Multifunctional Oxidized Dextran as a Matrix for Stabilization of Octahedral Molybdenum and Tungsten Iodide Clusters in Aqueous Media

. 2023 Jun 11 ; 24 (12) : . [epub] 20230611

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37373156

Grantová podpora
19-73-20109 Russian Science Foundation
21-11688S Czech Science Foundation

Due to their high abundance, polymeric character, and chemical tunability, polysaccharides are perfect candidates for the stabilization of photoactive nanoscale objects, which are of great interest in modern science but can be unstable in aqueous media. In this work, we have demonstrated the relevance of oxidized dextran polysaccharide, obtained via a simple reaction with H2O2, towards the stabilization of photoactive octahedral molybdenum and tungsten iodide cluster complexes [M6I8}(DMSO)6](NO3)4 in aqueous and culture media. The cluster-containing materials were obtained by co-precipitation of the starting reagents in DMSO solution. According to the data obtained, the amount and ratio of functional carbonyl and carboxylic groups as well as the molecular weight of oxidized dextran strongly affect the extent of stabilization, i.e., high loading of aldehyde groups and high molecular weight increase the stability, while acidic groups have some negative impact on the stability. The most stable material based on the tungsten cluster complex exhibited low dark and moderate photoinduced cytotoxicity, which together with high cellular uptake makes these polymers promising for the fields of bioimaging and PDT.

Zobrazit více v PubMed

Raemdonck K., Martens T.F., Braeckmans K., Demeester J., De Smedt S.C. Polysaccharide-Based Nucleic Acid Nanoformulations. Adv. Drug Deliv. Rev. 2013;65:1123–1147. doi: 10.1016/j.addr.2013.05.002. PubMed DOI

Jayakumar R., Menon D., Manzoor K., Nair S.V., Tamura H. Biomedical Applications of Chitin and Chitosan Based Nanomaterials—A Short Review. Carbohydr. Polym. 2010;82:227–232. doi: 10.1016/j.carbpol.2010.04.074. DOI

Mokhtarzadeh A., Alibakhshi A., Hejazi M., Omidi Y., Dolatabadi J.E.N. Bacterial-Derived Biopolymers: Advanced Natural Nanomaterials for Drug Delivery and Tissue Engineering. TrAC Trends Anal. Chem. 2016;82:367–384. doi: 10.1016/j.trac.2016.06.013. DOI

Huang S., Huang G. Design and Application of Dextran Carrier. J. Drug. Deliv. Sci. Technol. 2020;55:101392. doi: 10.1016/j.jddst.2019.101392. DOI

Safat S., Buazar F., Albukhaty S., Matroodi S. Enhanced Sunlight Photocatalytic Activity and Biosafety of Marine-Driven Synthesized Cerium Oxide Nanoparticles. Sci. Rep. 2021;11:14734. doi: 10.1038/s41598-021-94327-w. PubMed DOI PMC

Nurakhmetova Z.A., Azhkeyeva A.N., Klassen I.A., Tatykhanova G.S. Tatykhanova. Synthesis and Stabilization of Gold Nanoparticles Using Water-Soluble Synthetic and Natural Polymers. Polymers. 2020;12:2625. doi: 10.3390/polym12112625. PubMed DOI PMC

Tagad C.K., Rajdeo K.S., Kulkarni A., More P., Aiyer R.C., Sabharwal S. Green Synthesis of Polysaccharide Stabilized Gold Nanoparticles: Chemo Catalytic and Room Temperature Operable Vapor Sensing Application. RSC Adv. 2014;4:24014–24019. doi: 10.1039/c4ra02972k. DOI

Lopes L.C., Lima D., Hacke A.C.M., Schveigert B.S., Calaça G.N., Simas F.F., Pereira R.P., Iacomini M., Viana A.G., Pessôa C.A. Gold Nanoparticles Capped with Polysaccharides Extracted from Pineapple Gum: Evaluation of Their Hemocompatibility and Electrochemical Sensing Properties. Talanta. 2021;223:121634. doi: 10.1016/j.talanta.2020.121634. PubMed DOI

Ghormade V., Gholap H., Kale S., Kulkarni V., Bhat S., Paknikar K. Fluorescent Cadmium Telluride Quantum Dots Embedded Chitosan Nanoparticles: A Stable, Biocompatible Preparation for Bio-Imaging. J. Biomater. Sci. Polym. Ed. 2015;26:42–56. doi: 10.1080/09205063.2014.982240. PubMed DOI

Lai P.-Y., Huang C.-C., Chou T.-H., Ou K.-L., Chang J.-Y. Aqueous Synthesis of Ag and Mn Co-Doped In2S3/ZnS Quantum Dots with Tunable Emission for Dual-Modal Targeted Imaging. Acta Biomater. 2017;50:522–533. doi: 10.1016/j.actbio.2016.12.028. PubMed DOI

Carvalho S.M., Mansur A.A., Carvalho I.C., Costa A., Guedes M.I.M., Kroon E.G., Lobato Z.I., Mansur H.S. Fluorescent Quantum Dots-Zika Virus Hybrid Nanoconjugates for Biolabeling, Bioimaging, and Tracking Host-Cell Interactions. Mater. Lett. 2020;277:128279. doi: 10.1016/j.matlet.2020.128279. PubMed DOI PMC

Abdelhamid H.N., Wu H.-F. Selective Biosensing of Staphylococcus Aureus Using Chitosan Quantum Dots. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2018;188:50–56. doi: 10.1016/j.saa.2017.06.047. PubMed DOI

Abdelhamid H.N., Wu H.-F. Probing the Interactions of Chitosan Capped CdS Quantum Dots with Pathogenic Bacteria and Their Biosensing Application. J. Mater. Chem. B. 2013;1:6094–6106. doi: 10.1039/c3tb21020k. PubMed DOI

Liu L., Xiao L. Studies of the Interaction of CS@ZnS:Mn with Bovine Serum Albumin under Illumination. Appl. Surf. Sci. 2015;349:83–88. doi: 10.1016/j.apsusc.2015.04.203. DOI

Zhou A., Wei Y., Wu B., Chen Q., Xing D. Pyropheophorbide A and c(RGDyK) Comodified Chitosan-Wrapped Upconversion Nanoparticle for Targeted Near-Infrared Photodynamic Therapy. Mol. Pharm. 2012;9:1580–1589. doi: 10.1021/mp200590y. PubMed DOI

Li S., Cui S., Yin D., Zhu Q., Ma Y., Qian Z., Gu Y. Dual Antibacterial Activities of a Chitosan-Modified Upconversion Photodynamic Therapy System Against Drug-Resistant Bacteria in Deep Tissue. Nanoscale. 2017;9:3912–3924. doi: 10.1039/C6NR07188K. PubMed DOI

Han J., Xia H., Wu Y., Kong S.N., Deivasigamani A., Xu R., Hui K.M., Kang Y. Single-Layer MoS2 Nanosheet Grafted Upconversion Nanoparticles for Near-Infrared Fluorescence Imaging-Guided Deep Tissue Cancer Phototherapy. Nanoscale. 2016;8:7861–7865. doi: 10.1039/C6NR00150E. PubMed DOI

Maia J., Evangelista M.B., Gil H., Ferreira L. Dextran-Based Materials for Biomedical Applications. In: Gil M.H., editor. Carbohydrates Applications in Medicine. Research Signpost; Kerala, India: 2014. pp. 31–53.

Pronina E.A., Vorotnikov Y., Pozmogova T.N., Solovieva A.O., Miroshnichenko S.M., Plyusnin P.E., Pishchur D.P., Eltsov I.V., Edeleva M.V., Shestopalov M.A., et al. No Catalyst Added Hydrogen Peroxide Oxidation of Dextran: An Environmentally Friendly Route to Multifunctional Polymers. ACS Sustain. Chem. Eng. 2020;8:5371–5379. doi: 10.1021/acssuschemeng.0c01030. DOI

Neaime C., Amela-Cortes M., Grasset F., Molard Y., Cordier S., Dierre B., Mortier M., Takei T., Takahashi K., Haneda H., et al. Time-Gated Luminescence Bioimaging with New Luminescent Nanocolloids Based on [Mo6I8(C2F5COO)6]2− Metal Atom Clusters. Phys. Chem. Chem. Phys. 2016;18:30166–30173. doi: 10.1039/C6CP05290H. PubMed DOI

Solovieva A.O., Vorotnikov Y.A., Trifonova K.E., Efremova O.A., Krasilnikova A.A., Brylev K.A., Vorontsova E.V., Avrorov P.A., Shestopalova L.V., Poveshchenko A.F., et al. Cellular Internalisation, Bioimaging and Dark and Photodynamic Cytotoxicity of Silica Nanoparticles Doped by {Mo6I8}4+ Metal Clusters. J. Mater. Chem. B. 2016;4:4839–4846. doi: 10.1039/C6TB00723F. PubMed DOI

Kirakci K., Zelenka J., Křížová I., Ruml T., Lang K. Octahedral Molybdenum Cluster Complexes with Optimized Properties for Photodynamic Applications. Inorg. Chem. 2020;59:9287–9293. doi: 10.1021/acs.inorgchem.0c01173. PubMed DOI

Dollo G., Boucaud Y., Amela-Cortes M., Molard Y., Cordier S., Brandhonneur N. PLGA Nanoparticles Embedding Molybdenum Cluster Salts: Influence of Chemical Composition on Physico-Chemical Properties, Encapsulation Efficiencies, Colloidal Stabilitiesand in Vitro Release. Int. J. Pharm. 2020;576:119025. doi: 10.1016/j.ijpharm.2020.119025. PubMed DOI

Kirakci K., Zelenka J., Rumlová M., Cvačka J., Ruml T., Lang K. Cationic Octahedral Molybdenum Cluster Complexes Functionalized with Mitochondria-Targeting Ligands: Photodynamic Anticancer and Antibacterial Activities. Biomater. Sci. 2019;7:1386–1392. doi: 10.1039/C8BM01564C. PubMed DOI

Pozmogova T.N., Sitnikova N.A., Pronina E.V., Miroshnichenko S.M., Kushnarenko A.O., Solovieva A.O., Bogachev S.S., Vavilov G.D., Efremova O.A., Vorotnikov Y.A., et al. Hybrid System {W6I8}-Cluster/dsDNA as an Agent for Targeted X-Ray Induced Photodynamic Therapy of Cancer Stem Cells. Mater. Chem. Front. 2021;5:7499–7507. doi: 10.1039/D1QM00956G. DOI

Kirakci K., Shestopalov M.A., Lang K. Recent developments on luminescent octahedral transition metal cluster complexes towards biological applications. Coord. Chem. Rev. 2023;481:215048. doi: 10.1016/j.ccr.2023.215048. DOI

Kirakci K., Pozmogova T.N., Protasevich A.Y., Vavilov G.D., Stass D.V., Shestopalov M.A., Lang K. A Water-Soluble Octahedral Molybdenum Cluster Complex as a Potential Agent for X-Ray Induced Photodynamic Therapy. Biomater. Sci. 2021;9:2893–2902. doi: 10.1039/D0BM02005B. PubMed DOI

Kirakci K., Kubát P., Kučeráková M., Šícha V., Gbelcová H., Lovecká P., Grznárová P., Ruml T., Lang K. Water-Soluble Octahedral Molybdenum Cluster Compounds Na2[Mo6I8(N3)6] and Na2[Mo6I8(NCS)6]: Syntheses, Luminescence, and in Vitro Studies. Inorganica Chim. Acta. 2016;441:42–49. doi: 10.1016/j.ica.2015.10.043. DOI

Svezhentseva E.V., Vorotnikov Y., Solovieva A.O., Pozmogova T.N., Eltsov I., Ivanov A., Evtushok D.V., Miroshnichenko S., Yanshole V., Eling C., et al. From Photoinduced to Dark Cytotoxicity through an Octahedral Cluster Hydrolysis. Chem. Eur. J. 2018;24:17915–17920. doi: 10.1002/chem.201804663. PubMed DOI

Pronina E.V., Pozmogova T.N., Vorotnikov Y.A., Ivanov A.A., Shestopalov M.A. The Role of Hydrolysis in Biological Effects of Molybdenum Cluster with DMSO Ligands. J. Biol. Inorg. Chem. 2022;27:111–119. doi: 10.1007/s00775-021-01914-3. PubMed DOI

Svezhentseva E.V., Solovieva A.O., Vorotnikov Y.A., Kurskaya O.G., Brylev K.A., Tsygankova A.R., Edeleva M.V., Gyrylova S.N., Kitamura N., Efremova O.A., et al. Water-Soluble Hybrid Materials Based on {Mo6X8}4+ (X = Cl, Br, I) Cluster Complexes and Sodium Polystyrene Sulfonate. New J. Chem. 2017;41:1670–1676. doi: 10.1039/C6NJ03469A. DOI

Elistratova J., Mikhailov M., Burilov V., Babaev V., Rizvanov I., Mustafina A., Abramov P., Sokolov M., Konovalov A., Fedin V. Supramolecular Assemblies of Triblock Copolymers with Hexanuclear Molybdenum Clusters for Sensing Antibiotics in Aqueous Solutions via Energy Transfer. RSC Adv. 2014;4:27922–27930. doi: 10.1039/C4RA02457E. DOI

Brandhonneur N., Boucaud Y., Verger A., Dumait N., Molard Y., Cordier S., Dollo G. Molybdenum Cluster Loaded PLGA Nanoparticles as Efficient Tools Against Epithelial Ovarian Cancer. Int. J. Pharm. 2021;592:120079. doi: 10.1016/j.ijpharm.2020.120079. PubMed DOI

Vorotnikov Y.A., Novikova E.D., Solovieva A.O., Shanshin D.V., Tsygankova A.R., Shcherbakov D.N., Efremova O.A., Shestopalov M.A. Single-Domain Antibody C7b for Address Delivery of Nanoparticles to HER2-Positive Cancers. Nanoscale. 2020;12:21885–21894. doi: 10.1039/D0NR04899B. PubMed DOI

Beltrán A., Mikhailov M., Sokolov M.N., Pérez-Laguna V., Rezusta A., Revillo M.J., Galindo F. A Photobleaching Resistant Polymer Supported Hexanuclear Molybdenum Iodide Cluster for Photocatalytic Oxygenations and Photodynamic Inactivation of Staphylococcus Aureus. J. Mater. Chem. B. 2016;4:5975–5979. doi: 10.1039/C6TB01966H. PubMed DOI

Mikhailov M.A., Brylev K.A., Abramov P.A., Sakuda E., Akagi S., Ito A., Kitamura N., Sokolov M.N. Synthetic Tuning of Redox, Spectroscopic, and Photophysical Properties of {Mo6I8}4+ Core Cluster Complexes by Terminal Carboxylate Ligands. Inorg. Chem. 2016;55:8437–8445. doi: 10.1021/acs.inorgchem.6b01042. PubMed DOI

Efremova O.A., Shestopalov M.A., Chirtsova N.A., Smolentsev A.I., Mironov Y.V., Kitamura N., Brylev K.A., Sutherland A.J. A Highly Emissive Inorganic Hexamolybdenum Cluster Complex as a Handy Precursor for the Preparation of New Luminescent Materials. Dalton Trans. 2014;43:6021–6025. doi: 10.1039/C3DT53126K. PubMed DOI

Vorotnikova N.A., Efremova O.A., Tsygankova A.R., Brylev K.A., Edeleva M.V., Kurskaya O.G., Sutherland A.J., Shestopalov A.M., Mironov Y.V., Shestopalov M.A. Characterization and Cytotoxicity Studies of Thiol-Modified Polystyrene Microbeads Doped with [{Mo6X8}(NO3)6]2– (X = Cl, Br, I) Polym. Adv. Technol. 2016;27:922–928. doi: 10.1002/pat.3749. DOI

Kirakci K., Kubát P., Fejfarová K., Martinčík J., Nikl M., Lang K. X-ray Inducible Luminescence and Singlet Oxygen Sensitization by an Octahedral Molybdenum Cluster Compound: A New Class of Nanoscintillators. Inorg. Chem. 2016;55:803–809. doi: 10.1021/acs.inorgchem.5b02282. PubMed DOI

Kirakci K., Demel J., Hynek J., Zelenka J., Rumlová M., Ruml T., Lang K. Phosphinate Apical Ligands: A Route to a Water-Stable Octahedral Molybdenum Cluster Complex. Inorg. Chem. 2019;58:16546–16552. doi: 10.1021/acs.inorgchem.9b02569. PubMed DOI

Efremova O.A., Vorotnikov Y.A., Brylev K.A., Vorotnikova N.A., Novozhilov I.N., Kuratieva N.V., Edeleva M.V., Benoit D.M., Kitamura N., Mironov Y.V., et al. Octahedral Molybdenum Cluster Complexes with Aromatic Sulfonate Ligands. Dalton Trans. 2016;45:15427–15435. doi: 10.1039/C6DT02863B. PubMed DOI

Ivanov A.A., Haouas M., Evtushok D.V., Pozmogova T.N., Golubeva T.S., Molard Y., Cordier S., Falaise C., Cadot E., Shestopalov M.A. Stabilization of Octahedral Metal Halide Clusters by Host–Guest Complexation with γ-Cyclodextrin: Toward Nontoxic Luminescent Compounds. Inorg. Chem. 2022;61:14462–14469. doi: 10.1021/acs.inorgchem.2c02468. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...