Competition of Parental Genomes in Plant Hybrids
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
32158461
PubMed Central
PMC7052263
DOI
10.3389/fpls.2020.00200
Knihovny.cz E-zdroje
- Klíčová slova
- allopolyploid, chromosome pairing, fertility, genome stability, homoeologous recombination, interspecific hybridization, whole-genome duplication,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Interspecific hybridization represents one of the main mechanisms of plant speciation. Merging of two genomes from different subspecies, species, or even genera is frequently accompanied by whole-genome duplication (WGD). Besides its evolutionary role, interspecific hybridization has also been successfully implemented in multiple breeding programs. Interspecific hybrids combine agronomic traits of two crop species or can be used to introgress specific loci of interests, such as those for resistance against abiotic or biotic stresses. The genomes of newly established interspecific hybrids (both allopolyploids and homoploids) undergo dramatic changes, including chromosome rearrangements, amplifications of tandem repeats, activation of mobile repetitive elements, and gene expression modifications. To ensure genome stability and proper transmission of chromosomes from both parental genomes into subsequent generations, allopolyploids often evolve mechanisms regulating chromosome pairing. Such regulatory systems allow only pairing of homologous chromosomes and hamper pairing of homoeologs. Despite such regulatory systems, several hybrid examples with frequent homoeologous chromosome pairing have been reported. These reports open a way for the replacement of one parental genome by the other. In this review, we provide an overview of the current knowledge of genomic changes in interspecific homoploid and allopolyploid hybrids, with strictly homologous pairing and with relaxed pairing of homoeologs.
Zobrazit více v PubMed
Akera T., Chmatal L., Trimm E., Yang K., Aonbangkhen C., Chenoweth D. M., et al. (2017). Spindle asymmetry drives non-Mendelian chromosome segregation. PubMed DOI PMC
Bardil A., de Almeida J. D., Combes M. C., Lashermes P., Bertrand B. (2011). Genomic expression dominance in the natural allopolyploid PubMed DOI
Bartel D. P. (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. PubMed DOI
Bennetzen J. L., Wang H. (2014). The contributions of transposable elements to the structure, function, and evolution of plant genomes. PubMed DOI
Bertrand B., Bardil A., Baraille H., Dussert S., Doulbeau S., Dubois E., et al. (2015). The greater phenotypic homeostasis of the allopolyploid PubMed DOI PMC
Bird K. A., VanBuren R., Puzey J. R., Edger P. P. (2018). The causes and consequences of subgenome dominance in hybrids and recent polyploids. PubMed DOI
Borowska-Zuchowska N., Kwasniewski M., Hasterok R. (2016). Cytomolecular analysis of ribosomal DNA evolution in a natural allotetraploid PubMed DOI PMC
Bottani S., Zabet N. R., Wendel J. F., Veitia R. A. (2018). Gene expression dominance in allopolyploids: hypotheses and models. PubMed DOI
Brandvain Y., Haig D. (2005). Divergent mating systems and parental conflict as a barrier to hybridization in flowering plants. PubMed DOI
Chalhoub B., Denoeud F., Liu S. Y., Parkin I. A. P., Tang H. B., Wang X. Y., et al. (2014). Early allopolyploid evolution in the post-Neolithic PubMed DOI
Chandrasekhara C., Mohannath G., Blevins T., Pontvianne F., Pikaard C. S. (2016). Chromosome-specific NOR inactivation explains selective rRNA gene silencing and dosage control in PubMed DOI PMC
Chelaifa H., Chague V., Chalabi S., Mestiri I., Arnaud D., Deffains D., et al. (2013). Prevalence of gene expression additivity in genetically stable wheat allohexaploids. PubMed DOI
Chen Z. J. (2010). Molecular mechanisms of polyploidy and hybrid vigor. PubMed DOI PMC
Chen Z. J., Comai L., Pikaard C. S. (1998). Gene dosage and stochastic effects determine the severity and direction of uniparental ribosomal RNA gene silencing (nucleolar dominance) in PubMed DOI PMC
Cheng F., Wu J., Fang L., Sun S. L., Liu B., Lin K., et al. (2012). Biased gene fractionation and dominant gene expression among the subgenomes of PubMed DOI PMC
Chmatal L., Gabriel S. I., Mitsainas G. P., Martinez-Vargas J., Ventura J., Searle J. B., et al. (2014). Centromere strength provides the cell biological basis for meiotic drive and karyotype evolution in Mice. PubMed DOI PMC
Comai L. (2005). The advantages and disadvantages of being polyploid. PubMed DOI
Combes M. C., Hueber Y., Dereeper A., Rialle S., Herrera J. C., Lashermes P. (2015). Regulatory divergence between parental alleles determines gene expression patterns in hybrids. PubMed DOI PMC
Costa-Nunes P., Pontes O. (2013). “Chromatin and small RNA regulation of nucleolar dominance,” in DOI
Dobesova E., Malinska H., Matyasek R., Leitch A. R., Soltis D. E., Soltis P. S., et al. (2015). Silenced rRNA genes are activated and substitute for partially eliminated active homeologs in the recently formed allotetraploid, PubMed DOI PMC
Dobzhansky T. (1936). Studies on Hybrid Sterility. II. Localization of sterility factors in PubMed PMC
Edger P. P., Smith R., McKain M. R., Cooley A. M., Vallejo-Marin M., Yuan Y. W., et al. (2017). Subgenome dominance in an interspecific hybrid, synthetic allopolyploid, and a 140-year-old naturally established neo-allopolyploid Monkeyflower. PubMed DOI PMC
Eilam T., Anikster Y., Millet E., Manisterski J., Feldman M. (2010). Genome size in diploids, allopolyploids, and autopolyploids of mediterranean triticeae. DOI
Emery M., Willis M. M. S., Hao Y., Barry K., Oakgrove K., Peng Y., et al. (2018). Preferential retention of genes from one parental genome after polyploidy illustrates the nature and scope of the genomic conflicts induced by hybridization. PubMed DOI PMC
Freeling M., Woodhouse M. R., Subramaniam S., Turco G., Lisch D., Schnable J. C. (2012). Fractionation mutagenesis and similar consequences of mechanisms removing dispensable or less-expressed DNA in plants. PubMed DOI
French S. L., Osheim Y. N., Cioci F., Nomura M., Beyer A. L. (2003). In exponentially growing PubMed DOI PMC
Fuchs J., Schubert I. (2012). “Chromosomal distribution and functional interpretation of epigenetic histone marks in plants,” in DOI
Gaeta R. T., Pires J. C. (2010). Homoeologous recombination in allopolyploids: the polyploid ratchet. PubMed DOI
Garsmeur O., Schnable J. C., Almeida A., Jourda C., D’Hont A., Freeling M. (2014). Two evolutionarily distinct classes of paleopolyploidy. PubMed DOI
Gonzalez-Sandoval A., Gasser S. M. (2016). On TADs and LADs: spatial control over gene expression. PubMed DOI
Greaves I. K., Gonzalez-Bayon R., Wang L., Zhu A. Y., Liu P. C., Groszmann M., et al. (2015). Epigenetic changes in hybrids. PubMed DOI PMC
Greer E., Martin A. C., Pendle A., Colas I., Jones A. M. E., Moore G., et al. (2012). The Ph1 locus suppresses Cdk2-type activity during premeiosis and meiosis in wheat. PubMed DOI PMC
Groszmann M., Greaves I. K., Fujimoto R., Peacock W. J., Dennis E. S. (2013). The role of epigenetics in hybrid vigour. PubMed DOI
Grover C. E., Gallagher J. P., Szadkowski E. P., Yoo M. J., Flagel L. E., Wendel J. F. (2012). Homoeolog expression bias and expression level dominance in allopolyploids. PubMed DOI
Guo X., Han F. P. (2014). Asymmetric epigenetic modification and elimination of rDNA sequences by polyploidization in wheat. PubMed DOI PMC
Ha M., Lu J., Tian L., Ramachandran V., Kasschau K. D., Chapman E. J., et al. (2009). Small RNAs serve as a genetic buffer against genomic shock in PubMed DOI PMC
Haag J. R., Pikaard C. S. (2011). Multisubunit RNA polymerases IV and V: purveyors of non-coding RNA for plant gene silencing. PubMed DOI
Harper A. L., Trick M., He Z. S., Clissold L., Fellgett A., Griffiths S., et al. (2016). Genome distribution of differential homoeologue contributions to leaf gene expression in bread wheat. PubMed DOI PMC
He G., Deng X.-W. (2013). “Chromatin and gene expression mechanisms in hybrids,” in DOI
Herklotz V., Kovarik A., Lunerova J., Lippitsch S., Groth M., Ritz C. M. (2018). The fate of ribosomal RNA genes in spontaneous polyploid dogrose hybrids PubMed DOI
Hu G. J., Wendel J. F. (2019). PubMed DOI
Idziak D., Hasterok R. (2008). Cytogenetic evidence of nucleolar dominance in allotetraploid species of PubMed DOI
Jenczewski E., Alix K. (2004). From diploids to allopolyploids: the emergence of efficient pairing control genes in plants. DOI
Jiao Y. N., Wickett N. J., Ayyampalayam S., Chanderbali A. S., Landherr L., Ralph P. E., et al. (2011). Ancestral polyploidy in seed plants and angiosperms. PubMed DOI
Josefsson C., Dilkes B., Comai L. (2006). Parent-dependent loss of gene silencing during interspecies hybridization. PubMed DOI
Kamstra S. A., Kuipers A. G. J., De Jeu M. J., Ramanna M. S., Jacobsen E. (1999). The extent and position of homoeologous recombination in a distant hybrid of Alstroemeria: a molecular cytogenetic assessment of first generation backcross progenies. PubMed DOI
Karlov G. I., Khrustaleva L. I., Lim K. B., van Tuyl J. M. (1999). Homoeologous recombination in 2n-gametes producing interspecific hybrids of Lilium (Liliaceae) studied by genomic in situ hybridization (GISH). DOI
Kashkush K., Feldman M., Levy A. A. (2003). Transcriptional activation of retrotransposons alters the expression of adjacent genes in wheat. PubMed DOI
Khaitová L., Werlemark G., Nybom H., Kovarik A. (2010). Frequent silencing of rDNA loci on the univalent-forming genomes contrasts with their stable expression on the bivalent-forming genomes in polyploid dogroses ( PubMed DOI
Khan N., Barba-Gonzalez R., Ramanna M. S., Visser R. G. F., Van Tuyl J. M. (2009). Construction of chromosomal recombination maps of three genomes of lilies (Lilium) based on GISH analysis. PubMed DOI
Kim M. Y., Zilberman D. (2014). DNA methylation as a system of plant genomic immunity. PubMed DOI
Knight E., Greer E., Draeger T., Thole V., Reader S., Shaw P., et al. (2010). Inducing chromosome pairing through premature condensation: analysis of wheat interspecific hybrids. PubMed DOI PMC
Kopecky D., Bartos J., Zwierzykowski Z., Dolezel J. (2009). Chromosome pairing of individual genomes in tall fescue (Festuca arundinacea Schreb.), its progenitors, and hybrids with Italian ryegrass (Lolium multiflorum Lam.). PubMed DOI
Kopecky D., Loureiro J., Zwierzykowski Z., Ghesquiere M., Dolezel J. (2006). Genome constitution and evolution in PubMed DOI
Kraitshtein Z., Yaakov B., Khasdan V., Kashkush K. (2010). Genetic and epigenetic dynamics of a retrotransposon after allopolyploidization of wheat. PubMed DOI PMC
Kryvokhyzha D., Milesi P., Duan T. L., Orsucci M., Wright S. I., Glemin S., et al. (2019). Towards the new normal: transcriptomic convergence and genomic legacy of the two subgenomes of an allopolyploid weed ( PubMed DOI PMC
Ksiazczyk T., Kovarik A., Eber F., Huteau V., Khaitova L., Tesarikova Z., et al. (2011). Immediate unidirectional epigenetic reprogramming of NORs occurs independently of rDNA rearrangements in synthetic and natural forms of a polyploid species PubMed DOI
Kubota A., Akiyama Y., Fujimori M. (2019). The relationship between f ratio and seed yield-related traits in Festulolium. DOI
Lanctot C., Cheutin T., Cremer M., Cavalli G., Cremer T. (2007). Dynamic genome architecture in the nuclear space: regulation of gene expression in three dimensions. PubMed DOI
Lawrence R. J., Earley K., Pontes O., Silva M., Chen Z. J., Neves N., et al. (2004). A concerted DNA methylation/histone methylation switch regulates rRNA gene dosage control and nucleolar dominance. PubMed DOI
Li A. L., Liu D. C., Wu J., Zhao X. B., Hao M., Geng S. F., et al. (2014). mRNA and small RNA transcriptomes reveal insights into dynamic homoeolog regulation of allopolyploid heterosis in nascent hexaploid wheat. PubMed DOI PMC
Li N., Xu C., Zhang A., Lv R., Meng X., Lin X., et al. (2019). DNA methylation repatterning accompanying hybridization, whole genome doubling and homoeolog exchange in nascent segmental rice allotetraploids. PubMed DOI
Lim K. Y., Matyasek R., Kovarik A., Leitch A. (2004). Genome evolution in allotetraploid DOI
Lindroth A. M., Shultis D., Jasencakova Z., Fuchs J., Johnson L., Schubert D., et al. (2004). Dual histone H3 methylation marks at lysines 9 and 27 required for interaction with CHROMOMETHYLASE3. PubMed DOI PMC
Liu Z. Q., Adamczyk K., Manzanares-Dauleux M., Eber F., Lucas M. O., Delourme R., et al. (2006). Mapping PrBn and other quantitative trait loci responsible for the control of homeologous chromosome pairing in oilseed rape ( PubMed DOI PMC
Lu F. H., McKenzie N., Gardiner L. J., Luo M., Hall A., Bevan M. W. (2019). Reduced chromatin accessibility underlies gene expression differences in homologous chromosome arms of hexaploid wheat and diploid PubMed DOI PMC
Lu J., Zhang C. Q., Baulcombe D. C., Chen Z. J. (2012). Maternal siRNAs as regulators of parental genome imbalance and gene expression in endosperm of PubMed DOI PMC
Lukaszewski A. J., Apolinarska B., Gustafson J. P., Krolow K. D. (1987). Chromosome pairing and aneuploidy in tetraploid triticale. I. Stabilized karyotypes. DOI
Lukaszewski A. J., Kopecky D. (2010). The Ph1 locus from wheat controls meiotic chromosome pairing in autotetraploid rye ( PubMed DOI
Ma X. F., Gustafson J. P. (2005). Genome evolution of allopolyploids: a process of cytological and genetic diploidization. PubMed DOI
Madlung A. (2013). Polyploidy and its effect on evolutionary success: old questions revisited with new tools. PubMed DOI PMC
Mallet J. (2005). Hybridization as an invasion of the genome. PubMed DOI
Martin A. C., Rey M. D., Shaw P., Moore G. (2017). Dual effect of the wheat Ph1 locus on chromosome synapsis and crossover. PubMed DOI PMC
Martin A. C., Shaw P., Phillips D., Reader S., Moore G. (2014). Licensing MLH1 sites for crossover during meiosis. PubMed DOI PMC
Masterson J. (1994). Stomatal size in fossil plants: evidence for polyploidy in majority of angiosperms. PubMed DOI
McClintock B. (1984). The significance of responses of the genome to challenge. PubMed DOI
Mhiri C., Parisod C., Daniel J., Petit M., Lim K. Y., Dorlhac de Borne F., et al. (2019). Parental transposable element loads influence their dynamics in young PubMed DOI
Mohannath G., Pontvianne F., Pikaard C. S. (2016). Selective nucleolus organizer inactivation in PubMed DOI PMC
Naranjo T. (2014). Dynamics of rye telomeres in a wheat background during early meiosis. PubMed DOI
Navashin M. (1934). Chromosomal alterations caused by hybridization and their bearing upon certain general genetic problems. DOI
Neves N., Silva M., HeslopHarrison J. S., Viegas W. (1997). Nucleolar dominance in triticales: control by unlinked genes. PubMed DOI
Novikova P. Y., Tsuchimatsu T., Simon S., Nizhynska V., Voronin V., Burns R., et al. (2017). Genome sequencing reveals the origin of the allotetraploid PubMed DOI PMC
Orellana J., Cermeno M. C., Lacadena J. R. (1984). Meiotic pairing in wheat-rye addition and substitution lines. DOI
Pandit M. K., Pocock M. J. O., Kunin W. E. (2011). Ploidy influences rarity and invasiveness in plants. DOI
Parisod C., Alix K., Just J., Petit M., Sarilar V., Mhiri C., et al. (2010a). Impact of transposable elements on the organization and function of allopolyploid genomes. PubMed DOI
Parisod C., Holderegger R., Brochmann C. (2010b). Evolutionary consequences of autopolyploidy. PubMed DOI
Parisod C., Mhiri C., Lim K. Y., Clarkson J. J., Chase M. W., Leitch A. R., et al. (2012). Differential dynamics of transposable elements during long-term diploidization of PubMed DOI PMC
Pernickova K., Kolackova V., Lukaszewski A. J., Fan C. L., Vrana J., Duchoslav M., et al. (2019a). Instability of alien chromosome introgressions in wheat associated with improper positioning in the nucleus. PubMed DOI PMC
Pernickova K., Linc G., Gaal E., Kopecky D., Samajova O., Lukaszewski A. J. (2019b). Out-of-position telomeres in meiotic leptotene appear responsible for chiasmate pairing in an inversion heterozygote in wheat ( PubMed DOI
Pfeifer M., Kugler K. G., Sandve S. R., Zhan B. J., Rudi H., Hvidsten T. R., et al. (2014). Genome interplay in the grain transcriptome of hexaploid bread wheat. PubMed DOI
Ramirez-Gonzalez R. H., Borrill P., Lang D., Harrington S. A., Brinton J., Venturini L., et al. (2018). The transcriptional landscape of polyploid wheat. PubMed DOI
Rando O. J. (2012). Combinatorial complexity in chromatin structure and function: revisiting the histone code. PubMed DOI PMC
Rao D. D., Vorhies J. S., Senzer N., Nemunaitis J. (2009). siRNA vs. shRNA: similarities and differences. PubMed DOI
Rawale K. S., Khan M. A., Gill K. S. (2019). The novel function of the Ph1 gene to differentiate homologs from homoeologs evolved in PubMed DOI
Renny-Byfield S., Chester M., Kovaøík A., Le Comber S. C., Grandbastien M. A., Deloger M., et al. (2011). Next generation sequencing reveals genome downsizing in allotetraploid PubMed DOI
Rey M. D., Martin A. C., Higgins J., Swarbreck D., Uauy C., Shaw P., et al. (2017). Exploiting the ZIP4 homologue within the wheat Ph1 locus has identified two lines exhibiting homoeologous crossover in wheat-wild relative hybrids. PubMed DOI PMC
Rey M. D., Martin A. C., Smedley M., Hayta S., Harwood W., Shaw P., et al. (2018). Magnesium increases homoeologous crossover frequency during meiosis in ZIP4 (Ph1 Gene) mutant wheat-wild relative hybrids. PubMed DOI PMC
Rieseberg L. H., Kim S., Randell R. A., Whitney K. D., Gross B. L., Lexer C., et al. (2007). Hybridization and the colonization of novel habitats by annual sunflowers. PubMed DOI PMC
Rodrigues J. A., Zilberman D. (2015). Evolution and function of genomic imprinting in plants. PubMed DOI PMC
Ruprecht C., Proost S., Hernandez-Coronado M., Ortiz-Ramirez C., Lang D., Rensing S. A., et al. (2017). Phylogenomic analysis of gene co-expression networks reveals the evolution of functional modules. PubMed DOI
Schnable J. C., Springer N. M., Freeling M. (2011). Differentiation of the maize subgenomes by genome dominance and both ancient and ongoing gene loss. PubMed DOI PMC
Schubert I., Lysak M. A. (2011). Interpretation of karyotype evolution should consider chromosome structural constraints. PubMed DOI
Sears E. R., Okamoto M. (1958). “Intergenomic chromosome relationships in hexaploid wheat,” in DOI
Sedel’nikova T. S., Muratova E. N., Pimenov A. V. (2011). Variability of chromosome numbers in gymnosperms. DOI
Shi X. L., Ng D. W. K., Zhang C. Q., Comai L., Ye W. X., Chen Z. J. (2012). PubMed DOI
Soltis P. S., Soltis D. E. (2009). The role of hybridization in plant speciation. PubMed DOI
Soltis P. S., Soltis D. E. (2012). DOI
Song Q. X., Chen Z. J. (2015). Epigenetic and developmental regulation in plant polyploids. PubMed DOI PMC
Stoces S., Ruttink T., Bartos J., Studer B., Yates S., Zwierzykowski Z., et al. (2016). Orthology guided transcriptome assembly of Italian ryegrass and meadow fescue for single-ncleotide polymorphism discovery. PubMed DOI
Takahashi C., Leitch I. J., Ryan A., Bennett M. D., Brandham P. E. (1997). The use of genomic in situ hybridization (GISH) to show transmission of recombinant chromosomes by a partially fertile bigeneric hybrid, PubMed DOI
Talbert P. B., Masuelli R., Tyagi A. P., Comai L., Henikoff S. (2002). Centromeric localization and adaptive evolution of an PubMed DOI PMC
te Beest M., Le Roux J. J., Richardson D. M., Brysting A. K., Suda J., Kubesova M., et al. (2012). The more the better? The role of polyploidy in facilitating plant invasions. PubMed DOI PMC
Thomas B. C., Pedersen B., Freeling M. (2006). Following tetraploidy in an PubMed DOI PMC
Tsunewaki K. (1964). Genetic studies of 6X-derivative from an 8x DOI
van Heusden A. W., van Ooijen J. W., Vrielink-van Ginkel R., Verbeek W. H. J., Wietsma W. A., Kik C. (2000). A genetic map of an interspecific cross in Allium based on amplified fragment length polymorphism (AFLP (TM)) markers. DOI
Vieira R., Queiroz A., Morais L., Barao A., Mello-Sampayo T., Viegas W. (1990). Genetic control of 1R nucleolus organizer region expression in the presence of wheat genomes. DOI
Wang M. J., Wang P. C., Lin M., Ye Z. X., Li G. L., Tu L. L., et al. (2018). Evolutionary dynamics of 3D genome architecture following polyploidization in cotton. PubMed DOI
Wicker T., Sabot F., Hua-Van A., Bennetzen J. L., Capy P., Chalhoub B., et al. (2007). A unified classification system for eukaryotic transposable elements. PubMed DOI
Woodhouse M. R., Cheng F., Pires J. C., Lisch D., Freeling M., Wang X. (2014). Origin, inheritance, and gene regulatory consequences of genome dominance in polyploids. PubMed DOI PMC
Wu J., Lin L., Xu M. L., Chen P. P., Liu D. X., Sun Q. F., et al. (2018). Homoeolog expression bias and expression level dominance in resynthesized allopolyploid PubMed DOI PMC
Xiong Z. Y., Gaeta R. T., Pires J. C. (2011). Homoeologous shuffling and chromosome compensation maintain genome balance in resynthesized allopolyploid PubMed DOI PMC
Yaakov B., Kashkush K. (2012). Mobilization of Stowaway-like MITEs in newly formed allohexaploid wheat species. PubMed DOI
Yakimowski S. B., Rieseberg L. H. (2014). The role of homoploid hybridization in evolution: a century of studies synthesizing genetics and ecology. PubMed DOI
Yoo M. J., Szadkowski E., Wendel J. F. (2013). Homoeolog expression bias and expression level dominance in allopolyploid cotton. PubMed DOI PMC
Zhao N., Zhu B., Li M. J., Wang L., Xu L. Y., Zhang H. K., et al. (2011). Extensive and heritable epigenetic remodeling and genetic stability accompany allohexaploidization of wheat. PubMed DOI PMC
Zhu W. S., Hu B., Becker C., Dogan E. S., Berendzen K. W., Weigel D., et al. (2017). Altered chromatin compaction and histone methylation drive non-additive gene expression in an interspecific PubMed DOI PMC
Zwierzykowski Z., Kosmala A., Zwierzykowska E., Jones N., Joks W., Bocianowski J. (2006). Genome balance in six successive generations of the allotetraploid PubMed DOI
Zwierzykowski Z., Zwierzykowska E., Taciak M., Jones N., Kosmala A., Krajewski P. (2008). Chromosome pairing in allotetraploid hybrids of PubMed DOI
Zwierzykowski Z., Zwierzykowska E., Taciak M., Kosmala A., Jones R. N., Zwierzykowski W., et al. (2011). Genomic structure and fertility in advanced breeding populations derived from an allotetraploid DOI
Genome Dominance in Allium Hybrids (A. cepa × A. roylei)
Reciprocal allopolyploid grasses (Festuca × Lolium) display stable patterns of genome dominance