• This record comes from PubMed

Two-dimensional photonic crystals increasing vertical light emission from Si nanocrystal-rich thin layers

. 2018 ; 9 () : 2287-2296. [epub] 20180824

Status PubMed-not-MEDLINE Language English Country Germany Media electronic-ecollection

Document type Journal Article

We have fabricated two-dimensional photonic crystals (PhCs) on the surface of Si nanocrystal-rich SiO2 layers with the goal to maximize the photoluminescence extraction efficiency in the normal direction. The fabricated periodic structures consist of columns ordered into square and hexagonal pattern with lattice constants computed such that the red photoluminescence of Si nanocrystals (SiNCs) could couple to leaky modes of the PhCs and could be efficiently extracted to surrounding air. Samples having different lattice constants and heights of columns were investigated in order to find the configuration with the best performance. Spectral overlap of the leaky modes with the luminescence spectrum of SiNCs was verified experimentally by measuring photonic band diagrams of the leaky modes employing angle-resolved spectroscopy and also theoretically by computing the reflectance spectra. The extraction enhancement within different spatial angles was evaluated by means of micro-photoluminescence spectroscopy. More than 18-fold extraction enhancement was achieved for light propagating in the normal direction and up to 22% increase in overall intensity was obtained at the spatial collection angle of 14°.

See more in PubMed

Lodahl P, Mahmoodian S, Stobbe S. Rev Mod Phys. 2015;87:347–400. doi: 10.1103/revmodphys.87.347. DOI

Park J-E, Kim J, Nam J-M. Chem Sci. 2017;8:4696–4704. doi: 10.1039/c7sc01441d. PubMed DOI PMC

Gjonaj B, Aulbach J, Johnson P M, Mosk A P, Kuipers L, Lagendijk A. Nat Photonics. 2011;5:360–363. doi: 10.1038/nphoton.2011.57. DOI

Schuller J A, Barnard E S, Cai W, Jun Y C, White J S, Brongersma M L. Nat Mater. 2010;9:193–204. doi: 10.1038/nmat2630. PubMed DOI

Huang Y-R, Chiu Y-C, Huang K-C, Ting S-Y, Chiang P-J, Lai C-M, Jen C-P, Tseng S H, Wang H-C. Beilstein J Nanotechnol. 2018;9:1602–1612. doi: 10.3762/bjnano.9.152. PubMed DOI PMC

Wiesmann C, Bergenek K, Linder N, Schwarz U T. Laser Photonics Rev. 2009;3(3):262–286. doi: 10.1002/lpor.200810053. DOI

Nishijima Y, Komatsu R, Ota S, Seniutinas G, Balčytis A, Juodkazis S. APL Photonics. 2016;1(7):076104. doi: 10.1063/1.4964851. DOI

Joannopoulous J D, Johnson S G, Winn J N, et al. Photonic Crystals: Molding the Flow of Light. 2nd ed. Princeton, NJ, U.S.A.: Princeton University Press; 2008.

Johnson S G, Fan S, Villeneuve P R, Joannopoulos J D, Kolodziejski L A. Phys Rev B. 1999;60:5751–5758. doi: 10.1103/physrevb.60.5751. DOI

Wierer J J, Jr, David A, Megens M M. Nat Photonics. 2009;3:163–169. doi: 10.1038/nphoton.2009.21. DOI

Krames M R, Shchekin O B, Mueller-Mach R, Mueller G O, Zhou L, Harbers G, Craford M G. J Disp Technol. 2007;3:160–175. doi: 10.1109/jdt.2007.895339. DOI

Bhattacharya S, John S. Phys Rev Appl. 2018;9:044009. doi: 10.1103/physrevapplied.9.044009. DOI

Becker C, Wyss P, Eisenhauer D, Probst J, Preidel V, Hammerschmidt M, Burger S. Sci Rep. 2014;4:5886. doi: 10.1038/srep05886. PubMed DOI PMC

Ondič L, Varga M, Hruška K, Fait J, Kapusta P. ACS Nano. 2017;11:2972–2981. doi: 10.1021/acsnano.6b08412. PubMed DOI

Si G, Danner A J, Teo S L, Teo E J, Teng J, Bettiol A A. J Vac Sci Technol, B: Nanotechnol Microelectron: Mater, Process, Meas, Phenom. 2011;29:021205. doi: 10.1116/1.3557027. DOI

Pourdavoud N, Wang S, Mayer A, Hu T, Chen Y, Marianovich A, Kowalsky W, Heiderhoff R, Scheer H-C, Riedl T. Adv Mater. 2017;29:1605003. doi: 10.1002/adma.201605003. PubMed DOI

Domonkos M, Varga M, Ondič L, Gajdošová L, Kromka A. Mater Des. 2018;139:363–371. doi: 10.1016/j.matdes.2017.10.076. DOI

Jelmakas E, Kadys A, Malinauskas T, Paipulas D, Dobrovolskas D, Dmukauskas M, Selskis A, Juodkazis S, Tomašiūnas R. J Phys D: Appl Phys. 2015;48:285104. doi: 10.1088/0022-3727/48/28/285104. DOI

Maier-Flaig F, Rinck J, Stephan M, Bocksrocker T, Bruns M, Kübel C, Powell A K, Ozin G A, Lemmer U. Nano Lett. 2013;13:475–480. doi: 10.1021/nl3038689. PubMed DOI

Cheng K-Y, Anthony R, Kortshagen U R, Holmes R J. Nano Lett. 2011;11:1952–1956. doi: 10.1021/nl2001692. PubMed DOI

Huh C, Kim T-Y, Ahn C-G, Kim B K. Appl Phys Lett. 2015;106:211103. doi: 10.1063/1.4921786. DOI

Palacios-Huerta L, Cabañas-Tay S A, Luna-López J A, Aceves-Mijares M, Coyopol A, Morales-Sánchez A. Nanotechnology. 2015;26:395202. doi: 10.1088/0957-4484/26/39/395202. PubMed DOI

Presti C D, Irrera A, Franzò G, Crupi I, Priolo F, Iacona F, Di Stefano G, Piana A, Sanfilippo D, Fallica P G. Appl Phys Lett. 2006;88(3):033501. doi: 10.1063/1.2165272. DOI

Galli M, Politi A, Belotti M, Gerace D, Liscidini M, Patrini M, Andreani L C, Miritello M, Irrera A, Priolo F, et al. Appl Phys Lett. 2006;88:251114. doi: 10.1063/1.2214180. DOI

Lo Savio R, Galli M, Liscidini M, Andreani L C, Franzò G, Iacona F, Miritello M, Irrera A, Sanfilippo D, Piana A, et al. Appl Phys Lett. 2014;104(12):121107. doi: 10.1063/1.4869751. DOI

Ondič L, Varga M, Hruška K, Kromka A, Herynková K, Hönerlage B, Pelant I. Appl Phys Lett. 2013;102:251111. doi: 10.1063/1.4812477. DOI

Ondič L, Varga M, Pelant I, Valenta J, Kromka A, Elliman R G. Sci Rep. 2017;7:5763. doi: 10.1038/s41598-017-05973-y. PubMed DOI PMC

Ostatnický T, Valenta J, Pelant I, Luterová K, Elliman R G, Cheylan S, Hönerlage B. Opt Mater. 2005;27(5):781–786. doi: 10.1016/j.optmat.2004.08.015. DOI

Ganesh N, Zhang W, Mathias P C, Chow E, Soares J A N T, Malyarchuk V, Smith A D, Cunningham B T. Nat Nanotechnol. 2007;2:515–520. doi: 10.1038/nnano.2007.216. PubMed DOI

Matioli E, Weisbuch C. J Phys D: Appl Phys. 2010;43:354005. doi: 10.1088/0022-3727/43/35/354005. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...