Genome Dominance in Allium Hybrids (A. cepa × A. roylei)

. 2022 ; 13 () : 854127. [epub] 20220310

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35371123

Genome dominance is a phenomenon in wide hybrids when one of the parental genomes becomes "dominant," while the other genome turns to be "submissive." This dominance may express itself in several ways including homoeologous gene expression bias and modified epigenetic regulation. Moreover, some wide hybrids display unequal retention of parental chromosomes in successive generations. This may hamper employment of wide hybridization in practical breeding due to the potential elimination of introgressed segments from progeny. In onion breeding, Allium roylei (A. roylei) Stearn has been frequently used as a source of resistance to downy mildew for cultivars of bulb onion, Allium cepa (A. cepa) L. This study demonstrates that in A. cepa × A. roylei hybrids, chromosomes of A. cepa are frequently substituted by those of A. roylei and in just one generation, the genomic constitution shifts from 8 A. cepa + 8 A. roylei chromosomes in the F1 generation to the average of 6.7 A. cepa + 9.3 A. roylei chromosomes in the F2 generation. Screening of the backcross generation A. cepa × (A. cepa × A. roylei) revealed that this shift does not appear during male meiosis, which is perfectly regular and results with balanced segregation of parental chromosomes, which are equally transmitted to the next generation. This indicates that female meiotic drive is the key factor underlying A. roylei genome dominance. Single nucleotide polymorphism (SNP) genotyping further suggested that the drive has different strength across the genome, with some chromosome segments displaying Mendelian segregation, while others exhibiting statistically significant deviation from it.

Zobrazit více v PubMed

Akera T., Chmatal L., Trimm E., Yang K., Aonbangkhen C., Chenoweth D. M., et al. (2017). Spindle asymmetry drives non-Mendelian chromosome segregation. PubMed DOI PMC

Anamthawat-Jónsson K. (2001). Molecular cytogenetics of introgressive hybridization in plants. PubMed DOI

Bird K. A., VanBuren R., Puzey J. R., Edger P. P. (2018). The causes and consequences of subgenome dominance in hybrids and recent polyploids. PubMed DOI

Budylin M. V., Kan L. Y., Romanov V. S., Khrustaleva L. I. (2016). GISH study of advanced generation of the interspecific hybrids between PubMed DOI

Chester M., Gallagher J. P., Symonds V. V., da Silva A. V. C., Mavrodiev E. V., Leitch A. R., et al. (2012). Extensive chromosomal variation in a recently formed natural allopolyploid species, PubMed DOI PMC

Chmatal L., Gabriel S. I., Mitsainas G. P., Martinez-Vargas J., Ventura J., Searle J. B., et al. (2014). Centromere strength provides the cell biological basis for meiotic drive and karyotype evolution in mice. PubMed DOI PMC

Clark F. E., Akera T. (2021). Unravelling the mystery of female meiotic drive: where we are. PubMed DOI PMC

Courret C., Gerard P. R., Ogereau D., Falque M., Moreau L., Montchamp-Moreau C. (2019). X-chromosome meiotic drive in PubMed DOI PMC

Dawe R. K., Reed L. M., Yu H. G., Muszynski M. G., Hiatt E. N. (1999). A maize homolog of mammalian CENPC is a constitutive component of the inner kinetochore. PubMed DOI PMC

de Vries J. N., Wietsma W. A., de Vries T. (1992). Introgression of leaf-blight resistance from DOI

Edger P. P., Smith R., McKain M. R., Cooley A. M., Vallejo-Marin M., Yuan Y. W., et al. (2017). Subgenome dominance in an interspecific hybrid, synthetic allopolyploid, and a 140-year-old naturally established neo-allopolyploid monkeyflower. PubMed DOI PMC

Ferreira M. T. M., Glombik M., Pernickova K., Duchoslav M., Scholten O., Karafiatova M., et al. (2021). Direct evidence for crossover and chromatid interference in meiosis of two plant hybrids ( PubMed DOI PMC

Fishman L., Saunders A. (2008). Centromere-associated female meiotic drive entails male fitness costs in monkeyflowers. PubMed DOI

Galvan G. A., Wietsma W. A., Putrasemedja S., Permadi A. H., Kik C. (1997). Screening for resistance to anthracnose ( DOI

Glombik M., Bačovský V., Hobza R., Kopecký D. (2020). Competition of parental genomes in plant hybrids. PubMed DOI PMC

Glombik M., Copetti D., Bartos J., Stoces S., Zwierzykowski Z., Ruttink T., et al. (2021). Reciprocal allopolyploid grasses ( PubMed DOI PMC

Kamstra S. A., Kuipers A. G. J., De Jeu M. J., Ramanna M. S., Jacobsen E. (1999). The extent and position of homoeologous recombination in a distant hybrid of PubMed DOI

Karlov G. I., Khrustaleva L. I., Lim K. B., van Tuyl J. M. (1999). Homoeologous recombination in 2n-gametes producing interspecific hybrids of DOI

Khan N., Barba-Gonzalez R., Ramanna M. S., Visser R. G. F., Van Tuyl J. M. (2009). Construction of chromosomal recombination maps of three genomes of lilies ( PubMed DOI

Khrustaleva L. I., Kik C. (1998). Cytogenetical studies in the bridge cross DOI

Khrustaleva L. I., Kik C. (2000). Introgression of DOI

Khrustaleva L., Mardini M., Kudryavtseva N., Alizhanova R., Romanov D., Sokolov P., et al. (2019). The power of genomic PubMed DOI PMC

Kim S., Kim C. W., Choi M. S., Kim S. (2016). Development of a simple PCR marker tagging the Allium roylei fragment harboring resistance to downy mildew ( DOI

Kofoet A., Kik C., Wietsma W. A., de Vries J. N. (1990). Inheritance of resistance to downy mildew ( DOI

Kopecký D., Horáková L., Duchoslav M., Dolezel J. (2019). Selective elimination of parental chromatin from introgression cultivars of xFestulolium ( DOI

Kopeckyì D., Loureiro J., Zwierzykowski Z., Ghesquière M., Doležel J. (2006). Genome constitution and evolution in PubMed DOI

Kopeckyì D., Lukaszewski A. J., Dolezžel J. (2008). Meiotic behaviour of individual chromosomes of PubMed DOI

Kruger A. N., Mueller J. L. (2021). Mechanisms of meiotic drive in symmetric and asymmetric meiosis. PubMed DOI PMC

Lopez-Lavalle L. A. B., Brubaker C. L. (2007). Frequency and fidelity of alien chromosome transmission in PubMed DOI

Lukaszewski A. J., Kopecky D. (2010). The Ph1 locus from wheat controls meiotic chromosome pairing in autotetraploid rye ( PubMed DOI

Lukaszewski A. J., Apolinarska B., Gustafson J. P., Krolow K. D. (1987). Chromosome pairing and aneuploidy in tetraploid triticale. DOI

Majka J., Majka M., Kopecky D., Dolezel J. (2020). Cytogenetic insights into Festulolium. DOI

Masoudi-Nejad A., Nasuda S., Mcintosh R. A., Endo T. R. (2002). Transfer of rye chromosome segments to wheat by a gametocidal system. PubMed DOI

Molnár-Láng M. (2015). “The crossability of wheat with rye and other related species. In: Alien Introgression,” in DOI

Orellana J., Cermeno M. C., Lacadena J. R. (1984). Meiotic pairing in wheat rye addition and substitution lines. DOI

Pernickova K., Linc G., Gaal E., Kopecky D., Samajova O., Lukaszewski A. J. (2019). Out-of-position telomeres in meiotic leptotene appear responsible for chiasmate pairing in an inversion heterozygote in wheat ( PubMed DOI

Placido D. F., Campbell M. T., Folsom J. J., Cui X. C., Kruger G. R., Baenziger P. S., et al. (2013). Introgression of novel traits from a wild wheat relative improves drought adaptation in wheat. PubMed DOI PMC

R Core Team (2021).

Sandler L., Novitski E. (1957). Meiotic drive as an evolutionary force. DOI

Scholten O. E., van Heusden A. W., Khrustaleva L. I., Burger-Meijer K., Mank R. A., Antonise R. G. C., et al. (2007). The long and winding road leading to the successful introgression of downy mildew resistance into onion. DOI

Scholten O. E., van Kaauwen M. P. W., Shahin A., Hendrickx P. M., Keizer L. C. P., Burger K., et al. (2016). SNP-markers in PubMed DOI PMC

Sears E. R., Okamoto M. (1958). Intergenomic chromosome relationships in hexaploid wheat.

Sekhon J. S. (2011). Multivariate and propensity score matching software with automated balance optimization: the matching package for R. DOI

Stevenson M., Armstrong S. J., Ford-Lloyd B. V., Jones G. H. (1998). Comparative analysis of crossover exchanges and chiasmata in PubMed DOI

Takahashi C., Leitch I. J., Ryan A., Bennett M. D., Brandham P. E. (1997). The use of genomic PubMed DOI

Tsunewaki K. (1964). Genetic studies of 6X-derivative from an 8x DOI

Ulloa M., Corgan J. N., Dunford M. (1995). Evidence for nuclear-cytoplasmic incompatibility between PubMed DOI

Van de Peer Y., Ashman T. L., Soltis P. S., Soltis D. E. (2021). Polyploidy: an evolutionary and ecological force in stressful times. PubMed DOI PMC

van der Meer Q. P., de Vries J. N. (1990). An interspecific cross between DOI

van Heusden A. W., van Ooijen J. W., Vrielink-van Ginkel R., Verbeek W. H. J., Wietsma W. A., Kik C. (2000). A genetic map of an interspecific cross in DOI

Wei K. H. C., Reddy H. M., Rathnam C., Lee J., Lin D. A. N., Ji S. Q., et al. (2017). A pooled sequencing approach identifies a candidate meiotic driver in PubMed DOI PMC

Wendel J. F. (2015). The wondrous cycles of polyploidy in plants. PubMed DOI

Xiong Z. Y., Gaeta R. T., Pires J. C. (2011). Homoeologous shuffling and chromosome compensation maintain genome balance in resynthesized allopolyploid PubMed DOI PMC

Zwierzykowski Z., Kosmala A., Zwierzykowska E., Jones N., Joks W., Bocianowski J. (2006). Genome balance in six successive generations of the allotetraploid PubMed DOI

Zwierzykowski Z., Zwierzykowska E., Taciak M., Jones N., Kosmala A., Krajewski P. (2008). Chromosome pairing in allotetraploid hybrids of PubMed DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...