Diamond photonic crystal slab: leaky modes and modified photoluminescence emission of surface-deposited quantum dots
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
23209874
PubMed Central
PMC3512090
DOI
10.1038/srep00914
PII: srep00914
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Detailed analysis of a band diagram of a photonic crystal (PhC) slab prepared on a nano-diamond layer is presented. Even though the PhC is structurally imperfect, the existence of leaky modes, determined both theoretically and experimentally in the broad spectral region, implies that an efficient light interaction with a material periodicity occurs in the sample. It is shown that the luminescence emission spectrum of a light source placed directly on the PhC surface can be modified by employing the optical modes of the studied structure. We stress also the impact of intrinsic optical losses of the nano-diamond on this modification.
Zobrazit více v PubMed
Joannopoulous J. D., Johnson S. G., Winn J. N. & Meade R. D. Photonic Crystals: Molding the Flow of Light (Princeton University Press, Princeton, 2008).
Johnson S. G., Fan S., Villeneuve P. R., Joannopoulos J. D. & Kolodziejski L. A. Guided modes in photonic crystal slabs. Phys. Rev. B 60, 5751–5758 (1999).
Wierer J. J., David A. & Megens M. M. III-nitride photonic-crystal light-emitting diodes with high extraction effciency. Nature Photon. 3, 163–169 (2009).
Wiesmann C., Bergenek K., Linder N. & Schwarz U. T. Photonic crystal LEDs – designing light extraction. Laser & Photon. Rev. 3, 262–286 (2009).
Fan S. & Joannopoulos J. D. Analysis of guided resonances in photonic crystal slabs. Phys. Rev. B 65, 235112 (2002).
Astratov V. N. et al. Photonic band-structure effects in the reflectivity of periodically patterned waveguides. Phys. Rev. B 60, R16255–R16258 (1999).
Pacradouni V. et al. Photonic band structure of dielectric membranes periodically textured in two dimensions. Phys. Rev. B 62, 4204–4207 (2000).
Ganesh N. et al. Enhanced fluorescence emission from quantum dots on a photonic crystal surface. Nature Nanotech. 2, 515–520 (2007). PubMed
Rosenblatt D., Sharon A. & Friesem A. A. Resonant grating waveguide structures. IEEE J. Quantum Electron. 33, 2038–2059 (1997).
Rybin M. V. et al. Bragg scattering induces Fano resonance in photonic crystals. Phot. Nano. Fund. Appl. 8, 86–93 (2010).
Ondič L. et al. Effective extraction of photoluminescence from a diamond layer with a photonic crystal. ACS Nano 5, 346–350 (2011). PubMed
Ondič L. et al. Enhanced photoluminescence extraction efficiency from a diamond photonic crystal via leaky modes. New J. Phys. 13, 063005 (2011).
Paddon P. & Young J. F. Two-dimensional vector-coupled-mode theory for textured planar waveguides. Phys. Rev. B 61, 2090–2101 (2000).
Dohnalová K. et al. White-emitting oxidized silicon nanocrystals: Discontinuity in spectral development with reducing size. J. Appl. Phys. 107, 053102 (2010).
Kromka A. et al. Formation of continuous nanocrystalline diamond layers on glass and silicon at low temperatures. Chem. Vap. Deposition 14, 181–186 (2008).
Johnson S. G. & Joannopoulos J. D. Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis. Opt. Express 8, 173–190 (2001). PubMed
Osteogenic cell differentiation on H-terminated and O-terminated nanocrystalline diamond films