Novel nontarget LC-HRMS-based approaches for evaluation of drinking water treatment

. 2023 May 26 ; 195 (6) : 739. [epub] 20230526

Jazyk angličtina Země Nizozemsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37233798

Grantová podpora
CENAKVA LM2018099 Ministerstvo Školství, Mládeže a Tělovýchovy
20-04676X Grantová Agentura České Republiky

Odkazy

PubMed 37233798
PubMed Central PMC10219882
DOI 10.1007/s10661-023-11348-w
PII: 10.1007/s10661-023-11348-w
Knihovny.cz E-zdroje

A conventional evaluation methodology for drinking water pollution focuses on analysing hundreds of compounds, usually by liquid chromatography-tandem mass spectrometry. High-resolution mass spectrometry allows comprehensive evaluation of all detected signals (compounds) based on their elemental composition, intensity, and numbers. We combined target analysis of 192 emerging micropollutants with nontarget (NT) full-scan/MS/MS methods to describe the impact of treatment steps in detail and assess drinking water treatment efficiency without compound identification. The removal efficiency based on target analytes ranged from - 143 to 97%, depending on the treatment section, technologies, and season. The same effect calculated for all signals detected in raw water by the NT method ranged between 19 and 65%. Ozonation increased the removal of micropollutants from the raw water but simultaneously caused the formation of new compounds. Moreover, ozonation byproducts showed higher persistence than products formed during other types of treatment. We evaluated chlorinated and brominated organics detected by specific isotopic patterns within the developed workflow. These compounds indicated anthropogenic raw water pollution but also potential treatment byproducts. We could match some of these compounds with libraries available in the software. We can conclude that passive sampling combined with nontargeted analysis shows to be a promising approach for water treatment control, especially for long-term monitoring of changes in technology lines because passive sampling dramatically reduces the number of samples and provides time-weighted average information for 2 to 4 weeks.

Zobrazit více v PubMed

Altenburger, R., Ait-Aissa, S., Antczak, P., Backhaus, T., Barceló, D., Seiler, T. B., Brion, F., Busch, W., Chipman, K., de Alda, M. L., de Aragão Umbuzeiro, G., Escher, B. I., Falciani, F., Faust, M., Focks, A., Hilscherova, K., Hollender, J., … Brack, W. (2015). Future water quality monitoring - Adapting tools to deal with mixtures of pollutants in water resource management. Science of the Total Environment, 512–513, 540–551. 10.1016/j.scitotenv.2014.12.057 PubMed

Alvarez DA, Stackelberg PE, Petty JD, Huckins JN, Furlong ET, Zaugg SD, Meyer MT. Comparison of a novel passive sampler to standard water-column sampling for organic contaminants associated with wastewater effluents entering a New Jersey stream. Chemosphere. 2005;61(5):610–622. doi: 10.1016/j.chemosphere.2005.03.023. PubMed DOI

Bader T, Schulz W, Kümmerer K, Winzenbacher R. LC-HRMS data processing strategy for reliable sample comparison exemplified by the assessment of water treatment processes. Analytical Chemistry. 2017;89(24):13219–13226. doi: 10.1021/acs.analchem.7b03037. PubMed DOI

Bletsou AA, Jeon J, Hollender J, Archontaki E, Thomaidis NS. Targeted and non-targeted liquid chromatography-mass spectrometric workflows for identification of transformation products of emerging pollutants in the aquatic environment. TrAC - Trends in Analytical Chemistry. 2015;66:32–44. doi: 10.1016/j.trac.2014.11.009. DOI

Brack, W., Dulio, V., Ågerstrand, M., Allan, I., Altenburger, R., Brinkmann, M., Bunke, D., Burgess, R. M., Cousins, I., Escher, B. I., Hernández, F. J., Hewitt, L. M., Hilscherová, K., Hollender, J., Hollert, H., Kase, R., Klauer, B., … Vrana, B. (2017). Towards the review of the European Union Water Framework management of chemical contamination in European surface water resources. Science of the Total Environment, 576, 720–737. 10.1016/j.scitotenv.2016.10.104 PubMed PMC

Brack, W., Hollender, J., de Alda, M. L., Müller, C., Schulze, T., Schymanski, E., Slobodnik, J., & Krauss, M. (2019). High-resolution mass spectrometry to complement monitoring and track emerging chemicals and pollution trends in European water resources. Environmental Sciences Europe, 31(1). 10.1186/s12302-019-0230-0

Brunner AM, Vughs D, Siegers W, Bertelkamp C, Hofman-Caris R, Kolkman A, ter Laak T. Monitoring transformation product formation in the drinking water treatments rapid sand filtration and ozonation. Chemosphere. 2019;214:801–811. doi: 10.1016/j.chemosphere.2018.09.140. PubMed DOI

Diana M, Felipe-Sotelo M, Bond T. Disinfection byproducts potentially responsible for the association between chlorinated drinking water and bladder cancer: A review. Water Research. 2019;162:492–504. doi: 10.1016/j.watres.2019.07.014. PubMed DOI

Galindo-Miranda JM, Guízar-González C, Becerril-Bravo EJ, Moeller-Chávez G, León-Becerril E, Vallejo-Rodríguez R. Occurrence of emerging contaminants in environmental surface waters and their analytical methodology - A review. Water Science and Technology: Water Supply. 2019;19:1871–1884. doi: 10.2166/ws.2019.087. DOI

Gavrilescu M, Demnerová K, Aamand J, Agathos S, Fava F. Emerging pollutants in the environment: Present and future challenges in biomonitoring, ecological risks and bioremediation. New Biotechnology. 2015;32(1):147–156. doi: 10.1016/j.nbt.2014.01.001. PubMed DOI

Golovko O, Kumar V, Fedorova G, Randak T, Grabic R. Removal and seasonal variability of selected analgesics/anti-inflammatory, anti-hypertensive/cardiovascular pharmaceuticals and UV filters in wastewater treatment plant. Environmental Science and Pollution Research. 2014;21(12):7578–7585. doi: 10.1007/s11356-014-2654-9. PubMed DOI

Gosetti F, Mazzucco E, Gennaro MC, Marengo E. March 19). Contaminants in water: Non-target UHPLC/MS analysis. Environmental Chemistry Letters. 2016;14:51–65. doi: 10.1007/s10311-015-0527-1. DOI

Grabic R, Fick J, Lindberg RH, Fedorova G, Tysklind M. Multi-residue method for trace level determination of pharmaceuticals in environmental samples using liquid chromatography coupled to triple quadrupole mass spectrometry. Talanta. 2012;100:183–195. doi: 10.1016/J.TALANTA.2012.08.032). PubMed DOI

Hartmann J, van der Aa M, Wuijts S, de RodaHusman AM, van der Hoek JP. Risk governance of potential emerging risks to drinking water quality: Analysing current practices. Environmental Science and Policy. 2018;84:97–104. doi: 10.1016/j.envsci.2018.02.015. DOI

Hernández F, Ibáñez M, Portolés T, Cervera MI, Sancho JV, López FJ. Advancing towards universal screening for organic pollutants in waters. Journal of Hazardous Materials. 2015;282:86–95. doi: 10.1016/j.jhazmat.2014.08.006. PubMed DOI

Hollender J, Schymanski EL, Singer HP, Ferguson PL. Nontarget screening with high resolution mass spectrometry in the environment: Ready to go? Environmental Science and Technology. 2017;51(20):11505–11512. doi: 10.1021/acs.est.7b02184. PubMed DOI

Hollender, J., van Bavel, B., Dulio, V., Farmen, E., Furtmann, K., Koschorreck, J., Kunkel, U., Krauss, M., Munthe, J., Schlabach, M., Slobodnik, J., Stroomberg, G., Ternes, T., Thomaidis, N. S., Togola, A., & Tornero, V. (2019). High resolution mass spectrometry-based non-target screening can support regulatory environmental monitoring and chemicals management. Environmental Sciences Europe, 31(1). 10.1186/s12302-019-0225-x

Itzel F, Baetz N, Hohrenk LL, Gehrmann L, Antakyali D, Schmidt TC, Tuerk J. Evaluation of a biological post-treatment after full-scale ozonation at a municipal wastewater treatment plant. Water Research. 2020;170:115316. doi: 10.1016/j.watres.2019.115316. PubMed DOI

Kali S, Khan M, Ghaffar MS, Rasheed S, Waseem A, Iqbal MM, Bilal khan Niazi M, Zafar MI. Occurrence, influencing factors, toxicity, regulations, and abatement approaches for disinfection by-products in chlorinated drinking water: A comprehensive review. Environmental Pollution. 2021;281:116950. doi: 10.1016/j.envpol.2021.116950. PubMed DOI

Kim, M.-K., & Zoh, K.-D. (2016). Occurrence and their removal of micropollutants in water environment. Environmental Engineering Research10.4491/eer.2016.115

Krauss M, Singer H, Hollender J. LC-high resolution MS in environmental analysis: From target screening to the identification of unknowns. Analytical and Bioanalytical Chemistry. 2010;397(3):943–951. doi: 10.1007/s00216-010-3608-9. PubMed DOI

Kruve A. Semi-quantitative non-target analysis of water with liquid chromatography/high-resolution mass spectrometry: How far are we? Rapid Communications in Mass Spectrometry. 2019;33(S3):54–63. doi: 10.1002/RCM.8208. PubMed DOI

Müller A, Schulz W, Ruck WKL, Weber WH. A new approach to data evaluation in the non-target screening of organic trace substances in water analysis. Chemosphere. 2011;85(8):1211–1219. doi: 10.1016/j.chemosphere.2011.07.009. PubMed DOI

Nürenberg G, Kunkel U, Wick A, Falås P, Joss A, Ternes TA. Nontarget analysis: A new tool for the evaluation of wastewater processes. Water Research. 2019;163:114842. doi: 10.1016/j.watres.2019.07.009. PubMed DOI

Nürenberg G, Schulz M, Kunkel U, Ternes TA. Development and validation of a generic nontarget method based on liquid chromatography - high resolution mass spectrometry analysis for the evaluation of different wastewater treatment options. Journal of Chromatography A. 2015;1426:77–90. doi: 10.1016/j.chroma.2015.11.014. PubMed DOI

Peng Y, Fang W, Krauss M, Brack W, Wang Z, Li F, Zhang X. Screening hundreds of emerging organic pollutants (EOPs) in surface water from the Yangtze River Delta (YRD): Occurrence, distribution, ecological risk. Environmental Pollution. 2018;241:484–493. doi: 10.1016/j.envpol.2018.05.061. PubMed DOI

Petrović M, Gonzalez S, Barceló D. Analysis and removal of emerging contaminants in wastewater and drinking water. TrAC Trends in Analytical Chemistry. 2003;22(10):685–696. doi: 10.1016/S0165-9936(03)01105-1. DOI

Pluskal, T., Castillo, S., Villar-Briones, A., & Orešič, M. (2010). MZmine 2: Modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinformatics, 11. 10.1186/1471-2105-11-395 PubMed PMC

Reemtsma T, Berger U, Arp HPH, Gallard H, Knepper TP, Neumann M, Quintana JB, Voogt PD. Mind the gap: Persistent and mobile organic compounds - Water contaminants that slip through. Environmental Science and Technology. 2016;50(19):10308–10315. doi: 10.1021/acs.est.6b03338. PubMed DOI

Ren H, Tröger R, Ahrens L, Wiberg K, Yin D. Screening of organic micropollutants in raw and drinking water in the Yangtze River Delta, China. Environmental Sciences Europe. 2020;32(1):1–28. doi: 10.1186/s12302-020-00342-5. DOI

Rodriguez-Narvaez OM, Peralta-Hernandez JM, Goonetilleke A, Bandala ER. September 1). Treatment technologies for emerging contaminants in water: A review. Chemical Engineering Journal. 2017;323:361–380. doi: 10.1016/j.cej.2017.04.106. DOI

Schollée JE, Bourgin M, von Gunten U, McArdell CS, Hollender J. Non-target screening to trace ozonation transformation products in a wastewater treatment train including different post-treatments. Water Research. 2018;142:267–278. doi: 10.1016/j.watres.2018.05.045. PubMed DOI

Schulze B, Jeon Y, Kaserzon S, Heffernan AL, Dewapriya P, O’Brien J, Gomez Ramos MJ, GhorbaniGorji S, Mueller JF, Thomas KV, Samanipour S. An assessment of quality assurance/quality control efforts in high resolution mass spectrometry non-target workflows for analysis of environmental samples. TrAC - Trends in Analytical Chemistry. 2020;133(October):116063. doi: 10.1016/j.trac.2020.116063. DOI

Schulze, B., van Herwerden, D., Allan, I., Bijlsma, L., Etxebarria, N., Hansen, M., Merel, S., Vrana, B., Aalizadeh, R., Bajema, B., Dubocq, F., Coppola, G., Fildier, A., Fialová, P., Frøkjær, E., Grabic, R., Gago-Ferrero, P., … Samanipour, S. (2021). Inter-laboratory mass spectrometry dataset based on passive sampling of drinking water for non-target analysis. Scientific Data, 8(1), 1–10. 10.1038/s41597-021-01002-w PubMed PMC

Schwarzenbach RP, Escher BI, Fenner K, Hofstetter TB, Johnson CA, Von Gunten U, Wehrli B. The challenge of micropollutants in aquatic systems. Science. 2006;313(5790):1072–1077. doi: 10.1126/science.1127291. PubMed DOI

Schymanski, E. L., Singer, H. P., Slobodnik, J., Ipolyi, I. M., Oswald, P., Krauss, M., Schulze, T., Haglund, P., Letzel, T., Grosse, S., Thomaidis, N. S., Bletsou, A., Zwiener, C., Ibáñez, M., Portolés, T., De Boer, R., Reid, M. J., … Hollender, J. (2015). Non-target screening with high-resolution mass spectrometry: Critical review using a collaborative trial on water analysis. Analytical and Bioanalytical Chemistry, 407(21), 6237–6255. 10.1007/s00216-015-8681-7 PubMed

Sousa JCG, Ribeiro AR, Barbosa MO, Pereira MFR, Silva AMT. A review on environmental monitoring of water organic pollutants identified by EU guidelines. Journal of Hazardous Materials. 2018;344:146–162. doi: 10.1016/j.jhazmat.2017.09.058. PubMed DOI

Švecová H, Grabic R, Grabicová K, VojsStaňová A, Fedorova G, Cerveny D, Turek J, Randák T, Brooks BW. De facto reuse at the watershed scale: Seasonal changes, population contributions, instream flows and water quality hazards of human pharmaceuticals. Environmental Pollution. 2021;268:115888. doi: 10.1016/j.envpol.2020.115888. PubMed DOI

Teodosiu C, Gilca AF, Barjoveanu G, Fiore S. Emerging pollutants removal through advanced drinking water treatment: A review on processes and environmental performances assessment. Journal of Cleaner Production. 2018;197:1210–1221. doi: 10.1016/j.jclepro.2018.06.247. DOI

Ternes T, Joss A, Oehlmann J. Occurrence, fate, removal and assessment of emerging contaminants in water in the water cycle (from wastewater to drinking water) Water Research. 2015;72:1–2. doi: 10.1016/j.watres.2015.02.055. PubMed DOI

Tröger R, Klöckner P, Ahrens L, Wiberg K. Micropollutants in drinking water from source to tap - Method development and application of a multiresidue screening method. Science of the Total Environment. 2018;627:1404–1432. doi: 10.1016/j.scitotenv.2018.01.277. PubMed DOI

Tröger, R., Köhler, S. J., Franke, V., Bergstedt, O., & Wiberg, K. (2020). A case study of organic micropollutants in a major Swedish water source – Removal efficiency in seven drinking water treatment plants and influence of operational age of granulated active carbon filters. Science of the Total Environment, 706. 10.1016/j.scitotenv.2019.135680 PubMed

Tröger R, Ren H, Yin D, Postigo C, Nguyen P-D, Baduel C, Golovko O, Been F, Joerss H, Boleda MR, Polesello S, Roncoroni M, Taniyasu S, Menger F, Ahrens L, Lai FY, Wiberg K. What’s in the water? – Target and suspect screening of contaminants of emerging concern in raw water and drinking water from Europe and Asia. Water Research. 2021;198:117099. doi: 10.1016/j.watres.2021.117099. PubMed DOI

Von Gunten U. Ozonation of drinking water: Part I. Oxidation kinetics and product formation. Water Research. 2003;37:1443–1467. doi: 10.1016/S0043-1354(02)00457-8. PubMed DOI

Vrana B, Urík J, Fedorova G, Švecová H, Grabicová K, Golovko O, Randák T, Grabic R. In situ calibration of polar organic chemical integrative sampler (POCIS) for monitoring of pharmaceuticals in surface waters. Environmental Pollution. 2021;269:116121. doi: 10.1016/j.envpol.2020.116121. PubMed DOI

Yang Y, Ok YS, Kim KH, Kwon EE, Tsang YF. Occurrences and removal of pharmaceuticals and personal care products (PPCPs) in drinking water and water/sewage treatment plants: A review. Science of the Total Environment. 2017;596–597:303–320. doi: 10.1016/j.scitotenv.2017.04.102. PubMed DOI

Zahn D, Frömel T. Finding a needle in a haystack—Analyte-driven tools and techniques for information extraction and prioritization of chemicals from environmental (chromatography-)HRMS nontarget screening data. Current Opinion in Environmental Science and Health. 2020;18:70–78. doi: 10.1016/j.coesh.2020.09.005. DOI

Zahn D, Frömel T, Knepper TP. Halogenated methanesulfonic acids: A new class of organic micropollutants in the water cycle. Water Research. 2016;101:292–299. doi: 10.1016/J.WATRES.2016.05.082. PubMed DOI

Zhou J, Li Y, Chen X, Zhong L, Yin Y. Development of data-independent acquisition workflows for metabolomic analysis on a quadrupole-orbitrap platform. Talanta. 2017;164(November 2016):128–136. doi: 10.1016/j.talanta.2016.11.048. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...