Out-of-position telomeres in meiotic leptotene appear responsible for chiasmate pairing in an inversion heterozygote in wheat (Triticum aestivum L.)

. 2019 Mar ; 128 (1) : 31-39. [epub] 20181127

Jazyk angličtina Země Rakousko Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.

Perzistentní odkaz   https://www.medvik.cz/link/pmid30483879
Odkazy

PubMed 30483879
DOI 10.1007/s00412-018-0686-5
PII: 10.1007/s00412-018-0686-5
Knihovny.cz E-zdroje

Chromosome pairing in meiosis usually starts in the vicinity of the telomere attachment to the nuclear membrane and congregation of telomeres in the leptotene bouquet is believed responsible for bringing homologue pairs together. In a heterozygote for an inversion of a rye (Secale cereale L.) chromosome arm in wheat, a distal segment of the normal homologue is capable of chiasmate pairing with its counterpart in the inverted arm, located near the centromere. Using 3D imaging confocal microscopy, we observed that some telomeres failed to be incorporated into the bouquet and occupied various positions throughout the entire volume of the nucleus, including the centromere pole. Rye telomeres appeared ca. 21 times more likely to fail to be included in the telomere bouquet than wheat telomeres. The frequency of the out-of-bouquet rye telomere position in leptotene was virtually identical to the frequency of telomeres deviating from Rabl's orientation in the nuclei of somatic cells, and was similar to the frequency of synapsis of the normal and inverted chromosome arms, but lower than the MI pairing frequency of segments of these two arms normally positioned across the volume of the nucleus. Out-of-position placement of the rye telomeres may be responsible for reduced MI pairing of rye chromosomes in hybrids with wheat and their disproportionate contribution to aneuploidy, but appears responsible for initiating chiasmate pairing of distantly positioned segments of homology in an inversion heterozygote.

Zobrazit více v PubMed

Nucleus. 2017 Nov 2;8(6):613-624 PubMed

Front Plant Sci. 2018 Jul 02;9:880 PubMed

Trends Genet. 2002 Sep;18(9):456-63 PubMed

J Cell Biol. 2002 Apr 15;157(2):231-42 PubMed

Cell Mol Life Sci. 2007 Jan;64(2):117-24 PubMed

Nature. 1985 Oct 24-30;317(6039):748-9 PubMed

Cytogenet Genome Res. 2012;136(2):138-44 PubMed

J Cell Biol. 1996 Sep;134(5):1109-25 PubMed

Proc Natl Acad Sci U S A. 2009 Dec 8;106(49):20989-94 PubMed

Chromosoma. 2008 Dec;117(6):569-78 PubMed

Cell Mol Life Sci. 2003 Nov;60(11):2319-24 PubMed

PLoS One. 2012;7(4):e36385 PubMed

Mol Genet Genomics. 2007 Aug;278(2):167-76 PubMed

J Cell Sci. 2000 Mar;113 ( Pt 6):1033-42 PubMed

J Cell Sci. 2012 Aug 1;125(Pt 15):3681-90 PubMed

Annu Rev Plant Physiol Plant Mol Biol. 1998 Jun;49:371-395 PubMed

Plant Cell. 2008 Jun;20(6):1423 PubMed

Cytogenet Genome Res. 2014;143(1-3):60-8 PubMed

J Cell Sci. 2004 Aug 15;117(Pt 18):4025-32 PubMed

Genome. 2004 Aug;47(4):747-56 PubMed

Nat Rev Mol Cell Biol. 2001 Aug;2(8):621-7 PubMed

Plant Cell Rep. 2011 Apr;30(4):575-86 PubMed

J Exp Bot. 2016 Oct;67(19):5699-5710 PubMed

J Cell Biol. 1997 Apr 7;137(1):5-18 PubMed

J Appl Genet. 2011 Feb;52(1):23-9 PubMed

Genome. 2001 Apr;44(2):266-74 PubMed

Genetics. 1997 Apr;145(4):1155-60 PubMed

Cytogenet Genome Res. 2010 Jul;129(1-3):154-61 PubMed

Plant Physiol. 2012 Jan;158(1):26-34 PubMed

Plant J. 2015 Jan;81(2):329-46 PubMed

Chromosoma. 2004 Mar;112(6):288-99 PubMed

Genetics. 2007 Oct;177(2):699-706 PubMed

Mol Gen Genet. 1997 Apr 16;254(3):238-49 PubMed

Dev Cell. 2007 Jun;12(6):863-72 PubMed

Cytogenet Genome Res. 2010 Jul;129(1-3):133-42 PubMed

Theor Appl Genet. 1992 May;83(8):1048-53 PubMed

Plant J. 2010 Jan;61(1):134-44 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...