tracking complex mixtures of chemicals in our changing environment. Science. 2020;367:388–392. doi: 10.1126/science.aay6636. PubMed DOI PMC
Gosetti F, Mazzucco E, Gennaro MC, Marengo E. Contaminants in water: non-target UHPLC/MS analysis. Environ. Chem. Lett. 2016;14:51–65. doi: 10.1007/s10311-015-0527-1. DOI
Alygizakis NA, et al. NORMAN digital sample freezing platform: A European virtual platform to exchange liquid chromatography high resolution-mass spectrometry data and screen suspects in “digitally frozen” environmental samples. Trends Anal. Chem. 2019;115:129–137. doi: 10.1016/j.trac.2019.04.008. DOI
Blaženović I, Kind T, Ji J, Fiehn O. Software Tools and Approaches for Compound Identification of LC-MS/MS Data in Metabolomics. Metabolites. 2018;8:31. doi: 10.3390/metabo8020031. PubMed DOI PMC
Chow CWK, et al. Development of smart data analytics tools to support wastewater treatment plant operation. Chemom. Intell. Lab. Syst. 2018;177:140–150. doi: 10.1016/j.chemolab.2018.03.006. DOI
Brodsky L, Moussaieff A, Shahaf N, Aharoni A, Rogachev I. Evaluation of Peak Picking Quality in LC−MS Metabolomics Data. Anal. Chem. 2010;82:9177–9187. doi: 10.1021/ac101216e. PubMed DOI
Samanipour S, O’Brien JW, Reid MJ, Thomas KV. Self Adjusting Algorithm for the Nontargeted Feature Detection of High Resolution Mass Spectrometry Coupled with Liquid Chromatography Profile Data. Anal. Chem. 2019;91:10800–10807. doi: 10.1021/acs.analchem.9b02422. PubMed DOI
Wilkinson MD, et al. The FAIR Guiding Principles for scientific data management and stewardship. Sci. Data. 2016;3:160018. doi: 10.1038/sdata.2016.18. PubMed DOI PMC
FAIR Principles. GO FAIRhttps://www.go-fair.org/fair-principles/.
Alygizakis NA, et al. Exploring the Potential of a Global Emerging Contaminant Early Warning Network through the Use of Retrospective Suspect Screening with High-Resolution Mass Spectrometry. Environ. Sci. Technol. 2018;52:5135–5144. doi: 10.1021/acs.est.8b00365. PubMed DOI
2020. MassBank consortium and its contributors. MassBank/MassBank-data: Release version 2020.06. Zenodo. DOI
Vrana B, et al. Passive sampling techniques for monitoring pollutants in water. Trends Anal. Chem. 2005;24:845–868. doi: 10.1016/j.trac.2005.06.006. DOI
Miège, C. et al. Position paper on passive sampling techniques for the monitoring of contaminants in the aquatic environment – Achievements to date and perspectives. Trends Environ. Anal. Chem. 8, 20–26 (2015).
Aalizadeh R, Nika M-C, Thomaidis NS. Development and application of retention time prediction models in the suspect and non-target screening of emerging contaminants. J. Hazard. Mater. 2019;363:277–285. doi: 10.1016/j.jhazmat.2018.09.047. PubMed DOI
Samanipour S, et al. Assessing sample extraction efficiencies for the analysis of complex unresolved mixtures of organic pollutants: A comprehensive non-target approach. Anal. Chim. Acta. 2018;1025:92–98. doi: 10.1016/j.aca.2018.04.020. PubMed DOI
Samanipour S, et al. The effect of extraction methodology on the recovery and distribution of naphthenic acids of oilfield produced water. Sci. Total Environ. 2019;652:1416–1423. doi: 10.1016/j.scitotenv.2018.10.264. PubMed DOI
Vrana B, et al. Mobile dynamic passive sampling of trace organic compounds: Evaluation of sampler performance in the Danube River. Sci. Total Environ. 2018;636:1597–1607. doi: 10.1016/j.scitotenv.2018.03.242. PubMed DOI
US EPA, O. EPA Method 3570 (SW-846): Microscale Solvent Extraction (MSE). US EPAhttps://www.epa.gov/esam/epa-method-3570-sw-846-microscale-solvent-extraction-mse (2019).
Samanipour S. 2021. NORMAN Collaborative Trial on Passive Sampling and Non-target Screening (NTS) Instruction file. University of Amsterdam. DOI
Samanipour, S. et al. Two stage algorithm vs commonly used approaches for the suspect screening of complex environmental samples analyzed via liquid chromatography high resolution time of flight mass spectroscopy: A test study. J. Chromatogr. A1501, 68–78 (2017). PubMed
Deutsch EW. File Formats Commonly Used in Mass Spectrometry. Proteomics. Mol. Cell. Proteomics MCP. 2012;11:1612–1621. doi: 10.1074/mcp.R112.019695. PubMed DOI PMC
Chambers MC, et al. A cross-platform toolkit for mass spectrometry and proteomics. Nat. Biotechnol. 2012;30:918–920. doi: 10.1038/nbt.2377. PubMed DOI PMC
Samanipour S. 2021. NORMAN Collaborative Trial on Passive Sampling and Non-target Screening (NTS) - Pre-defined method (individual files) figshare. DOI
Samanipour S. 2021. Inter-laboratory dataset from a collaborative trial for future use in the development of non-target analysis. MassIVE. DOI
Samanipour S. 2021. NORMAN Collaborative Trial on Passive Sampling and Non-target Screening (NTS) - Own method (individual files) figshare. DOI
Samanipour S. 2021. NORMAN Collaborative Trial on Passive Sampling and Non-target Screening (NTS) - Metadata. figshare. DOI
Novel nontarget LC-HRMS-based approaches for evaluation of drinking water treatment