Multifunctional Oxidized Dextran as a Matrix for Stabilization of Octahedral Molybdenum and Tungsten Iodide Clusters in Aqueous Media
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
19-73-20109
Russian Science Foundation
21-11688S
Czech Science Foundation
PubMed
37373156
PubMed Central
PMC10297999
DOI
10.3390/ijms241210010
PII: ijms241210010
Knihovny.cz E-zdroje
- Klíčová slova
- cytotoxicity, hydrolysis, luminescence, molybdenum, octahedral iodide cluster, oxidized dextran polysaccharide, photodynamic therapy, stability, tungsten,
- MeSH
- dextrany MeSH
- dimethylsulfoxid MeSH
- jodidy MeSH
- molybden * chemie MeSH
- peroxid vodíku MeSH
- wolfram * chemie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- dextrany MeSH
- dimethylsulfoxid MeSH
- jodidy MeSH
- molybden * MeSH
- peroxid vodíku MeSH
- wolfram * MeSH
Due to their high abundance, polymeric character, and chemical tunability, polysaccharides are perfect candidates for the stabilization of photoactive nanoscale objects, which are of great interest in modern science but can be unstable in aqueous media. In this work, we have demonstrated the relevance of oxidized dextran polysaccharide, obtained via a simple reaction with H2O2, towards the stabilization of photoactive octahedral molybdenum and tungsten iodide cluster complexes [M6I8}(DMSO)6](NO3)4 in aqueous and culture media. The cluster-containing materials were obtained by co-precipitation of the starting reagents in DMSO solution. According to the data obtained, the amount and ratio of functional carbonyl and carboxylic groups as well as the molecular weight of oxidized dextran strongly affect the extent of stabilization, i.e., high loading of aldehyde groups and high molecular weight increase the stability, while acidic groups have some negative impact on the stability. The most stable material based on the tungsten cluster complex exhibited low dark and moderate photoinduced cytotoxicity, which together with high cellular uptake makes these polymers promising for the fields of bioimaging and PDT.
Zobrazit více v PubMed
Raemdonck K., Martens T.F., Braeckmans K., Demeester J., De Smedt S.C. Polysaccharide-Based Nucleic Acid Nanoformulations. Adv. Drug Deliv. Rev. 2013;65:1123–1147. doi: 10.1016/j.addr.2013.05.002. PubMed DOI
Jayakumar R., Menon D., Manzoor K., Nair S.V., Tamura H. Biomedical Applications of Chitin and Chitosan Based Nanomaterials—A Short Review. Carbohydr. Polym. 2010;82:227–232. doi: 10.1016/j.carbpol.2010.04.074. DOI
Mokhtarzadeh A., Alibakhshi A., Hejazi M., Omidi Y., Dolatabadi J.E.N. Bacterial-Derived Biopolymers: Advanced Natural Nanomaterials for Drug Delivery and Tissue Engineering. TrAC Trends Anal. Chem. 2016;82:367–384. doi: 10.1016/j.trac.2016.06.013. DOI
Huang S., Huang G. Design and Application of Dextran Carrier. J. Drug. Deliv. Sci. Technol. 2020;55:101392. doi: 10.1016/j.jddst.2019.101392. DOI
Safat S., Buazar F., Albukhaty S., Matroodi S. Enhanced Sunlight Photocatalytic Activity and Biosafety of Marine-Driven Synthesized Cerium Oxide Nanoparticles. Sci. Rep. 2021;11:14734. doi: 10.1038/s41598-021-94327-w. PubMed DOI PMC
Nurakhmetova Z.A., Azhkeyeva A.N., Klassen I.A., Tatykhanova G.S. Tatykhanova. Synthesis and Stabilization of Gold Nanoparticles Using Water-Soluble Synthetic and Natural Polymers. Polymers. 2020;12:2625. doi: 10.3390/polym12112625. PubMed DOI PMC
Tagad C.K., Rajdeo K.S., Kulkarni A., More P., Aiyer R.C., Sabharwal S. Green Synthesis of Polysaccharide Stabilized Gold Nanoparticles: Chemo Catalytic and Room Temperature Operable Vapor Sensing Application. RSC Adv. 2014;4:24014–24019. doi: 10.1039/c4ra02972k. DOI
Lopes L.C., Lima D., Hacke A.C.M., Schveigert B.S., Calaça G.N., Simas F.F., Pereira R.P., Iacomini M., Viana A.G., Pessôa C.A. Gold Nanoparticles Capped with Polysaccharides Extracted from Pineapple Gum: Evaluation of Their Hemocompatibility and Electrochemical Sensing Properties. Talanta. 2021;223:121634. doi: 10.1016/j.talanta.2020.121634. PubMed DOI
Ghormade V., Gholap H., Kale S., Kulkarni V., Bhat S., Paknikar K. Fluorescent Cadmium Telluride Quantum Dots Embedded Chitosan Nanoparticles: A Stable, Biocompatible Preparation for Bio-Imaging. J. Biomater. Sci. Polym. Ed. 2015;26:42–56. doi: 10.1080/09205063.2014.982240. PubMed DOI
Lai P.-Y., Huang C.-C., Chou T.-H., Ou K.-L., Chang J.-Y. Aqueous Synthesis of Ag and Mn Co-Doped In2S3/ZnS Quantum Dots with Tunable Emission for Dual-Modal Targeted Imaging. Acta Biomater. 2017;50:522–533. doi: 10.1016/j.actbio.2016.12.028. PubMed DOI
Carvalho S.M., Mansur A.A., Carvalho I.C., Costa A., Guedes M.I.M., Kroon E.G., Lobato Z.I., Mansur H.S. Fluorescent Quantum Dots-Zika Virus Hybrid Nanoconjugates for Biolabeling, Bioimaging, and Tracking Host-Cell Interactions. Mater. Lett. 2020;277:128279. doi: 10.1016/j.matlet.2020.128279. PubMed DOI PMC
Abdelhamid H.N., Wu H.-F. Selective Biosensing of Staphylococcus Aureus Using Chitosan Quantum Dots. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2018;188:50–56. doi: 10.1016/j.saa.2017.06.047. PubMed DOI
Abdelhamid H.N., Wu H.-F. Probing the Interactions of Chitosan Capped CdS Quantum Dots with Pathogenic Bacteria and Their Biosensing Application. J. Mater. Chem. B. 2013;1:6094–6106. doi: 10.1039/c3tb21020k. PubMed DOI
Liu L., Xiao L. Studies of the Interaction of CS@ZnS:Mn with Bovine Serum Albumin under Illumination. Appl. Surf. Sci. 2015;349:83–88. doi: 10.1016/j.apsusc.2015.04.203. DOI
Zhou A., Wei Y., Wu B., Chen Q., Xing D. Pyropheophorbide A and c(RGDyK) Comodified Chitosan-Wrapped Upconversion Nanoparticle for Targeted Near-Infrared Photodynamic Therapy. Mol. Pharm. 2012;9:1580–1589. doi: 10.1021/mp200590y. PubMed DOI
Li S., Cui S., Yin D., Zhu Q., Ma Y., Qian Z., Gu Y. Dual Antibacterial Activities of a Chitosan-Modified Upconversion Photodynamic Therapy System Against Drug-Resistant Bacteria in Deep Tissue. Nanoscale. 2017;9:3912–3924. doi: 10.1039/C6NR07188K. PubMed DOI
Han J., Xia H., Wu Y., Kong S.N., Deivasigamani A., Xu R., Hui K.M., Kang Y. Single-Layer MoS2 Nanosheet Grafted Upconversion Nanoparticles for Near-Infrared Fluorescence Imaging-Guided Deep Tissue Cancer Phototherapy. Nanoscale. 2016;8:7861–7865. doi: 10.1039/C6NR00150E. PubMed DOI
Maia J., Evangelista M.B., Gil H., Ferreira L. Dextran-Based Materials for Biomedical Applications. In: Gil M.H., editor. Carbohydrates Applications in Medicine. Research Signpost; Kerala, India: 2014. pp. 31–53.
Pronina E.A., Vorotnikov Y., Pozmogova T.N., Solovieva A.O., Miroshnichenko S.M., Plyusnin P.E., Pishchur D.P., Eltsov I.V., Edeleva M.V., Shestopalov M.A., et al. No Catalyst Added Hydrogen Peroxide Oxidation of Dextran: An Environmentally Friendly Route to Multifunctional Polymers. ACS Sustain. Chem. Eng. 2020;8:5371–5379. doi: 10.1021/acssuschemeng.0c01030. DOI
Neaime C., Amela-Cortes M., Grasset F., Molard Y., Cordier S., Dierre B., Mortier M., Takei T., Takahashi K., Haneda H., et al. Time-Gated Luminescence Bioimaging with New Luminescent Nanocolloids Based on [Mo6I8(C2F5COO)6]2− Metal Atom Clusters. Phys. Chem. Chem. Phys. 2016;18:30166–30173. doi: 10.1039/C6CP05290H. PubMed DOI
Solovieva A.O., Vorotnikov Y.A., Trifonova K.E., Efremova O.A., Krasilnikova A.A., Brylev K.A., Vorontsova E.V., Avrorov P.A., Shestopalova L.V., Poveshchenko A.F., et al. Cellular Internalisation, Bioimaging and Dark and Photodynamic Cytotoxicity of Silica Nanoparticles Doped by {Mo6I8}4+ Metal Clusters. J. Mater. Chem. B. 2016;4:4839–4846. doi: 10.1039/C6TB00723F. PubMed DOI
Kirakci K., Zelenka J., Křížová I., Ruml T., Lang K. Octahedral Molybdenum Cluster Complexes with Optimized Properties for Photodynamic Applications. Inorg. Chem. 2020;59:9287–9293. doi: 10.1021/acs.inorgchem.0c01173. PubMed DOI
Dollo G., Boucaud Y., Amela-Cortes M., Molard Y., Cordier S., Brandhonneur N. PLGA Nanoparticles Embedding Molybdenum Cluster Salts: Influence of Chemical Composition on Physico-Chemical Properties, Encapsulation Efficiencies, Colloidal Stabilitiesand in Vitro Release. Int. J. Pharm. 2020;576:119025. doi: 10.1016/j.ijpharm.2020.119025. PubMed DOI
Kirakci K., Zelenka J., Rumlová M., Cvačka J., Ruml T., Lang K. Cationic Octahedral Molybdenum Cluster Complexes Functionalized with Mitochondria-Targeting Ligands: Photodynamic Anticancer and Antibacterial Activities. Biomater. Sci. 2019;7:1386–1392. doi: 10.1039/C8BM01564C. PubMed DOI
Pozmogova T.N., Sitnikova N.A., Pronina E.V., Miroshnichenko S.M., Kushnarenko A.O., Solovieva A.O., Bogachev S.S., Vavilov G.D., Efremova O.A., Vorotnikov Y.A., et al. Hybrid System {W6I8}-Cluster/dsDNA as an Agent for Targeted X-Ray Induced Photodynamic Therapy of Cancer Stem Cells. Mater. Chem. Front. 2021;5:7499–7507. doi: 10.1039/D1QM00956G. DOI
Kirakci K., Shestopalov M.A., Lang K. Recent developments on luminescent octahedral transition metal cluster complexes towards biological applications. Coord. Chem. Rev. 2023;481:215048. doi: 10.1016/j.ccr.2023.215048. DOI
Kirakci K., Pozmogova T.N., Protasevich A.Y., Vavilov G.D., Stass D.V., Shestopalov M.A., Lang K. A Water-Soluble Octahedral Molybdenum Cluster Complex as a Potential Agent for X-Ray Induced Photodynamic Therapy. Biomater. Sci. 2021;9:2893–2902. doi: 10.1039/D0BM02005B. PubMed DOI
Kirakci K., Kubát P., Kučeráková M., Šícha V., Gbelcová H., Lovecká P., Grznárová P., Ruml T., Lang K. Water-Soluble Octahedral Molybdenum Cluster Compounds Na2[Mo6I8(N3)6] and Na2[Mo6I8(NCS)6]: Syntheses, Luminescence, and in Vitro Studies. Inorganica Chim. Acta. 2016;441:42–49. doi: 10.1016/j.ica.2015.10.043. DOI
Svezhentseva E.V., Vorotnikov Y., Solovieva A.O., Pozmogova T.N., Eltsov I., Ivanov A., Evtushok D.V., Miroshnichenko S., Yanshole V., Eling C., et al. From Photoinduced to Dark Cytotoxicity through an Octahedral Cluster Hydrolysis. Chem. Eur. J. 2018;24:17915–17920. doi: 10.1002/chem.201804663. PubMed DOI
Pronina E.V., Pozmogova T.N., Vorotnikov Y.A., Ivanov A.A., Shestopalov M.A. The Role of Hydrolysis in Biological Effects of Molybdenum Cluster with DMSO Ligands. J. Biol. Inorg. Chem. 2022;27:111–119. doi: 10.1007/s00775-021-01914-3. PubMed DOI
Svezhentseva E.V., Solovieva A.O., Vorotnikov Y.A., Kurskaya O.G., Brylev K.A., Tsygankova A.R., Edeleva M.V., Gyrylova S.N., Kitamura N., Efremova O.A., et al. Water-Soluble Hybrid Materials Based on {Mo6X8}4+ (X = Cl, Br, I) Cluster Complexes and Sodium Polystyrene Sulfonate. New J. Chem. 2017;41:1670–1676. doi: 10.1039/C6NJ03469A. DOI
Elistratova J., Mikhailov M., Burilov V., Babaev V., Rizvanov I., Mustafina A., Abramov P., Sokolov M., Konovalov A., Fedin V. Supramolecular Assemblies of Triblock Copolymers with Hexanuclear Molybdenum Clusters for Sensing Antibiotics in Aqueous Solutions via Energy Transfer. RSC Adv. 2014;4:27922–27930. doi: 10.1039/C4RA02457E. DOI
Brandhonneur N., Boucaud Y., Verger A., Dumait N., Molard Y., Cordier S., Dollo G. Molybdenum Cluster Loaded PLGA Nanoparticles as Efficient Tools Against Epithelial Ovarian Cancer. Int. J. Pharm. 2021;592:120079. doi: 10.1016/j.ijpharm.2020.120079. PubMed DOI
Vorotnikov Y.A., Novikova E.D., Solovieva A.O., Shanshin D.V., Tsygankova A.R., Shcherbakov D.N., Efremova O.A., Shestopalov M.A. Single-Domain Antibody C7b for Address Delivery of Nanoparticles to HER2-Positive Cancers. Nanoscale. 2020;12:21885–21894. doi: 10.1039/D0NR04899B. PubMed DOI
Beltrán A., Mikhailov M., Sokolov M.N., Pérez-Laguna V., Rezusta A., Revillo M.J., Galindo F. A Photobleaching Resistant Polymer Supported Hexanuclear Molybdenum Iodide Cluster for Photocatalytic Oxygenations and Photodynamic Inactivation of Staphylococcus Aureus. J. Mater. Chem. B. 2016;4:5975–5979. doi: 10.1039/C6TB01966H. PubMed DOI
Mikhailov M.A., Brylev K.A., Abramov P.A., Sakuda E., Akagi S., Ito A., Kitamura N., Sokolov M.N. Synthetic Tuning of Redox, Spectroscopic, and Photophysical Properties of {Mo6I8}4+ Core Cluster Complexes by Terminal Carboxylate Ligands. Inorg. Chem. 2016;55:8437–8445. doi: 10.1021/acs.inorgchem.6b01042. PubMed DOI
Efremova O.A., Shestopalov M.A., Chirtsova N.A., Smolentsev A.I., Mironov Y.V., Kitamura N., Brylev K.A., Sutherland A.J. A Highly Emissive Inorganic Hexamolybdenum Cluster Complex as a Handy Precursor for the Preparation of New Luminescent Materials. Dalton Trans. 2014;43:6021–6025. doi: 10.1039/C3DT53126K. PubMed DOI
Vorotnikova N.A., Efremova O.A., Tsygankova A.R., Brylev K.A., Edeleva M.V., Kurskaya O.G., Sutherland A.J., Shestopalov A.M., Mironov Y.V., Shestopalov M.A. Characterization and Cytotoxicity Studies of Thiol-Modified Polystyrene Microbeads Doped with [{Mo6X8}(NO3)6]2– (X = Cl, Br, I) Polym. Adv. Technol. 2016;27:922–928. doi: 10.1002/pat.3749. DOI
Kirakci K., Kubát P., Fejfarová K., Martinčík J., Nikl M., Lang K. X-ray Inducible Luminescence and Singlet Oxygen Sensitization by an Octahedral Molybdenum Cluster Compound: A New Class of Nanoscintillators. Inorg. Chem. 2016;55:803–809. doi: 10.1021/acs.inorgchem.5b02282. PubMed DOI
Kirakci K., Demel J., Hynek J., Zelenka J., Rumlová M., Ruml T., Lang K. Phosphinate Apical Ligands: A Route to a Water-Stable Octahedral Molybdenum Cluster Complex. Inorg. Chem. 2019;58:16546–16552. doi: 10.1021/acs.inorgchem.9b02569. PubMed DOI
Efremova O.A., Vorotnikov Y.A., Brylev K.A., Vorotnikova N.A., Novozhilov I.N., Kuratieva N.V., Edeleva M.V., Benoit D.M., Kitamura N., Mironov Y.V., et al. Octahedral Molybdenum Cluster Complexes with Aromatic Sulfonate Ligands. Dalton Trans. 2016;45:15427–15435. doi: 10.1039/C6DT02863B. PubMed DOI
Ivanov A.A., Haouas M., Evtushok D.V., Pozmogova T.N., Golubeva T.S., Molard Y., Cordier S., Falaise C., Cadot E., Shestopalov M.A. Stabilization of Octahedral Metal Halide Clusters by Host–Guest Complexation with γ-Cyclodextrin: Toward Nontoxic Luminescent Compounds. Inorg. Chem. 2022;61:14462–14469. doi: 10.1021/acs.inorgchem.2c02468. PubMed DOI