Pepper immunity against Ralstonia solanacearum is positively regulated by CaWRKY3 through modulation of different WRKY transcription factors
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
grant no. 32000086
National Natural Science Foundation of China
grant no. 32000086
National Natural Science Foundation of China
RSP2023R470
King Saud University
RSP2023R470
King Saud University
PubMed
38853241
PubMed Central
PMC11163704
DOI
10.1186/s12870-024-05143-z
PII: 10.1186/s12870-024-05143-z
Knihovny.cz E-zdroje
- Klíčová slova
- CaWRKY3, Capsicum annum, Ralstonia solanacearum, Immunity, Transcription factor,
- MeSH
- acetáty farmakologie MeSH
- Capsicum * genetika imunologie mikrobiologie MeSH
- cyklopentany metabolismus MeSH
- ethyleny metabolismus MeSH
- imunita rostlin * MeSH
- kyselina salicylová metabolismus MeSH
- nemoci rostlin * mikrobiologie imunologie genetika MeSH
- odolnost vůči nemocem genetika MeSH
- oxylipiny metabolismus MeSH
- Ralstonia solanacearum * fyziologie MeSH
- regulace genové exprese u rostlin * MeSH
- regulátory růstu rostlin * metabolismus MeSH
- rostlinné proteiny * genetika metabolismus MeSH
- transkripční faktory * genetika metabolismus MeSH
- umlčování genů MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- acetáty MeSH
- cyklopentany MeSH
- ethylene MeSH Prohlížeč
- ethyleny MeSH
- kyselina salicylová MeSH
- methyl jasmonate MeSH Prohlížeč
- oxylipiny MeSH
- regulátory růstu rostlin * MeSH
- rostlinné proteiny * MeSH
- transkripční faktory * MeSH
BACKGROUND: Several WRKY transcription factors (TFs), including CaWRKY6, CaWRKY22, CaWRKY27, and CaWRKY40 are known to govern the resistance of pepper (Capsicum annuum L.) plants to Ralstonia solanacearum infestation (RSI) and other abiotic stresses. However, the molecular mechanisms underlying these processes remain elusive. METHODS: This study functionally described CaWRKY3 for its role in pepper immunity against RSI. The roles of phytohormones in mediating the expression levels of CaWRKY3 were investigated by subjecting pepper plants to 1 mM salicylic acid (SA), 100 µM methyl jasmonate (MeJA), and 100 µM ethylene (ETH) at 4-leaf stage. A virus-induced gene silencing (VIGS) approach based on the Tobacco Rattle Virus (TRV) was used to silence CaWRKY3 in pepper, and transiently over-expressed to infer its role against RSI. RESULTS: Phytohormones and RSI increased CaWRKY3 transcription. The transcriptions of defense-associated marker genes, including CaNPR1, CaPR1, CaDEF1, and CaHIR1 were decreased in VIGS experiment, which made pepper less resistant to RSI. Significant hypersensitive (HR)-like cell death, H2O2 buildup, and transcriptional up-regulation of immunological marker genes were noticed in pepper when CaWRKY3 was transiently overexpressed. Transcriptional activity of CaWRKY3 was increased with overexpression of CaWRKY6, CaWRKY22, CaWRKY27, and CaWRKY40, and vice versa. In contrast, Pseudomonas syringae pv tomato DC3000 (Pst DC3000) was easily repelled by the innate immune system of transgenic Arabidopsis thaliana that overexpressed CaWRKY3. The transcriptions of defense-related marker genes like AtPR1, AtPR2, and AtNPR1 were increased in CaWRKY3-overexpressing transgenic A. thaliana plants. CONCLUSION: It is concluded that CaWRKY3 favorably regulates phytohormone-mediated synergistic signaling, which controls cell death in plant and immunity of pepper plant against bacterial infections.
Department of Plant Breeding and Genetics Ghazi University Dera Ghazi Khan 32200 Pakistan
Department of Plant Protection Faculty of Agriculture Harran University Şanlıurfa 63050 Türkiye
Zobrazit více v PubMed
Kuromori T, Fujita M, Takahashi F, Yamaguchi-Shinozaki K, Shinozaki K. Inter‐tissue and inter‐organ signaling in drought stress response and phenotyping of drought tolerance. Plant J. 2022;109:342–58. doi: 10.1111/tpj.15619. PubMed DOI PMC
Hussain A, Noman A, Arif M, Farooq S, Khan MI, Cheng P, et al. A basic helix-loop-helix transcription factor CabHLH113 positively regulate pepper immunity against Ralstonia solanacearum. Microb Pathog. 2021;156:104909. doi: 10.1016/j.micpath.2021.104909. PubMed DOI
Hannan Parker A, Wilkinson SW, Ton J. Epigenetics: a catalyst of plant immunity against pathogens. New Phytol. 2022;233:66–83. doi: 10.1111/nph.17699. PubMed DOI
Noman A, Hussain A, Adnan M, Khan MI, Ashraf MF, Zainab M, et al. A novel MYB transcription factor CaPHL8 provide clues about evolution of pepper immunity against soil borne pathogen. Microb Pathog. 2019;137:103758. doi: 10.1016/j.micpath.2019.103758. PubMed DOI
DeFalco TA, Zipfel C. Molecular mechanisms of early plant pattern-triggered immune signaling. Mol Cell. 2021;81:3449–67. doi: 10.1016/j.molcel.2021.07.029. PubMed DOI
Liu D, Luo D, He P. ROS around RIPK. Mol Plant. 2021;14:1607–9. doi: 10.1016/j.molp.2021.07.019. PubMed DOI PMC
Noman A, Liu Z, Aqeel M, Zainab M, Khan MI, Hussain A, et al. Basic leucine zipper domain transcription factors: the vanguards in plant immunity. Biotechnol Lett. 2017;39:1779–91. doi: 10.1007/s10529-017-2431-1. PubMed DOI
Tang Y, Guo J, Zhang T, Bai S, He K, Wang Z. Genome-wide analysis of WRKY gene family and the dynamic responses of key WRKY genes involved in Ostrinia furnacalis attack in Zea mays. Int J Mol Sci. 2021;22:13045. doi: 10.3390/ijms222313045. PubMed DOI PMC
Eulgem T, Rushton PJ, Robatzek S, Somssich IE. The WRKY superfamily of plant transcription factors. Trends Plant Sci. 2000;5:199–206. doi: 10.1016/S1360-1385(00)01600-9. PubMed DOI
Sheikh AH, Hussain RMF, Tabassum N, Badmi R, Marillonnet S, Scheel D et al. Possible role of WRKY transcription factors in regulating immunity in Oryza sativa ssp. indica. Physiol Mol Plant Pathol. 2021;114:101623.
Shen L, Liu Z, Yang S, Yang T, Liang J, Wen J, et al. Pepper CabZIP63 acts as a positive regulator during Ralstonia solanacearum or high temperature–high humidity challenge in a positive feedback loop with CaWRKY40. J Exp Bot. 2016;67:2439–51. doi: 10.1093/jxb/erw069. PubMed DOI PMC
Wani SH, Anand S, Singh B, Bohra A, Joshi R. WRKY transcription factors and plant defense responses: latest discoveries and future prospects. Plant Cell Rep. 2021;40:1071–85. doi: 10.1007/s00299-021-02691-8. PubMed DOI
Hussain A, Li X, Weng Y, Liu Z, Ashraf MF, Noman A, et al. CaWRKY22 acts as a positive regulator in pepper response to Ralstonia solanacearum by constituting networks with CaWRKY6, CaWRKY27, CaWRKY40, and CaWRKY58. Int J Mol Sci. 2018;19:1426. doi: 10.3390/ijms19051426. PubMed DOI PMC
Li Q, Huang C, Liu C, Jia X, Wen W, Li L, et al. Exploring the role and expression pattern of WRKY transcription factor in the growth and development of Bletilla striata based on transcriptome. Gene Rep. 2023;30:101730. doi: 10.1016/j.genrep.2022.101730. DOI
Li W, Pang S, Lu Z, Jin B. Function and mechanism of WRKY Transcription Factors in Abiotic stress responses of plants. Plants. 2020;9:1515. doi: 10.3390/plants9111515. PubMed DOI PMC
Jiang J, Ma S, Ye N, Jiang M, Cao J, Zhang J. WRKY transcription factors in plant responses to stresses. J Integr Plant Biol. 2017;59:86–101. doi: 10.1111/jipb.12513. PubMed DOI
Chen X, Li C, Wang H, Guo Z. WRKY transcription factors: evolution, binding, and action. Phytopathol Res. 2019;1:13. doi: 10.1186/s42483-019-0022-x. DOI
Lai Z, Vinod K, Zheng Z, Fan B, Chen Z. Roles of Arabidopsis WRKY3 and WRKY4 transcription factors in plant responses to pathogens. BMC Plant Biol. 2008;8. PubMed PMC
Shigenaga AM, Argueso CT. No hormone to rule them all: interactions of plant hormones during the responses of plants to pathogens. Semin Cell Dev Biol. 2016;56:174–89. doi: 10.1016/j.semcdb.2016.06.005. PubMed DOI
Kazan K, Lyons R. Intervention of Phytohormone pathways by Pathogen effectors. Plant Cell. 2014;26:2285–309. doi: 10.1105/tpc.114.125419. PubMed DOI PMC
Ma K-W, Ma W. Phytohormone pathways as targets of pathogens to facilitate infection. Plant Mol Biol. 2016;91:713–25. doi: 10.1007/s11103-016-0452-0. PubMed DOI PMC
Han X, Kahmann R. Manipulation of Phytohormone pathways by effectors of Filamentous Plant pathogens. Front Plant Sci. 2019;10. PubMed PMC
Di X, Takken FLW, Tintor N. How phytohormones shape interactions between plants and the soil-borne fungus fusarium oxysporum. Front Plant Sci. 2016;7. PubMed PMC
Phukan UJ, Jeena GS, Shukla RK. WRKY transcription factors: molecular regulation and stress responses in plants. Front Plant Sci. 2016;7. PubMed PMC
Araújo LM, Neves LG, Sousa DA, Zeviani WM, Silva L da, Marostega R. TN. Biochemical descriptors: importance of the genetic divergence study in peppers. Hortic Bras. 2019;37:210–4.
Ifnan Khan M, Zhang Y, Liu Z, Hu J, Liu C, Yang S, et al. CaWRKY40b in pepper acts as a negative regulator in response to Ralstonia solanacearum by directly modulating defense genes including CaWRKY40. Int J Mol Sci. 2018;19:1403. doi: 10.3390/ijms19051403. PubMed DOI PMC
Ahmed W, Yang J, Tan Y, Munir S, Liu Q, Zhang J, et al. Ralstonia solanacearum, a deadly pathogen: revisiting the bacterial wilt biocontrol practices in tobacco and other Solanaceae. Rhizosphere. 2022;21:100479. doi: 10.1016/j.rhisph.2022.100479. DOI
Hussain A, Khan MI, Albaqami M, Mahpara S, Noorka IR, Ahmed MAA, et al. CaWRKY30 positively regulates Pepper immunity by targeting CaWRKY40 against Ralstonia solanacearum Inoculation through Modulating Defense-related genes. Int J Mol Sci. 2021;22:12091. doi: 10.3390/ijms222112091. PubMed DOI PMC
Shi L, Li X, Weng Y, Cai H, Liu K, Xie B, et al. The < scp > ca Pti1 – <scp > ca ERF3 module positively regulates resistance of Capsicum annuum to bacterial wilt disease by coupling enhanced immunity and dehydration tolerance</scp >. Plant J. 2022;111:250–68. doi: 10.1111/tpj.15790. PubMed DOI
Ashraf MF, Yang S, Wu R, Wang Y, Hussain A, Noman A, et al. Capsicum annuum HsfB2a positively regulates the response to Ralstonia solanacearum infection or high temperature and high humidity forming transcriptional cascade with CaWRKY6 and CaWRKY40. Plant Cell Physiol. 2018;59:2608–23. PubMed
Yang S, Shi Y, Zou L, Huang J, Shen L, Wang Y, et al. Pepper CaMLO6 negatively regulates Ralstonia solanacearum resistance and positively regulates high temperature and high humidity responses. Plant Cell Physiol. 2020;61:1223–38. doi: 10.1093/pcp/pcaa052. PubMed DOI
Cai H, Yang S, Yan Y, Xiao Z, Cheng J, Wu J, et al. CaWRKY6 transcriptionally activates CaWRKY40, regulates Ralstonia solanacearum resistance, and confers high-temperature and high-humidity tolerance in pepper. J Exp Bot. 2015;66:3163–74. doi: 10.1093/jxb/erv125. PubMed DOI
Wang Z, Deng J, Liang T, Su L, Zheng L, Chen H, et al. Lilium regale Wilson WRKY3 modulates an antimicrobial peptide gene, LrDef1, during response to Fusarium oxysporum. BMC Plant Biol. 2022;22:1–17. PubMed PMC
Hichri I, Muhovski Y, Žižková E, Dobrev PI, Gharbi E, Franco-Zorrilla JM, et al. The Solanum lycopersicum WRKY3 transcription factor SlWRKY3 is involved in salt stress tolerance in tomato. Front Plant Sci. 2017;8:1343. doi: 10.3389/fpls.2017.01343. PubMed DOI PMC
Mazzoni C, Palermo V, Torella M, Falcone C. HIR1, the co-repressor of histone gene transcription of Saccharomyces cerevisiae, acts as a multicopy suppressor of the apoptotic phenotypes of the LSM4 mRNA degradation mutant. FEMS Yeast Res. 2005;5:1229–35. doi: 10.1016/j.femsyr.2005.07.007. PubMed DOI
Beatrice C, Linthorst JM, Cinzia F, Luca R. Enhancement of PR1 and PR5 gene expressions by chitosan treatment in kiwifruit plants inoculated with Pseudomonas syringae Pv. Actinidiae. Eur J Plant Pathol. 2017;148:163–79. doi: 10.1007/s10658-016-1080-x. DOI
Nova B, Syukur S, Jamsari J. Molecular cloning and characterization of Npr1 ankyrin domain from Capsicum annum L. Pharm Lett. 2017;9:148–55.
Liu X, Yang W, Li Y, Li S, Zhou X, Zhao Q, et al. The intergenic region of the maize defensin-like protein genes Def1 and Def2 functions as an embryo-specific asymmetric bidirectional promoter. J Exp Bot. 2016;67:4403–13. doi: 10.1093/jxb/erw226. PubMed DOI PMC
Pandey SP, Somssich IE. The role of WRKY transcription factors in plant immunity. Plant Physiol. 2009;150:1648–55. doi: 10.1104/pp.109.138990. PubMed DOI PMC
Ali MA, Azeem F, Nawaz MA, Acet T, Abbas A, Imran QM, et al. Transcription factors WRKY11 and WRKY17 are involved in abiotic stress responses in Arabidopsis. J Plant Physiol. 2018;226:12–21. doi: 10.1016/j.jplph.2018.04.007. PubMed DOI
Lacroix B, Citovsky V. A mutation in negative regulator of basal resistance WRKY17 of Arabidopsis increases susceptibility to Agrobacterium-mediated genetic transformation. F1000Res. 2013;2:33. PubMed PMC
Abeysinghe JK, Lam K, Ng DW. Differential regulation and interaction of homoeologous WRKY 18 and WRKY 40 in Arabidopsis allotetraploids and biotic stress responses. Plant J. 2019;97:352–67. doi: 10.1111/tpj.14124. PubMed DOI
Ramos RN, Martin GB, Pombo MA, Rosli HG. WRKY22 and WRKY25 transcription factors are positive regulators of defense responses in Nicotiana Benthamiana. Plant Mol Biol. 2021;105:65–82. doi: 10.1007/s11103-020-01069-w. PubMed DOI
Lin-tao W, Gui-mai Z, Jian-mei W, Xu-feng L, Xu S, Yi Y. Arabidopsis WRKY28 transcription factor is required for resistance to necrotrophic pathogen, Botrytis Cinerea. Afr J Microbiol Res. 2011;5:5481–8.
Birkenbihl RP, Diezel C, Somssich IE. Arabidopsis WRKY33 is a key transcriptional regulator of hormonal and metabolic responses toward Botrytis cinerea infection. Plant Physiol. 2012;159:266–85. doi: 10.1104/pp.111.192641. PubMed DOI PMC
Kim K-C, Lai Z, Fan B, Chen Z. Arabidopsis WRKY38 and WRKY62 transcription factors interact with histone deacetylase 19 in basal defens. Plant Cell. 2008;20:2357–71. doi: 10.1105/tpc.107.055566. PubMed DOI PMC
Shimono M, Koga H, Akagi AYA, Hayashi N, Goto S, Sawada M, et al. Rice WRKY45 plays important roles in fungal and bacterial disease resistance. Mol Plant Pathol. 2012;13:83–94. doi: 10.1111/j.1364-3703.2011.00732.x. PubMed DOI PMC
Ding ZJ, Yan JY, Li CX, Li GX, Wu YR, Zheng SJ. Transcription factor WRKY 46 modulates the development of Arabidopsis lateral roots in osmotic/salt stress conditions via regulation of ABA signaling and auxin homeostasis. Plant J. 2015;84:56–69. doi: 10.1111/tpj.12958. PubMed DOI
Zentgraf U, Laun T, Miao Y. The complex regulation of WRKY53 during leaf senescence of Arabidopsis thaliana. Eur J Cell Biol. 2010;89:133–7. doi: 10.1016/j.ejcb.2009.10.014. PubMed DOI
Mao P, Duan M, Wei C, Li Y. WRKY62 transcription factor acts downstream of cytosolic NPR1 and negatively regulates Jasmonate-Responsive Gene expression. Plant Cell Physiol. 2007;48:833–42. doi: 10.1093/pcp/pcm058. PubMed DOI
Shim JS, Jung C, Lee S, Min K, Lee Y, Choi Y, et al. A t MYB 44 regulates WRKY 70 expression and modulates antagonistic interaction between salicylic acid and jasmonic acid signaling. Plant J. 2013;73:483–95. doi: 10.1111/tpj.12051. PubMed DOI
Guo P, Li Z, Huang P, Li B, Fang S, Chu J, et al. A tripartite amplification loop involving the transcription factor WRKY75, salicylic acid, and reactive oxygen species accelerates leaf senescence. Plant Cell. 2017;29:2854–70. doi: 10.1105/tpc.17.00438. PubMed DOI PMC
Dang F, Wang Y, She J, Lei Y, Liu Z, Eulgem T, et al. Overexpression of CaWRKY27, a subgroup IIe WRKY transcription factor of Capsicum annuum, positively regulates tobacco resistance to Ralstonia solanacearum infection. Physiol Plant. 2014;150:397–411. doi: 10.1111/ppl.12093. PubMed DOI
DANG F, WANG Y, Yu LU, Eulgem T, Lai YAN, LIU Z, et al. CaWRKY40, a WRKY protein of pepper, plays an important role in the regulation of tolerance to heat stress and resistance to Ralstonia solanacearum infection. Plant Cell Environ. 2013;36:757–74. doi: 10.1111/pce.12011. PubMed DOI
Yu S, AI C, JING S. Research progress on functional analysis of rice WRKY genes. Rice Sci. 2010;17:60–72. doi: 10.1016/S1672-6308(08)60105-5. DOI
Litovchick L, Immunoblotting Cold Spring Harb Protoc. 2020;2020:pdb–top098392. PubMed
Bent A. Arabidopsis thaliana floral dip transformation method. Agrobacterium Protocols. 2006;:87–104. PubMed
Cheng X, Huang C, Zhang X, Lyu Y. Establishment of transgenic marigold using the floral dip method. Acta Physiol Plant. 2019;41:1–8. doi: 10.1007/s11738-019-2937-3. DOI