The Solanum lycopersicum WRKY3 Transcription Factor SlWRKY3 Is Involved in Salt Stress Tolerance in Tomato
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
28824679
PubMed Central
PMC5534461
DOI
10.3389/fpls.2017.01343
Knihovny.cz E-zdroje
- Klíčová slova
- SlWRKY3, Solanum lycopersicum, plant physiology, salinity tolerance, transcription factor,
- Publikační typ
- časopisecké články MeSH
Salinity threatens productivity of economically important crops such as tomato (Solanum lycopersicum L.). WRKY transcription factors appear, from a growing body of knowledge, as important regulators of abiotic stresses tolerance. Tomato SlWRKY3 is a nuclear protein binding to the consensus CGTTGACC/T W box. SlWRKY3 is preferentially expressed in aged organs, and is rapidly induced by NaCl, KCl, and drought. In addition, SlWRKY3 responds to salicylic acid, and 35S::SlWRKY3 tomatoes showed under salt treatment reduced contents of salicylic acid. In tomato, overexpression of SlWRKY3 impacted multiple aspects of salinity tolerance. Indeed, salinized (125 mM NaCl, 20 days) 35S::SlWRKY3 tomato plants displayed reduced oxidative stress and proline contents compared to WT. Physiological parameters related to plant growth (shoot and root biomass) and photosynthesis (stomatal conductance and chlorophyll a content) were retained in transgenic plants, together with lower Na+ contents in leaves, and higher accumulation of K+ and Ca2+. Microarray analysis confirmed that many stress-related genes were already up-regulated in transgenic tomatoes under optimal conditions of growth, including genes coding for antioxidant enzymes, ion and water transporters, or plant defense proteins. Together, these results indicate that SlWRKY3 is an important regulator of salinity tolerance in tomato.
Département Sciences du Vivant Centre Wallon de Recherches AgronomiquesGembloux Belgium
Institut des Sciences de la Vie Université Catholique de LouvainLouvain la Neuve Belgium
Institute of Experimental Botany Academy of Sciences of the Czech RepublicPrague Czechia
Zobrazit více v PubMed
Agarwal P., Dabi M., Sapara K. K., Joshi P. S., Agarwal P. K. (2016). Ectopic expression of JcWRKY transcription factor confers salinity tolerance via salicylic acid signaling. PubMed DOI PMC
Albacete A., Ghanem M. E., Martínez-Andújar C., Acosta M., Sánchez-Bravo J., Martínez V., et al. (2008). Hormonal changes in relation to biomass partitioning and shoot growth impairment in salinized tomato ( PubMed DOI PMC
Banerjee A., Roychoudhury A. (2015). WRKY proteins: signaling and regulation of expression during abiotic stress responses. PubMed DOI PMC
Bates L. S., Waldren R. P., Teare I. D. (1973). Rapid determination of free proline for water stress studies. DOI
Berri S., Abbruscato P., Faivre-Rampant O., Brasileiro A. C., Fumasoni I., Satoh K., et al. (2009). Characterization of WRKY co-regulatory networks in rice and Arabidopsis. PubMed DOI PMC
Chang W., Liu X., Zhu J., Fan W., Zhang Z. (2016). An aquaporin gene from halophyte PubMed DOI
Chen C., Chen Z. (2000). Isolation and characterization of two pathogen- and salicylic acid-induced genes encoding WRKY DNA-binding proteins from tobacco. PubMed DOI
Chen L., Song Y., Li S., Zhang L., Zou C., Yu D. (2012). The role of WRKY transcription factors in plant abiotic stresses. PubMed DOI
Chu X., Wang C., Chen X., Lu W., Li H., Wang X., et al. (2015). The cotton WRKY gene PubMed DOI PMC
Ciolkowski I., Wanke D., Birkenbihl R. P., Somssich I. (2008). Studies on DNA-binding selectivity of WRKY transcription factors lend structural clues into WRKY-domain function. PubMed DOI PMC
Clough S. J., Bent A. F. (1998). Floral dip: a simplified method for PubMed DOI
Cuartero J., Bolarín M. C., Asíns M. J., Moreno V. (2006). Increasing salt tolerance in the tomato. PubMed DOI
Ding Z. J., Yan J. Y., Xu X. Y., Yu D. Q., Li G. X., Zhang S. Q., et al. (2014). Transcription factor WRKY46 regulates osmotic stress responses and stomatal movement independently in Arabidopsis. PubMed DOI
Ellul P., Garcia-Sogo B., Pineda B., Ríos G., Roig L. A., Moreno V. (2003). The ploidy level of transgenic plants in PubMed DOI
Fan X., Guo Q., Xu P., Gong Y., Shu H., Yang Y., et al. (2015). Transcriptome-wide identification of salt-responsive members of the WRKY gene family in PubMed DOI PMC
Godoy M., Franco-Zorrilla J. M., Pérez-Pérez J., Oliveros J. C., Lorenzo O., Solano R. (2011). Improved protein-binding microarrays for the identification of DNA-binding specificities of transcription factors. PubMed DOI
Gong X., Zhang J., Hu J., Wang W., Wu H., Zhang Q., et al. (2015). FcWRKY70, a WRKY protein of PubMed DOI
Gostincar C., Turk M., Plemenitas A., Gunde-Cimerman N. (2009). The expressions of Delta 9-, Delta 12-desaturases and an elongase by the extremely halotolerant black yeast PubMed DOI
Guo D., Zhang J., Wang X., Han X., Wei B., Wang J., et al. (2015). The WRKY transcription factor WRKY71/EXB1 controls shoot branching by transcriptionally regulating RAX genes in Arabidopsis. PubMed DOI PMC
Hichri I., Heppel S. C., Pillet J., Léon C., Czemmel S., Delrot S., et al. (2010). The basic helix-loop-helix transcription factor MYC1 is involved in the regulation of the flavonoid biosynthesis pathway in grapevine. PubMed DOI
Hichri I., Muhovski Y., Clippe A., Žižková E., Dobrev P. I., Motyka V., et al. (2016). SlDREB2, a tomato dehydration-responsive element-binding 2 transcription factor, mediates salt stress tolerance in tomato and Arabidopsis. PubMed DOI
Hichri I., Muhovski Y., Žižkova E., Dobrev P. I., Franco-Zorilla J. M., Solano R., et al. (2014). The PubMed DOI PMC
Hu Y., Chen L., Wang H., Zhang L., Wang F., Yu D. (2013). Arabidopsis transcription factor WRKY8 functions antagonistically with its interacting partner VQ9 to modulate salinity stress tolerance. PubMed DOI
Huang S., Gao Y., Liu J., Peng X., Niu X., Fei Z., et al. (2012). Genome-wide analysis of WRKY transcription factors in PubMed DOI
Jiang Y., Deyholos M. K. (2006). Comprehensive transcriptional profiling of NaCl-stressed Arabidopsis roots reveals novel classes of responsive genes. PubMed DOI PMC
Jiang Y., Deyholos M. K. (2009). Functional characterization of Arabidopsis NaCl-inducible PubMed DOI
Karimi M., Inzé D., Depicker A. (2002). GATEWAY vectors for PubMed DOI
Kim K. C., Lai Z., Fan B., Chen Z. (2008). PubMed DOI PMC
Li H., Xu Y., Xiao Y., Zhu Z., Xie X., Zhao H., et al. (2010). Expression and functional analysis of two genes encoding transcription factors, PubMed DOI
Li J. B., Luan Y. S., Jin H. (2012). The tomato SlWRKY gene plays an important role in the regulation of defense responses in tobacco. PubMed DOI
Li J. B., Luan Y. S., Liu Z. (2015). Overexpression of PubMed DOI
Liu Q. L., Zhong M., Li S., Pan Y. Z., Jiang B. B., Jia Y., et al. (2013). Overexpression of a chrysanthemum transcription factor gene, PubMed DOI
Lu Y., Chi X., Li Z., Yang Q., Li F., Liu S., et al. (2010). Isolation and characterization of a stress-dependent plastidial delta12 fatty acid desaturase from the Antarctic microalga PubMed DOI
Lutts S., Almansouri M., Kinet J. M. (2004). Salinity and water stress have contrasting effects on the relationship between growth and cell viability during and after stress exposure in durum wheat callus. DOI
Lutts S., Kinet J. M., Bouharmont J. (1996). NaCl-induced senescenvce in leaves of rice ( DOI
Navarro J. M., Martínez V., Carvajal M. (2000). Ammonium, bicarbonate and calcium effects on tomato plants grown under saline conditions. PubMed DOI
Nie L., Feng J., Fan P., Chen X., Guo J., Lv S., et al. (2015). Comparative proteomics of root plasma membrane proteins reveals the involvement of calcium signalling in NaCl-facilitated nitrate uptake in PubMed DOI PMC
Niu C. F., Wei W., Zhou Q. Y., Tian A. G., Hao Y. J., Zhang W. K., et al. (2012). Wheat PubMed DOI
Núñez-Ramírez R., Sánchez-Barrena M. J., Villalta I., Vega J. F., Pardo J. M., Quintero F. J., et al. (2012). Structural insights on the plant salt-overly-sensitive 1 (SOS1) Na(+)/H(+) antiporter. PubMed DOI
Orellana S., Yañez M., Espinoza A., Verdugo I., González E., Ruiz-Lara S., et al. (2010). The transcription factor SlAREB1 confers drought, salt stress tolerance and regulates biotic and abiotic stress-related genes in tomato. PubMed DOI
Ouyang B., Yang T., Li H., Zhang L., Zhang Y., Zhang J., et al. (2007). Identification of early salt stress response genes in tomato root by suppression subtractive hybridization and microarray analysis. PubMed DOI
Pandey G. K., Kanwar P., Singh A., Steinhorst L., Pandey A., Yadav A. K., et al. (2015). Calcineurin B-like protein-interacting protein kinase CIPK21 regulates osmotic and salt stress responses in Arabidopsis. PubMed DOI PMC
Parida A. K., Das A. B. (2005). Salt tolerance and salinity effects on plants: a review. PubMed DOI
Pérez-Alfocea F., Balibrea M. E., Santa Cruz A., Estañ M. T. (1996). Agronomical and physiological characterization of salinity tolerance in a commercial tomato hybrid. DOI
Phukan U. J., Jeena G. S., Shukla R. K. (2016). WRKY transcription factors: molecular regulation and stress responses in plants. PubMed DOI PMC
Qin Y., Tian Y., Liu X. (2015). A wheat salinity-induced WRKY transcription factor TaWRKY93 confers multiple abiotic stress tolerance in PubMed DOI
Redmann R. E., Haraldson J., Gusta L. V. (1986). Leakage of UV-absorbing substances as a measure of salt injury in leaf tissue of woody species. DOI
Rinerson C. I., Rabara R. C., Tripathi P., Shen Q. J., Rushton P. J. (2015a). The evolution of WRKY transcription factors. PubMed DOI PMC
Rinerson C. I., Scully E. D., Palmer N. A., Donze-Reiner T., Rabara R. C., Tripathi P., et al. (2015b). The WRKY transcription factor family and senescence in switchgrass. PubMed DOI PMC
Rushton P. J., Somssich I. E., Ringler P., Shen Q. J. (2010). WRKY transcription factors. PubMed DOI
Schluttenhofer C., Yuan L. (2015). Regulation of specialized metabolism by WRKY transcription factors. PubMed DOI PMC
Shen Y., Shen L., Shen Z., Jing W., Ge H., Zhao J., et al. (2015). The potassium transporter OsHAK21 functions in the maintenance of ion homeostasis and tolerance to salt stress in rice. PubMed DOI
Shi W., Hao L., Li J., Liu D., Guo X., Li H. (2014). The PubMed DOI
Song H., Wang P., Hou L., Zhao S., Zhao C., Xia H., et al. (2016). Global analysis of WRKY genes and their response to dehydration and salt stress in soybean. PubMed DOI PMC
Subramanian C., Woo J., Cai X., Xu X., Servick S., Johnson C. H., et al. (2006). A suite of tools and application notes for in vivo protein interaction assays using bioluminescence resonance energy transfer (BRET). PubMed DOI
Tamura K., Stecher G., Peterson D., Filipski A., Kumar S. (2013). MEGA6: molecular evolutionary genetics analysis version 6.0. PubMed DOI PMC
Ülker B., Somssich I. E. (2004). WRKY transcription factors: from DNA binding towards biological function. PubMed DOI
Vandesompele J., De Preter K., Pattyn F., Poppe B., Van Roy N., De Paepe A., et al. (2002). Accurate normalization of real-time quantitative RT–PCR data by geometric averaging of multiple internal control genes. PubMed PMC
Volkmar K. M., Hu Y., Steppuhn H. (1998). Physiological responses of plants to salinity: a review. DOI
Wang C., Deng P., Chen L., Wang X., Ma H., Hu W., et al. (2013). A wheat WRKY transcription factor TaWRKY10 confers tolerance to multiple abiotic stresses in transgenic tobacco. PubMed DOI PMC
Wang F., Chen H. W., Li Q. T., Wei W., Li W., Zhang W. K., et al. (2015). GmWRKY27 interacts with GmMYB174 to reduce expression of PubMed DOI
Wang H. S., Yu C., Tang X. F., Zhu Z. J., Ma N. N., Meng Q. W. (2014). A tomato endoplasmic reticulum (ER)-type omega-3 fatty acid desaturase (LeFAD3) functions in early seedling tolerance to salinity stress. PubMed DOI
Wang L., Li Q., Lei Q., Feng C., Gao Y., Zheng X., et al. (2015). MzPIP2;1: an aquaporin involved in radial water movement in both water uptake and transportation, altered the drought and salt tolerance of transgenic PubMed DOI PMC
Wang X., Zeng J., Li Y., Rong X., Sun J., Sun T., et al. (2015). Expression of PubMed DOI PMC
Xiong W., Xu X., Zhang L., Wu P., Chen Y., Li M., et al. (2013). Genome-wide analysis of the WRKY gene family in physic nut ( PubMed DOI
Yamasaki K., Kigawa T., Watanabe S., Inoue M., Yamasaki T., Seki M., et al. (2012). Structural basis for sequence-specific DNA recognition by an PubMed DOI PMC
Yang L., Zhao X., Yang F., Fan D., Jiang Y., Luo K. (2016). PtrWRKY19, a novel WRKY transcription factor, contributes to the regulation of pith secondary wall formation in PubMed DOI PMC
Yang Q., Chen Z. Z., Zhou X. F., Yin H. B., Li X., Xin X. F., et al. (2009). Overexpression of SOS ( PubMed DOI PMC
Yu S., Ligang C., Liping Z., Diqiu Y. (2010). Overexpression of PubMed DOI
Zhang C. Q., Xu Y., Lu Y., Yu H. X., Gu M. H., Liu Q. Q. (2011). The WRKY transcription factor OsWRKY78 regulates stem elongation and seed development in rice. PubMed DOI
Zhang L., Gu L., Ringler P., Smith S., Rushton P. J., Shen Q. J. (2015). Three WRKY transcription factors additively repress abscisic acid and gibberellin signaling in aleurone cells. PubMed DOI
Zheng L., Liu G., Meng X., Liu Y., Ji X., Li Y., et al. (2013). A PubMed DOI
Zhou L., Wang N. N., Gong S. Y., Lu R., Li Y., Li X. B. (2015). Overexpression of a cotton ( PubMed DOI
Zhou Q.-Y., Tian A.-G., Zou H. F., Xie Z. M., Lei G., Huang J., et al. (2008). Soybean WRKY-type transcription factor genes, PubMed DOI
Zhu G. Y., Kinet J. M., Lutts S. (2001). Characterization of rice ( DOI
Zhu M., Chen G., Zhang J., Zhang Y., Xie Q., Zhao Z., et al. (2014). The abiotic stress-responsive NAC-type transcription factor SlNAC4 regulates salt and drought tolerance and stress-related genes in tomato ( PubMed DOI