Genome Dominance in Allium Hybrids (A. cepa × A. roylei)
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
35371123
PubMed Central
PMC8965639
DOI
10.3389/fpls.2022.854127
Knihovny.cz E-zdroje
- Klíčová slova
- female meiosis, genome stability, homoeologous recombination, homoploid, interspecific hybridization, meiotic drive, onion,
- Publikační typ
- časopisecké články MeSH
Genome dominance is a phenomenon in wide hybrids when one of the parental genomes becomes "dominant," while the other genome turns to be "submissive." This dominance may express itself in several ways including homoeologous gene expression bias and modified epigenetic regulation. Moreover, some wide hybrids display unequal retention of parental chromosomes in successive generations. This may hamper employment of wide hybridization in practical breeding due to the potential elimination of introgressed segments from progeny. In onion breeding, Allium roylei (A. roylei) Stearn has been frequently used as a source of resistance to downy mildew for cultivars of bulb onion, Allium cepa (A. cepa) L. This study demonstrates that in A. cepa × A. roylei hybrids, chromosomes of A. cepa are frequently substituted by those of A. roylei and in just one generation, the genomic constitution shifts from 8 A. cepa + 8 A. roylei chromosomes in the F1 generation to the average of 6.7 A. cepa + 9.3 A. roylei chromosomes in the F2 generation. Screening of the backcross generation A. cepa × (A. cepa × A. roylei) revealed that this shift does not appear during male meiosis, which is perfectly regular and results with balanced segregation of parental chromosomes, which are equally transmitted to the next generation. This indicates that female meiotic drive is the key factor underlying A. roylei genome dominance. Single nucleotide polymorphism (SNP) genotyping further suggested that the drive has different strength across the genome, with some chromosome segments displaying Mendelian segregation, while others exhibiting statistically significant deviation from it.
Department of Botany Palacký University Olomouc Czechia
Institute of Plant Genetics Polish Academy of Sciences Poznań Poland
Plant Breeding Wageningen University and Research Wageningen Netherlands
Zobrazit více v PubMed
Akera T., Chmatal L., Trimm E., Yang K., Aonbangkhen C., Chenoweth D. M., et al. (2017). Spindle asymmetry drives non-Mendelian chromosome segregation. PubMed DOI PMC
Anamthawat-Jónsson K. (2001). Molecular cytogenetics of introgressive hybridization in plants. PubMed DOI
Bird K. A., VanBuren R., Puzey J. R., Edger P. P. (2018). The causes and consequences of subgenome dominance in hybrids and recent polyploids. PubMed DOI
Budylin M. V., Kan L. Y., Romanov V. S., Khrustaleva L. I. (2016). GISH study of advanced generation of the interspecific hybrids between PubMed DOI
Chester M., Gallagher J. P., Symonds V. V., da Silva A. V. C., Mavrodiev E. V., Leitch A. R., et al. (2012). Extensive chromosomal variation in a recently formed natural allopolyploid species, PubMed DOI PMC
Chmatal L., Gabriel S. I., Mitsainas G. P., Martinez-Vargas J., Ventura J., Searle J. B., et al. (2014). Centromere strength provides the cell biological basis for meiotic drive and karyotype evolution in mice. PubMed DOI PMC
Clark F. E., Akera T. (2021). Unravelling the mystery of female meiotic drive: where we are. PubMed DOI PMC
Courret C., Gerard P. R., Ogereau D., Falque M., Moreau L., Montchamp-Moreau C. (2019). X-chromosome meiotic drive in PubMed DOI PMC
Dawe R. K., Reed L. M., Yu H. G., Muszynski M. G., Hiatt E. N. (1999). A maize homolog of mammalian CENPC is a constitutive component of the inner kinetochore. PubMed DOI PMC
de Vries J. N., Wietsma W. A., de Vries T. (1992). Introgression of leaf-blight resistance from DOI
Edger P. P., Smith R., McKain M. R., Cooley A. M., Vallejo-Marin M., Yuan Y. W., et al. (2017). Subgenome dominance in an interspecific hybrid, synthetic allopolyploid, and a 140-year-old naturally established neo-allopolyploid monkeyflower. PubMed DOI PMC
Ferreira M. T. M., Glombik M., Pernickova K., Duchoslav M., Scholten O., Karafiatova M., et al. (2021). Direct evidence for crossover and chromatid interference in meiosis of two plant hybrids ( PubMed DOI PMC
Fishman L., Saunders A. (2008). Centromere-associated female meiotic drive entails male fitness costs in monkeyflowers. PubMed DOI
Galvan G. A., Wietsma W. A., Putrasemedja S., Permadi A. H., Kik C. (1997). Screening for resistance to anthracnose ( DOI
Glombik M., Bačovský V., Hobza R., Kopecký D. (2020). Competition of parental genomes in plant hybrids. PubMed DOI PMC
Glombik M., Copetti D., Bartos J., Stoces S., Zwierzykowski Z., Ruttink T., et al. (2021). Reciprocal allopolyploid grasses ( PubMed DOI PMC
Kamstra S. A., Kuipers A. G. J., De Jeu M. J., Ramanna M. S., Jacobsen E. (1999). The extent and position of homoeologous recombination in a distant hybrid of PubMed DOI
Karlov G. I., Khrustaleva L. I., Lim K. B., van Tuyl J. M. (1999). Homoeologous recombination in 2n-gametes producing interspecific hybrids of DOI
Khan N., Barba-Gonzalez R., Ramanna M. S., Visser R. G. F., Van Tuyl J. M. (2009). Construction of chromosomal recombination maps of three genomes of lilies ( PubMed DOI
Khrustaleva L. I., Kik C. (1998). Cytogenetical studies in the bridge cross DOI
Khrustaleva L. I., Kik C. (2000). Introgression of DOI
Khrustaleva L., Mardini M., Kudryavtseva N., Alizhanova R., Romanov D., Sokolov P., et al. (2019). The power of genomic PubMed DOI PMC
Kim S., Kim C. W., Choi M. S., Kim S. (2016). Development of a simple PCR marker tagging the Allium roylei fragment harboring resistance to downy mildew ( DOI
Kofoet A., Kik C., Wietsma W. A., de Vries J. N. (1990). Inheritance of resistance to downy mildew ( DOI
Kopecký D., Horáková L., Duchoslav M., Dolezel J. (2019). Selective elimination of parental chromatin from introgression cultivars of xFestulolium ( DOI
Kopeckyì D., Loureiro J., Zwierzykowski Z., Ghesquière M., Doležel J. (2006). Genome constitution and evolution in PubMed DOI
Kopeckyì D., Lukaszewski A. J., Dolezžel J. (2008). Meiotic behaviour of individual chromosomes of PubMed DOI
Kruger A. N., Mueller J. L. (2021). Mechanisms of meiotic drive in symmetric and asymmetric meiosis. PubMed DOI PMC
Lopez-Lavalle L. A. B., Brubaker C. L. (2007). Frequency and fidelity of alien chromosome transmission in PubMed DOI
Lukaszewski A. J., Kopecky D. (2010). The Ph1 locus from wheat controls meiotic chromosome pairing in autotetraploid rye ( PubMed DOI
Lukaszewski A. J., Apolinarska B., Gustafson J. P., Krolow K. D. (1987). Chromosome pairing and aneuploidy in tetraploid triticale. DOI
Majka J., Majka M., Kopecky D., Dolezel J. (2020). Cytogenetic insights into Festulolium. DOI
Masoudi-Nejad A., Nasuda S., Mcintosh R. A., Endo T. R. (2002). Transfer of rye chromosome segments to wheat by a gametocidal system. PubMed DOI
Molnár-Láng M. (2015). “The crossability of wheat with rye and other related species. In: Alien Introgression,” in DOI
Orellana J., Cermeno M. C., Lacadena J. R. (1984). Meiotic pairing in wheat rye addition and substitution lines. DOI
Pernickova K., Linc G., Gaal E., Kopecky D., Samajova O., Lukaszewski A. J. (2019). Out-of-position telomeres in meiotic leptotene appear responsible for chiasmate pairing in an inversion heterozygote in wheat ( PubMed DOI
Placido D. F., Campbell M. T., Folsom J. J., Cui X. C., Kruger G. R., Baenziger P. S., et al. (2013). Introgression of novel traits from a wild wheat relative improves drought adaptation in wheat. PubMed DOI PMC
R Core Team (2021).
Sandler L., Novitski E. (1957). Meiotic drive as an evolutionary force. DOI
Scholten O. E., van Heusden A. W., Khrustaleva L. I., Burger-Meijer K., Mank R. A., Antonise R. G. C., et al. (2007). The long and winding road leading to the successful introgression of downy mildew resistance into onion. DOI
Scholten O. E., van Kaauwen M. P. W., Shahin A., Hendrickx P. M., Keizer L. C. P., Burger K., et al. (2016). SNP-markers in PubMed DOI PMC
Sears E. R., Okamoto M. (1958). Intergenomic chromosome relationships in hexaploid wheat.
Sekhon J. S. (2011). Multivariate and propensity score matching software with automated balance optimization: the matching package for R. DOI
Stevenson M., Armstrong S. J., Ford-Lloyd B. V., Jones G. H. (1998). Comparative analysis of crossover exchanges and chiasmata in PubMed DOI
Takahashi C., Leitch I. J., Ryan A., Bennett M. D., Brandham P. E. (1997). The use of genomic PubMed DOI
Tsunewaki K. (1964). Genetic studies of 6X-derivative from an 8x DOI
Ulloa M., Corgan J. N., Dunford M. (1995). Evidence for nuclear-cytoplasmic incompatibility between PubMed DOI
Van de Peer Y., Ashman T. L., Soltis P. S., Soltis D. E. (2021). Polyploidy: an evolutionary and ecological force in stressful times. PubMed DOI PMC
van der Meer Q. P., de Vries J. N. (1990). An interspecific cross between DOI
van Heusden A. W., van Ooijen J. W., Vrielink-van Ginkel R., Verbeek W. H. J., Wietsma W. A., Kik C. (2000). A genetic map of an interspecific cross in DOI
Wei K. H. C., Reddy H. M., Rathnam C., Lee J., Lin D. A. N., Ji S. Q., et al. (2017). A pooled sequencing approach identifies a candidate meiotic driver in PubMed DOI PMC
Wendel J. F. (2015). The wondrous cycles of polyploidy in plants. PubMed DOI
Xiong Z. Y., Gaeta R. T., Pires J. C. (2011). Homoeologous shuffling and chromosome compensation maintain genome balance in resynthesized allopolyploid PubMed DOI PMC
Zwierzykowski Z., Kosmala A., Zwierzykowska E., Jones N., Joks W., Bocianowski J. (2006). Genome balance in six successive generations of the allotetraploid PubMed DOI
Zwierzykowski Z., Zwierzykowska E., Taciak M., Jones N., Kosmala A., Krajewski P. (2008). Chromosome pairing in allotetraploid hybrids of PubMed DOI