Two-dimensional photonic crystals increasing vertical light emission from Si nanocrystal-rich thin layers
Status PubMed-not-MEDLINE Language English Country Germany Media electronic-ecollection
Document type Journal Article
PubMed
30202697
PubMed Central
PMC6122158
DOI
10.3762/bjnano.9.213
Knihovny.cz E-resources
- Keywords
- leaky modes, photoluminescence, photonic crystals, silicon nanocrystals,
- Publication type
- Journal Article MeSH
We have fabricated two-dimensional photonic crystals (PhCs) on the surface of Si nanocrystal-rich SiO2 layers with the goal to maximize the photoluminescence extraction efficiency in the normal direction. The fabricated periodic structures consist of columns ordered into square and hexagonal pattern with lattice constants computed such that the red photoluminescence of Si nanocrystals (SiNCs) could couple to leaky modes of the PhCs and could be efficiently extracted to surrounding air. Samples having different lattice constants and heights of columns were investigated in order to find the configuration with the best performance. Spectral overlap of the leaky modes with the luminescence spectrum of SiNCs was verified experimentally by measuring photonic band diagrams of the leaky modes employing angle-resolved spectroscopy and also theoretically by computing the reflectance spectra. The extraction enhancement within different spatial angles was evaluated by means of micro-photoluminescence spectroscopy. More than 18-fold extraction enhancement was achieved for light propagating in the normal direction and up to 22% increase in overall intensity was obtained at the spatial collection angle of 14°.
Institute of Physics Czech Academy of Sciences v v i Cukrovarnická 10 162 00 Prague 6 Czech Republic
See more in PubMed
Lodahl P, Mahmoodian S, Stobbe S. Rev Mod Phys. 2015;87:347–400. doi: 10.1103/revmodphys.87.347. DOI
Park J-E, Kim J, Nam J-M. Chem Sci. 2017;8:4696–4704. doi: 10.1039/c7sc01441d. PubMed DOI PMC
Gjonaj B, Aulbach J, Johnson P M, Mosk A P, Kuipers L, Lagendijk A. Nat Photonics. 2011;5:360–363. doi: 10.1038/nphoton.2011.57. DOI
Schuller J A, Barnard E S, Cai W, Jun Y C, White J S, Brongersma M L. Nat Mater. 2010;9:193–204. doi: 10.1038/nmat2630. PubMed DOI
Huang Y-R, Chiu Y-C, Huang K-C, Ting S-Y, Chiang P-J, Lai C-M, Jen C-P, Tseng S H, Wang H-C. Beilstein J Nanotechnol. 2018;9:1602–1612. doi: 10.3762/bjnano.9.152. PubMed DOI PMC
Wiesmann C, Bergenek K, Linder N, Schwarz U T. Laser Photonics Rev. 2009;3(3):262–286. doi: 10.1002/lpor.200810053. DOI
Nishijima Y, Komatsu R, Ota S, Seniutinas G, Balčytis A, Juodkazis S. APL Photonics. 2016;1(7):076104. doi: 10.1063/1.4964851. DOI
Joannopoulous J D, Johnson S G, Winn J N, et al. Photonic Crystals: Molding the Flow of Light. 2nd ed. Princeton, NJ, U.S.A.: Princeton University Press; 2008.
Johnson S G, Fan S, Villeneuve P R, Joannopoulos J D, Kolodziejski L A. Phys Rev B. 1999;60:5751–5758. doi: 10.1103/physrevb.60.5751. DOI
Wierer J J, Jr, David A, Megens M M. Nat Photonics. 2009;3:163–169. doi: 10.1038/nphoton.2009.21. DOI
Krames M R, Shchekin O B, Mueller-Mach R, Mueller G O, Zhou L, Harbers G, Craford M G. J Disp Technol. 2007;3:160–175. doi: 10.1109/jdt.2007.895339. DOI
Bhattacharya S, John S. Phys Rev Appl. 2018;9:044009. doi: 10.1103/physrevapplied.9.044009. DOI
Becker C, Wyss P, Eisenhauer D, Probst J, Preidel V, Hammerschmidt M, Burger S. Sci Rep. 2014;4:5886. doi: 10.1038/srep05886. PubMed DOI PMC
Ondič L, Varga M, Hruška K, Fait J, Kapusta P. ACS Nano. 2017;11:2972–2981. doi: 10.1021/acsnano.6b08412. PubMed DOI
Si G, Danner A J, Teo S L, Teo E J, Teng J, Bettiol A A. J Vac Sci Technol, B: Nanotechnol Microelectron: Mater, Process, Meas, Phenom. 2011;29:021205. doi: 10.1116/1.3557027. DOI
Pourdavoud N, Wang S, Mayer A, Hu T, Chen Y, Marianovich A, Kowalsky W, Heiderhoff R, Scheer H-C, Riedl T. Adv Mater. 2017;29:1605003. doi: 10.1002/adma.201605003. PubMed DOI
Domonkos M, Varga M, Ondič L, Gajdošová L, Kromka A. Mater Des. 2018;139:363–371. doi: 10.1016/j.matdes.2017.10.076. DOI
Jelmakas E, Kadys A, Malinauskas T, Paipulas D, Dobrovolskas D, Dmukauskas M, Selskis A, Juodkazis S, Tomašiūnas R. J Phys D: Appl Phys. 2015;48:285104. doi: 10.1088/0022-3727/48/28/285104. DOI
Maier-Flaig F, Rinck J, Stephan M, Bocksrocker T, Bruns M, Kübel C, Powell A K, Ozin G A, Lemmer U. Nano Lett. 2013;13:475–480. doi: 10.1021/nl3038689. PubMed DOI
Cheng K-Y, Anthony R, Kortshagen U R, Holmes R J. Nano Lett. 2011;11:1952–1956. doi: 10.1021/nl2001692. PubMed DOI
Huh C, Kim T-Y, Ahn C-G, Kim B K. Appl Phys Lett. 2015;106:211103. doi: 10.1063/1.4921786. DOI
Palacios-Huerta L, Cabañas-Tay S A, Luna-López J A, Aceves-Mijares M, Coyopol A, Morales-Sánchez A. Nanotechnology. 2015;26:395202. doi: 10.1088/0957-4484/26/39/395202. PubMed DOI
Presti C D, Irrera A, Franzò G, Crupi I, Priolo F, Iacona F, Di Stefano G, Piana A, Sanfilippo D, Fallica P G. Appl Phys Lett. 2006;88(3):033501. doi: 10.1063/1.2165272. DOI
Galli M, Politi A, Belotti M, Gerace D, Liscidini M, Patrini M, Andreani L C, Miritello M, Irrera A, Priolo F, et al. Appl Phys Lett. 2006;88:251114. doi: 10.1063/1.2214180. DOI
Lo Savio R, Galli M, Liscidini M, Andreani L C, Franzò G, Iacona F, Miritello M, Irrera A, Sanfilippo D, Piana A, et al. Appl Phys Lett. 2014;104(12):121107. doi: 10.1063/1.4869751. DOI
Ondič L, Varga M, Hruška K, Kromka A, Herynková K, Hönerlage B, Pelant I. Appl Phys Lett. 2013;102:251111. doi: 10.1063/1.4812477. DOI
Ondič L, Varga M, Pelant I, Valenta J, Kromka A, Elliman R G. Sci Rep. 2017;7:5763. doi: 10.1038/s41598-017-05973-y. PubMed DOI PMC
Ostatnický T, Valenta J, Pelant I, Luterová K, Elliman R G, Cheylan S, Hönerlage B. Opt Mater. 2005;27(5):781–786. doi: 10.1016/j.optmat.2004.08.015. DOI
Ganesh N, Zhang W, Mathias P C, Chow E, Soares J A N T, Malyarchuk V, Smith A D, Cunningham B T. Nat Nanotechnol. 2007;2:515–520. doi: 10.1038/nnano.2007.216. PubMed DOI
Matioli E, Weisbuch C. J Phys D: Appl Phys. 2010;43:354005. doi: 10.1088/0022-3727/43/35/354005. DOI