Silicon nanocrystal-based photonic crystal slabs with broadband and efficient directional light emission
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
28720812
PubMed Central
PMC5516042
DOI
10.1038/s41598-017-05973-y
PII: 10.1038/s41598-017-05973-y
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Light extraction from a thin planar layer can be increased by introducing a two-dimensional periodic pattern on its surface. This structure, the so-called photonic crystal (PhC) slab, then not only enhances the extraction efficiency of light but can direct the extracted emission into desired angles. Careful design of the structures is important in order to have a spectral overlap of the emission with extraction (leaky) modes. We show that by fabricating PhC slabs with optimized dimensions from silicon nanocrystals (SiNCs) active layers, the extraction efficiency of vertical light emission from SiNCs at a particular wavelength can be enhanced ∼ 11 times compared to that of uncorrugated SiNCs-rich layer. More importantly, increased light emission can be obtained in a broad spectral range and, simultaneously, the extracted light can stay confined within relatively narrow angle around the normal to the sample plane. We demonstrate experimentally and theoretically that the physical origin of the enhancement is such that light originating from SiNCs first couples to leaky modes of the PhCs and is then efficiently extracted into the surrounding.
Zobrazit více v PubMed
Priolo F, Gregorkiewicz T, Galli M, Krauss TF. Silicon nanostructures for photonics and photovoltaics. Nature Nanotech. 2014;9:19–32. doi: 10.1038/nnano.2013.271. PubMed DOI
Delley B, Steigmeier EF. Quantum confinement in Si nanocrystals. Phys. Rev. B. 1993;47:1397. doi: 10.1103/PhysRevB.47.1397. PubMed DOI
Kim T-Y, et al. Quantum confinement effect of silicon nanocrystals in situ grown in silicon nitride films. Appl. Phys. Lett. 2004;85:5355. doi: 10.1063/1.1814429. DOI
Lu ZH, Lockwood DJ, Baribeau J-M. Quantum confinement and light emission in SiO /Si superlattices. Nature. 1995;378:258–260. doi: 10.1038/378258a0. DOI
Mitra S, Svrcek V, Macias-Montero M, Velusamy T, Mariott D. Temperature-dependent photoluminescence of surface-engineered silicon nanocrystals. Sci. Rep. 2016;6:27727. doi: 10.1038/srep27727. PubMed DOI PMC
Sychugov I, et al. Ultranarrow Luminescence Linewidth of Silicon Nanocrystals and Influence of Matrix. ACS Photonics. 2014;1:998–1005. doi: 10.1021/ph500221z. DOI
Liu C-Y, Holman Z, Kortshagen U. Hybrid Solar Cells from P3HT and Silicon Nanocrystals. Nano Lett. 2009;9:449–452. doi: 10.1021/nl8034338. PubMed DOI
Svrcek V, et al. A silicon nanocrystal/polymer nanocomposite as a down-conversion layer in organic and hybrid solar cells. Nanoscale. 2015;7:11566–11574. doi: 10.1039/C5NR02703A. PubMed DOI
Maier-Flaig F, et al. Multicolor silicon light-emitting diodes (SiLEDs) Nano Lett. 2013;13:475–480. doi: 10.1021/nl3038689. PubMed DOI
Cheng K-Y, Anthony R, Kortshagen UR, Holmes RJ. High-efficiency silicon nanocrystal light-emitting devices. Nano Lett. 2011;11:1952–1956. doi: 10.1021/nl2001692. PubMed DOI
Huh C, Kim T-Y, Ahn C-G, Kim BK. Strong visible electroluminescence from silicon nanocrystals embedded in a silicon carbide film. Appl. Phys. Lett. 2015;106:211103. doi: 10.1063/1.4921786. DOI
Palacios-Huerta L, et al. Effect of the structure on luminescent characteristics of SRO-based light emitting capacitors. Nanotechnology. 2015;26:395202. doi: 10.1088/0957-4484/26/39/395202. PubMed DOI
Krames MR, et al. Status and future of high-power light-emitting diodes for solid-state lighting. J. Display Technol. 2007;3:160–175. doi: 10.1109/JDT.2007.895339. DOI
Joannopoulous, J. D., Johnson, S. G., Winn, J. N. & Meade, R. D. Photonic Crystals: Molding the Flow of Light (Princeton University Press, Princeton, 2008).
Fan S, Villeneuve PR, Joannopoulos JD, Schubert EF. High extraction efficiency of spontaneous emission from slabs of photonic crystals. Phys. Rev. Lett. 1997;78:3294–3297. doi: 10.1103/PhysRevLett.78.3294. DOI
Wierer JJ, David A, Megens MM. III-nitride photonic-crystal light-emitting diodes with high extraction efficiency. Nature Photon. 2009;3:163–169. doi: 10.1038/nphoton.2009.21. DOI
Wiesmann C, Bergenek K, Schwarz UT. Photonic crystal LEDs – designing light extraction. Laser Photon. Rev. 2009;3:262–286. doi: 10.1002/lpor.200810053. DOI
Fan S, Joannopoulos JD. Analysis of guided resonances in photonic crystal slabs. Phys. Rev. B. 2002;65:235112. doi: 10.1103/PhysRevB.65.235112. DOI
Krishnan C, et al. Hybrid photonic crystal light-emitting diode renders 123% color conversion effective quantum yield. Optica. 2016;3:503–509. doi: 10.1364/OPTICA.3.000503. DOI
David A, Benisty H, Weisbuch C. Optimization of light-diffracting photonic-crystals for high extraction efficiency LEDs. J. Disp. Technol. 2007;3:133–148. doi: 10.1109/JDT.2007.896736. DOI
Matioli, E. & Weisbuch, C. Impact of photonic crystals on LED light extraction efficiency: approaches and limits to vertical structure designs. J. Phys. D: Appl. Phys. 43 (2010).
Mahdavi A, et al. Maximizing photoluminescence extraction in silicon photonic crystal slabs. Sci. Rep. 2016;6:25135. doi: 10.1038/srep25135. PubMed DOI PMC
Presti CD, et al. Photonic-crystal silicon-nanocluster light-emitting device. Appl. Phys. Lett. 2006;88:33501. doi: 10.1063/1.2165272. DOI
Galli M, et al. Strong enhancement of Er3+ emission at room temperature in silicon-on-insulator photonic crystal waveguides. Appl. Phys. Lett. 2006;88:251114. doi: 10.1063/1.2214180. DOI
Lo Savio R, et al. Photonic crystal light emitting diode based on Er and Si nanoclusters co-doped slot waveguide. Appl. Phys. Lett. 2014;104:121107. doi: 10.1063/1.4869751. DOI
Ondič L, et al. Two-dimensional photonic crystal slab with embedded silicon nanocrystals: Efficient photoluminescence extraction. Appl. Phys. Lett. 2013;102:251111. doi: 10.1063/1.4812477. DOI
Ondič L, et al. Enhanced photoluminescence extraction efficiency from a diamond photonic crystal via leaky modes. New J. Phys. 2011;13:063005. doi: 10.1088/1367-2630/13/6/063005. DOI
Ondič L, et al. Diamond photonic crystal slab: Leaky modes and modified photoluminescence emission of surface-deposited quantum dots. Sci. Rep. 2012;2:914. PubMed PMC
Boroditsky M, et al. Spontaneous emission extraction and purcell enhancement from thin-film 2-D photonic crystals. J. Lightwave Tech. 1999;17:2096–2112. doi: 10.1109/50.803000. DOI
Ganesh N, et al. Enhanced fluorescence emission from quantum dots on a photonic crystal surface. Nat. Nanotechnol. 2007;2:515–520. doi: 10.1038/nnano.2007.216. PubMed DOI
Shen Y, et al. Structural colors from Fano resonances. ACS Photonics. 2015;2:27–32. doi: 10.1021/ph500400w. DOI
Rybin MV, et al. Bragg scattering induces Fano resonance in photonic crystals. Phot. Nano. Fund. Appl. 2010;8:86–93. doi: 10.1016/j.photonics.2009.07.003. DOI
Sangghaleh F, Bruhn B, Schmidt T, Linnros J. Exciton lifetime measurements on single silicon quantum dots. Nanotechnology. 2013;24:225204. doi: 10.1088/0957-4484/24/22/225204. PubMed DOI
Ondič L, et al. Complex study of fast blue luminescence of oxidized silicon nanocrystals: the role of the core. Nanoscale. 2014;6:3837–3845. doi: 10.1039/c3nr06454a. PubMed DOI
Irrera A, et al. Light emitting devices based on silicon nanostructures. Phys. E: Low Dimens. Syst. Nanostruct. 2007;38:181–187. doi: 10.1016/j.physe.2006.12.019. DOI
Pavesi L, Ceschini M. Stretched-exponential decay of the luminescence in porous silicon. Phys. Rev. B. 1993;48:17625. doi: 10.1103/PhysRevB.48.17625. PubMed DOI
Xu Q, et al. Three-dimensional micro/nanoscale architectures: fabrication and applications. Nanoscale. 2015;7:10883–10895. doi: 10.1039/C5NR02048D. PubMed DOI
Noda S, Fujita M, Asano T. Spontaneous-emission control by photonic crystals and nanocavities. Nature Photon. 2007;1:449–458. doi: 10.1038/nphoton.2007.141. DOI
Lodahl P, et al. Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals. Nature. 2004;430:654–657. doi: 10.1038/nature02772. PubMed DOI
Baba T. Slow light in photonic crystals. Nat. Photonics. 2008;2:465–473. doi: 10.1038/nphoton.2008.146. DOI
Dowling JP, Scalora M, Bloemer MJ, Bowden CM. Group index limitations in slow-light photonic crystals. J. Appl. Phys. 1994;75:1896–1899. doi: 10.1063/1.356336. DOI
Sakoda K. Enhanced light amplification due to group-velocity anomaly peculiar to two- and three-dimensional photonic crystals. Opt. Express. 1999;4:167–176. doi: 10.1364/OE.4.000167. PubMed DOI
Ondič L, Pelant I. Efficient light amplification in low gain materials due to a photonic band edge effect. Opt. Express. 2012;20:7071–7080. doi: 10.1364/OE.20.007071. PubMed DOI
Ostatnický T, et al. Photoluminescence from an active planar optical waveguide made of silicon nanocrystals: dominance of leaky substrate modes in dissipative structures. Opt. Mater. 2005;27:781–786. doi: 10.1016/j.optmat.2004.08.015. DOI