Genome Dominance in Allium Hybrids (A. cepa × A. roylei)
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
35371123
PubMed Central
PMC8965639
DOI
10.3389/fpls.2022.854127
Knihovny.cz E-zdroje
- Klíčová slova
- female meiosis, genome stability, homoeologous recombination, homoploid, interspecific hybridization, meiotic drive, onion,
- Publikační typ
- časopisecké články MeSH
Genome dominance is a phenomenon in wide hybrids when one of the parental genomes becomes "dominant," while the other genome turns to be "submissive." This dominance may express itself in several ways including homoeologous gene expression bias and modified epigenetic regulation. Moreover, some wide hybrids display unequal retention of parental chromosomes in successive generations. This may hamper employment of wide hybridization in practical breeding due to the potential elimination of introgressed segments from progeny. In onion breeding, Allium roylei (A. roylei) Stearn has been frequently used as a source of resistance to downy mildew for cultivars of bulb onion, Allium cepa (A. cepa) L. This study demonstrates that in A. cepa × A. roylei hybrids, chromosomes of A. cepa are frequently substituted by those of A. roylei and in just one generation, the genomic constitution shifts from 8 A. cepa + 8 A. roylei chromosomes in the F1 generation to the average of 6.7 A. cepa + 9.3 A. roylei chromosomes in the F2 generation. Screening of the backcross generation A. cepa × (A. cepa × A. roylei) revealed that this shift does not appear during male meiosis, which is perfectly regular and results with balanced segregation of parental chromosomes, which are equally transmitted to the next generation. This indicates that female meiotic drive is the key factor underlying A. roylei genome dominance. Single nucleotide polymorphism (SNP) genotyping further suggested that the drive has different strength across the genome, with some chromosome segments displaying Mendelian segregation, while others exhibiting statistically significant deviation from it.
Department of Botany Palacký University Olomouc Czechia
Institute of Plant Genetics Polish Academy of Sciences Poznań Poland
Plant Breeding Wageningen University and Research Wageningen Netherlands
Zobrazit více v PubMed
Akera T., Chmatal L., Trimm E., Yang K., Aonbangkhen C., Chenoweth D. M., et al. (2017). Spindle asymmetry drives non-Mendelian chromosome segregation. Science 358 668–672. 10.1126/science.aan0092 PubMed DOI PMC
Anamthawat-Jónsson K. (2001). Molecular cytogenetics of introgressive hybridization in plants. Methods Cell Sci. 23 139–148. 10.1007/978-94-010-0330-8_14 PubMed DOI
Bird K. A., VanBuren R., Puzey J. R., Edger P. P. (2018). The causes and consequences of subgenome dominance in hybrids and recent polyploids. New Phytol. 220 87–93. 10.1111/nph.15256 PubMed DOI
Budylin M. V., Kan L. Y., Romanov V. S., Khrustaleva L. I. (2016). GISH study of advanced generation of the interspecific hybrids between Allium cepa L. and Allium fistulosum L. with relative resistance to downy mildew. Russian J. Genet. 50 387–394. 10.1134/S1022795414040036 PubMed DOI
Chester M., Gallagher J. P., Symonds V. V., da Silva A. V. C., Mavrodiev E. V., Leitch A. R., et al. (2012). Extensive chromosomal variation in a recently formed natural allopolyploid species, Tragopogon miscellus (Asteraceae). Proc. Natl. Acad. Sci. U.S.A. 109 1176–1181. 10.1073/pnas.1112041109 PubMed DOI PMC
Chmatal L., Gabriel S. I., Mitsainas G. P., Martinez-Vargas J., Ventura J., Searle J. B., et al. (2014). Centromere strength provides the cell biological basis for meiotic drive and karyotype evolution in mice. Curr. Biol. 24 2295–2300. 10.1016/j.cub.2014.08.017 PubMed DOI PMC
Clark F. E., Akera T. (2021). Unravelling the mystery of female meiotic drive: where we are. Open Biol. 11:210074. 10.1098/rsob.210074 PubMed DOI PMC
Courret C., Gerard P. R., Ogereau D., Falque M., Moreau L., Montchamp-Moreau C. (2019). X-chromosome meiotic drive in Drosophila simulans: a QTL approach reveals the complex polygenic determinism of Paris drive suppression. Heredity 122 906–915. 10.1038/s41437-018-0163-1 PubMed DOI PMC
Dawe R. K., Reed L. M., Yu H. G., Muszynski M. G., Hiatt E. N. (1999). A maize homolog of mammalian CENPC is a constitutive component of the inner kinetochore. Plant Cell 11 1227–1238. 10.1105/tpc.11.7.1227 PubMed DOI PMC
de Vries J. N., Wietsma W. A., de Vries T. (1992). Introgression of leaf-blight resistance from Allium roylei Stearn. into onion (Allium cepa L). Euphytica 62 127–133. 10.1007/BF00037938 DOI
Edger P. P., Smith R., McKain M. R., Cooley A. M., Vallejo-Marin M., Yuan Y. W., et al. (2017). Subgenome dominance in an interspecific hybrid, synthetic allopolyploid, and a 140-year-old naturally established neo-allopolyploid monkeyflower. Plant Cell 29 2150–2167. 10.1105/tpc.17.00010 PubMed DOI PMC
Ferreira M. T. M., Glombik M., Pernickova K., Duchoslav M., Scholten O., Karafiatova M., et al. (2021). Direct evidence for crossover and chromatid interference in meiosis of two plant hybrids (Lolium multiflorum x Festuca pratensis and Allium cepa x A. roylei). J. Exp. Bot. 72 254–267. 10.1093/jxb/eraa455 PubMed DOI PMC
Fishman L., Saunders A. (2008). Centromere-associated female meiotic drive entails male fitness costs in monkeyflowers. Science 322 1559–1562. 10.1126/science.1161406 PubMed DOI
Galvan G. A., Wietsma W. A., Putrasemedja S., Permadi A. H., Kik C. (1997). Screening for resistance to anthracnose (Colletotrichum gloeosporioides Penz) in Allium cepa and its wild relatives. Euphytica 95 173–178. 10.1023/A:1002914225154 DOI
Glombik M., Bačovský V., Hobza R., Kopecký D. (2020). Competition of parental genomes in plant hybrids. Front. Plant Sci. 11:200. 10.3389/fpls.2020.00200 PubMed DOI PMC
Glombik M., Copetti D., Bartos J., Stoces S., Zwierzykowski Z., Ruttink T., et al. (2021). Reciprocal allopolyploid grasses (Festuca x Lolium) display stable patterns of genome dominance. Plant J. 107 1166–1182. 10.1111/tpj.15375 PubMed DOI PMC
Kamstra S. A., Kuipers A. G. J., De Jeu M. J., Ramanna M. S., Jacobsen E. (1999). The extent and position of homoeologous recombination in a distant hybrid of Alstroemeria: a molecular cytogenetic assessment of first generation backcross progenies. Chromosoma 108 52–63. 10.1007/s004120050351 PubMed DOI
Karlov G. I., Khrustaleva L. I., Lim K. B., van Tuyl J. M. (1999). Homoeologous recombination in 2n-gametes producing interspecific hybrids of Lilium (Liliaceae) studied by genomic in situ hybridization (GISH). Genome 42 681–686. 10.1139/g98-167 DOI
Khan N., Barba-Gonzalez R., Ramanna M. S., Visser R. G. F., Van Tuyl J. M. (2009). Construction of chromosomal recombination maps of three genomes of lilies (Lilium) based on GISH analysis. Genome 52 238–251. 10.1139/G08-122 PubMed DOI
Khrustaleva L. I., Kik C. (1998). Cytogenetical studies in the bridge cross Allium cepa x (A-fistulosum x A-roylei). Theor. Appl. Genet. 96 8–14. 10.1007/s001220050702 DOI
Khrustaleva L. I., Kik C. (2000). Introgression of Allium fistulosum into A-cepa mediated by A-roylei. Theor. Appl. Genet. 100 17–26. 10.1007/s001220050003 DOI
Khrustaleva L., Mardini M., Kudryavtseva N., Alizhanova R., Romanov D., Sokolov P., et al. (2019). The power of genomic in situ hybridization (GISH) in onterspecific breeding of bulb onion (Allium cepa L.) resistant to downy mildew (Peronospora destructor [Berk.] Casp.). Plants-Basel 8:36. 10.3390/plants8020036 PubMed DOI PMC
Kim S., Kim C. W., Choi M. S., Kim S. (2016). Development of a simple PCR marker tagging the Allium roylei fragment harboring resistance to downy mildew (Peronospora destructor) in onion (Allium cepa L.). Euphytica 208 561–569. 10.1007/s10681-015-1601-2 DOI
Kofoet A., Kik C., Wietsma W. A., de Vries J. N. (1990). Inheritance of resistance to downy mildew (Peronospora destructor [Berk] Casp) from Allium roylei Stearn in the backcross Allium cepa L by (A roylei by A cepa). Plant Breed. 105 144–149. 10.1111/j.1439-0523.1990.tb00467.x DOI
Kopecký D., Horáková L., Duchoslav M., Dolezel J. (2019). Selective elimination of parental chromatin from introgression cultivars of xFestulolium (Festuca x Lolium). Sustainability 11:3153. 10.3390/su11113153 DOI
Kopeckyì D., Loureiro J., Zwierzykowski Z., Ghesquière M., Doležel J. (2006). Genome constitution and evolution in Lolium × Festuca hybrid cultivars (Festulolium). Theor. Appl. Genet 113 731–742. 10.1007/s00122-006-0341-z PubMed DOI
Kopeckyì D., Lukaszewski A. J., Dolezžel J. (2008). Meiotic behaviour of individual chromosomes of Festuca pratensis in tetraploid Lolium multiflorum. Chromosome Res. 16:987. 10.1007/s10577-008-1256-0 PubMed DOI
Kruger A. N., Mueller J. L. (2021). Mechanisms of meiotic drive in symmetric and asymmetric meiosis. Cell. Mol. Life Sci. 78 3205–3218. 10.1007/s00018-020-03735-0 PubMed DOI PMC
Lopez-Lavalle L. A. B., Brubaker C. L. (2007). Frequency and fidelity of alien chromosome transmission in Gossypium hexaploid bridging populations. Genome 50 479–491. 10.1139/G07-030 PubMed DOI
Lukaszewski A. J., Kopecky D. (2010). The Ph1 locus from wheat controls meiotic chromosome pairing in autotetraploid rye (Secale cereale L.). Cytogenet. Genome Res. 129 117–123. 10.1159/000314279 PubMed DOI
Lukaszewski A. J., Apolinarska B., Gustafson J. P., Krolow K. D. (1987). Chromosome pairing and aneuploidy in tetraploid triticale. I. Stabilized karyotypes. Genome 29 554–561. 10.1139/g87-093 DOI
Majka J., Majka M., Kopecky D., Dolezel J. (2020). Cytogenetic insights into Festulolium. Biol. Plant. 64 598–603. 10.32615/bp.2020.095 DOI
Masoudi-Nejad A., Nasuda S., Mcintosh R. A., Endo T. R. (2002). Transfer of rye chromosome segments to wheat by a gametocidal system. Chromosome Res. 10 349–357. 10.1023/a:1016845200960 PubMed DOI
Molnár-Láng M. (2015). “The crossability of wheat with rye and other related species. In: Alien Introgression,” in Wheat: Cytogenetics, Molecular Biology, and Genomics, eds Molnár-Láng M., Ceoloni C., Doležel J. (Chem: Springer International Publishing; ), 103–120. 10.1007/978-3-319-23494-6_4 DOI
Orellana J., Cermeno M. C., Lacadena J. R. (1984). Meiotic pairing in wheat rye addition and substitution lines. Can. J. Genet. Cytol. 26 25–33. 10.1139/g84-005 DOI
Pernickova K., Linc G., Gaal E., Kopecky D., Samajova O., Lukaszewski A. J. (2019). Out-of-position telomeres in meiotic leptotene appear responsible for chiasmate pairing in an inversion heterozygote in wheat (Triticum aestivum L.). Chromosoma 128 31–39. 10.1007/s00412-018-0686-5 PubMed DOI
Placido D. F., Campbell M. T., Folsom J. J., Cui X. C., Kruger G. R., Baenziger P. S., et al. (2013). Introgression of novel traits from a wild wheat relative improves drought adaptation in wheat. Plant Physiol 161 1806–1819. 10.1104/pp.113.214262 PubMed DOI PMC
R Core Team (2021). R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing.
Sandler L., Novitski E. (1957). Meiotic drive as an evolutionary force. Am. Nat. 91:105. 10.1086/281969 DOI
Scholten O. E., van Heusden A. W., Khrustaleva L. I., Burger-Meijer K., Mank R. A., Antonise R. G. C., et al. (2007). The long and winding road leading to the successful introgression of downy mildew resistance into onion. Euphytica 156 345–353. 10.1007/s10681-007-9383-9 DOI
Scholten O. E., van Kaauwen M. P. W., Shahin A., Hendrickx P. M., Keizer L. C. P., Burger K., et al. (2016). SNP-markers in Allium species to facilitate introgression breeding in onion. BMC Plant Biol. 16:187. 10.1186/s12870-016-0879-0 PubMed DOI PMC
Sears E. R., Okamoto M. (1958). Intergenomic chromosome relationships in hexaploid wheat. Proc. Int. Congr. Genet., Montreal: 2 258–259.
Sekhon J. S. (2011). Multivariate and propensity score matching software with automated balance optimization: the matching package for R. J. Stat. Soft. 42 1–52. 10.18637/jss.v042.i07 DOI
Stevenson M., Armstrong S. J., Ford-Lloyd B. V., Jones G. H. (1998). Comparative analysis of crossover exchanges and chiasmata in Allium cepa x fistulosum after genomic in situ hybridization (GISH). Chromosome Res. 6 567–574. 10.1023/A:1009296826942 PubMed DOI
Takahashi C., Leitch I. J., Ryan A., Bennett M. D., Brandham P. E. (1997). The use of genomic in situ hybridization (GISH) to show transmission of recombinant chromosomes by a partially fertile bigeneric hybrid. Gasteria lutzii x Aloe aristata (Aloaceae), to its progeny. Chromosoma 105 342–348. 10.1007/s004120050193 PubMed DOI
Tsunewaki K. (1964). Genetic studies of 6X-derivative from an 8x Triticale. Can. J. Genet. Cytol. 6 1–11. 10.1139/g64-001 DOI
Ulloa M., Corgan J. N., Dunford M. (1995). Evidence for nuclear-cytoplasmic incompatibility between Allium fistulosum and Allium cepa. Theor. Appl. Genet. 90 746–754. 10.1007/BF00222143 PubMed DOI
Van de Peer Y., Ashman T. L., Soltis P. S., Soltis D. E. (2021). Polyploidy: an evolutionary and ecological force in stressful times. Plant Cell 33 11–26. 10.1093/plcell/koaa015 PubMed DOI PMC
van der Meer Q. P., de Vries J. N. (1990). An interspecific cross between Allium roylei Stearn and Allium cepa L and its backcross to Allium cepa. Euphytica 47 29–31. 10.1007/BF00040359 DOI
van Heusden A. W., van Ooijen J. W., Vrielink-van Ginkel R., Verbeek W. H. J., Wietsma W. A., Kik C. (2000). A genetic map of an interspecific cross in Allium based on amplified fragment length polymorphism (AFLP (TM)) markers. Theor. Appl. Genet. 100 118–126. 10.1007/s001220050017 DOI
Wei K. H. C., Reddy H. M., Rathnam C., Lee J., Lin D. A. N., Ji S. Q., et al. (2017). A pooled sequencing approach identifies a candidate meiotic driver in Drosophila. Genetics 206 451–465. 10.1534/genetics.116.197335 PubMed DOI PMC
Wendel J. F. (2015). The wondrous cycles of polyploidy in plants. Am. J. Bot. 102 1753–1756. 10.3732/ajb.1500320 PubMed DOI
Xiong Z. Y., Gaeta R. T., Pires J. C. (2011). Homoeologous shuffling and chromosome compensation maintain genome balance in resynthesized allopolyploid Brassica napus. Proc. Natl. Acad. Sci. U.S.A. 108 7908–7913. 10.1073/pnas.1014138108 PubMed DOI PMC
Zwierzykowski Z., Kosmala A., Zwierzykowska E., Jones N., Joks W., Bocianowski J. (2006). Genome balance in six successive generations of the allotetraploid Festuca pratensis x Lolium perenne. Theor. Appl. Genet. 113 539–547. 10.1007/s00122-006-0322-2 PubMed DOI
Zwierzykowski Z., Zwierzykowska E., Taciak M., Jones N., Kosmala A., Krajewski P. (2008). Chromosome pairing in allotetraploid hybrids of Festuca pratensis x Lolium perenne revealed by genomic in situ hybridization (GISH). Chromosome Res. 16 575–585. 10.1007/s10577-008-1198-6 PubMed DOI