Pathways to a Shiny Future: Building the Foundation for Computational Physical Chemistry and Biophysics in 2050

. 2024 Jul 24 ; 4 (4) : 302-313. [epub] 20240404

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid39069976

In the last quarter-century, the field of molecular dynamics (MD) has undergone a remarkable transformation, propelled by substantial enhancements in software, hardware, and underlying methodologies. In this Perspective, we contemplate the future trajectory of MD simulations and their possible look at the year 2050. We spotlight the pivotal role of artificial intelligence (AI) in shaping the future of MD and the broader field of computational physical chemistry. We outline critical strategies and initiatives that are essential for the seamless integration of such technologies. Our discussion delves into topics like multiscale modeling, adept management of ever-increasing data deluge, the establishment of centralized simulation databases, and the autonomous refinement, cross-validation, and self-expansion of these repositories. The successful implementation of these advancements requires scientific transparency, a cautiously optimistic approach to interpreting AI-driven simulations and their analysis, and a mindset that prioritizes knowledge-motivated research alongside AI-enhanced big data exploration. While history reminds us that the trajectory of technological progress can be unpredictable, this Perspective offers guidance on preparedness and proactive measures, aiming to steer future advancements in the most beneficial and successful direction.

Zobrazit více v PubMed

Ciccotti G.; Dellago C.; Ferrario M.; Hernández E. R.; Tuckerman M. E. Molecular simulations: past, present, and future (a Topical Issue in EPJB). Eur. Phys. J. B 2022, 95, 1–12. 10.1140/epjb/s10051-021-00249-x. DOI

Frenkel D.; Smit B.. Underst. Mol. Simul. from Algorithms to Appl.. Third Ed.; Elsevier, 2023; pp 1–728, DOI: 10.1016/C2009-0-63921-0. DOI

Gupta C.; Sarkar D.; Tieleman D. P.; Singharoy A. The ugly, bad, and good stories of large-scale biomolecular simulations. Curr. Opin. Struct. Biol. 2022, 73, 102338.10.1016/j.sbi.2022.102338. PubMed DOI

Hollingsworth S. A.; Dror R. O. Molecular Dynamics Simulation for All. Neuron 2018, 99, 1129–1143. 10.1016/j.neuron.2018.08.011. PubMed DOI PMC

Ahmed M.; Maldonado A. M.; Durrant J. D. From Byte to Bench to Bedside: Molecular Dynamics Simulations and Drug Discovery. BMC Biol. 2023, 21, 1–4. 10.1186/s12915-023-01791-z. PubMed DOI PMC

Sever R. We need a plan D. Nat. Methods 2023, 20, 473–474. 10.1038/s41592-023-01817-y. PubMed DOI

Duan Y.; Kollman P. A. Pathways to a protein folding intermediate observed in a 1-microsecond simulation in aqueous solution. Science 1998, 282, 740–744. 10.1126/science.282.5389.740. PubMed DOI

Berger O.; Edholm O.; Jähnig F. Molecular dynamics simulations of a fluid bilayer of dipalmitoylphosphatidylcholine at full hydration, constant pressure, and constant temperature. Biophys. J. 1997, 72, 2002–2013. 10.1016/S0006-3495(97)78845-3. PubMed DOI PMC

Javanainen M.; Heftberger P.; Madsen J. J.; Miettinen M. S.; Pabst G.; Ollila O. H. Quantitative Comparison against Experiments Reveals Imperfections in Force Fields’ Descriptions of POPC–Cholesterol Interactions. J. Chem. Theory Comput. 2023, 19, 6342–6352. 10.1021/acs.jctc.3c00648. PubMed DOI PMC

Karki S.; Javanainen M.; Rehan S.; Tranter D.; Kellosalo J.; Huiskonen J. T.; Happonen L.; Paavilainen V. Molecular view of ER membrane remodeling by the Sec61/TRAP translocon. EMBO Rep 2023, 24, e5791010.15252/embr.202357910. PubMed DOI PMC

Javanainen M.; Karki S.; Tranter D.; Biriukov D.; Paavilainen V. O.. The Sec61/TRAP Translocon Scrambles Lipids. bioRxiv, November 23, 2023, ver. 1. 10.1101/2023.11.23.568215 (accessed 2024-03-04). DOI

Ingólfsson H. I.; Melo M. N.; Van Eerden F. J.; Arnarez C.; Lopez C. A.; Wassenaar T. A.; Periole X.; De Vries A. H.; Tieleman D. P.; Marrink S. J. Lipid organization of the plasma membrane. J. Am. Chem. Soc. 2014, 136, 14554–14559. 10.1021/ja507832e. PubMed DOI

Lorent J. H.; Levental K. R.; Ganesan L.; Rivera-Longsworth G.; Sezgin E.; Doktorova M.; Lyman E.; Levental I. Plasma membranes are asymmetric in lipid unsaturation, packing and protein shape. Nat. Chem. Biol. 2020, 16, 644–652. 10.1038/s41589-020-0529-6. PubMed DOI PMC

Doktorova M.; Symons J. L.; Zhang X.; Wang H.-Y.; Schlegel J.; Lorent J. H.; Heberle F. A.; Sezgin E.; Lyman E.; Levental K. R.; Levental I.. Cell Membranes Sustain Phospholipid Imbalance Via Cholesterol Asymmetry. bioRxiv, July 31, 2023, ver. 1. 10.1101/2023.07.30.551157 (accessed 2024-03-04). DOI

Biriukov D.; Javanainen M. Efficient Simulations of Solvent Asymmetry Across Lipid Membranes Using Flat-Bottom Restraints. J. Chem. Theory Comput. 2023, 19, 6332–6341. 10.1021/acs.jctc.3c00614. PubMed DOI PMC

Bock L. V.; Gabrielli S.; Kolár̃ M. H.; Grubmüller H. Simulation of Complex Biomolecular Systems: The Ribosome Challenge. Annu. Rev. Biophys. 2023, 52, 361–390. 10.1146/annurev-biophys-111622-091147. PubMed DOI

Stevens J. A.; Grünewald F.; van Tilburg P. A.; König M.; Gilbert B. R.; Brier T. A.; Thornburg Z. R.; Luthey-Schulten Z.; Marrink S. J. Molecular dynamics simulation of an entire cell. Front. Chem. 2023, 11, 1106495.10.3389/fchem.2023.1106495. PubMed DOI PMC

Perilla J. R.; Schulten K. Physical properties of the HIV-1 capsid from all-atom molecular dynamics simulations. Nat. Commun. 2017, 8, 1–10. 10.1038/ncomms15959. PubMed DOI PMC

Tarasova E.; Nerukh D. All-Atom Molecular Dynamics Simulations of Whole Viruses. J. Phys. Chem. Lett. 2018, 9, 5805–5809. 10.1021/acs.jpclett.8b02298. PubMed DOI

Pezeshkian W.; Grünewald F.; Narykov O.; Lu S.; Arkhipova V.; Solodovnikov A.; Wassenaar T. A.; Marrink S. J.; Korkin D. Molecular architecture and dynamics of SARS-CoV-2 envelope by integrative modeling. Structure 2023, 31, 492–503.e7. 10.1016/j.str.2023.02.006. PubMed DOI

Behler J.; Parrinello M. Generalized neural-network representation of high-dimensional potential-energy surfaces. Phys. Rev. Lett. 2007, 98, 146401.10.1103/PhysRevLett.98.146401. PubMed DOI

Smith J. S.; Nebgen B.; Lubbers N.; Isayev O.; Roitberg A. E. Less is more: Sampling chemical space with active learning. J. Chem. Phys. 2018, 148, 241733.10.1063/1.5023802. PubMed DOI

Schütt K. T.; Kessel P.; Gastegger M.; Nicoli K. A.; Tkatchenko A.; Müller K. R. SchNetPack: A Deep Learning Toolbox for Atomistic Systems. J. Chem. Theory Comput. 2019, 15, 448–455. 10.1021/acs.jctc.8b00908. PubMed DOI

Gao X.; Ramezanghorbani F.; Isayev O.; Smith J. S.; Roitberg A. E. TorchANI: A Free and Open Source PyTorch-Based Deep Learning Implementation of the ANI Neural Network Potentials. J. Chem. Inf. Model. 2020, 60, 3408–3415. 10.1021/acs.jcim.0c00451. PubMed DOI

Noé F.; Tkatchenko A.; Müller K. R.; Clementi C. Machine learning for molecular simulation. Annu. Rev. Phys. Chem. 2020, 71, 361–390. 10.1146/annurev-physchem-042018-052331. PubMed DOI

Doerr S.; Majewski M.; Pérez A.; Krämer A.; Clementi C.; Noe F.; Giorgino T.; De Fabritiis G. TorchMD: A Deep Learning Framework for Molecular Simulations. J. Chem. Theory Comput. 2021, 17, 2355–2363. 10.1021/acs.jctc.0c01343. PubMed DOI PMC

Glielmo A.; Husic B. E.; Rodriguez A.; Clementi C.; Noé F.; Laio A. Unsupervised Learning Methods for Molecular Simulation Data. Chem. Rev. 2021, 121, 9722–9758. 10.1021/acs.chemrev.0c01195. PubMed DOI PMC

Mahmud M.; Kaiser M. S.; McGinnity T. M.; Hussain A. Deep Learning in Mining Biological Data. Cognit. Comput. 2021, 13, 1–33. 10.1007/s12559-020-09773-x. PubMed DOI PMC

Fan F. J.; Shi Y. Effects of data quality and quantity on deep learning for protein-ligand binding affinity prediction. Bioorg. Med. Chem. 2022, 72, 117003.10.1016/j.bmc.2022.117003. PubMed DOI

Ketkaew R.; Luber S. DeepCV: A Deep Learning Framework for Blind Search of Collective Variables in Expanded Configurational Space. J. Chem. Inf. Model. 2022, 62, 6352–6364. 10.1021/acs.jcim.2c00883. PubMed DOI

Unsleber J. P.; Grimmel S. A.; Reiher M. Chemoton 2.0: Autonomous Exploration of Chemical Reaction Networks. J. Chem. Theory Comput. 2022, 18, 5393–5409. 10.1021/acs.jctc.2c00193. PubMed DOI

Jackson N. E.; Savoie B. M.; Statt A.; Webb M. A. Introduction to Machine Learning for Molecular Simulation. J. Chem. Theory Comput. 2023, 19, 4335–4337. 10.1021/acs.jctc.3c00735. PubMed DOI

Zhang J.; Chen D.; Xia Y.; Huang Y. P.; Lin X.; Han X.; Ni N.; Wang Z.; Yu F.; Yang L.; Yang Y. I.; Gao Y. Q. Artificial Intelligence Enhanced Molecular Simulations. J. Chem. Theory Comput. 2023, 19, 4338–4350. 10.1021/acs.jctc.3c00214. PubMed DOI

Lee J.; et al. CHARMM-GUI Input Generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM Simulations Using the CHARMM36 Additive Force Field. J. Chem. Theory Comput. 2016, 12, 405–413. 10.1021/acs.jctc.5b00935. PubMed DOI PMC

Thallmair S.; Javanainen M.; Fábián B.; Martinez-Seara H.; Marrink S. J. Nonconverged Constraints Cause Artificial Temperature Gradients in Lipid Bilayer Simulations. J. Phys. Chem. B 2021, 125, 9537–9546. 10.1021/acs.jpcb.1c03665. PubMed DOI PMC

Joseph S.; Aluru N. R. Pumping of confined water in carbon nanotubes by rotation-translation coupling. Phys. Rev. Lett. 2008, 101, 064502.10.1103/PhysRevLett.101.064502. PubMed DOI

Bonthuis D. J.; Falk K.; Kaplan C. N.; Horinek D.; Berker A. N.; Bocquet L.; Netz R. R. Comment on ”Pumping of confined water in carbon nanotubes by rotation-translation coupling. Phys. Rev. Lett. 2010, 105, 064502.10.1103/PhysRevLett.105.209401. PubMed DOI

Shaw D. E.; et al. Anton 3: Twenty Microseconds of Molecular Dynamics Simulation before Lunch. Int. Conf. High Perform. Comput. Networking, Storage Anal. SC 2021, 1–11. 10.1145/3458817.3487397. DOI

Kim H.; Fábián B.; Hummer G. Neighbor List Artifacts in Molecular Dynamics Simulations. J. Chem. Theory Comput. 2023, 19, 8919–8929. 10.1021/acs.jctc.3c00777. PubMed DOI PMC

Biriukov D.; Wang H. W.; Rampal N.; Tempra C.; Kula P.; Neuefeind J. C.; Stack A. G.; Předota M. The ”good,” the ”bad,” and the ”hidden” in neutron scattering and molecular dynamics of ionic aqueous solutions. J. Chem. Phys. 2022, 156, 194505.10.1063/5.0093643. PubMed DOI

Sandoval-Perez A.; Pluhackova K.; Böckmann R. A. Critical Comparison of Biomembrane Force Fields: Protein-Lipid Interactions at the Membrane Interface. J. Chem. Theory Comput. 2017, 13, 2310–2321. 10.1021/acs.jctc.7b00001. PubMed DOI

Javanainen M.; Martinez-Seara H.; Vattulainen I. Excessive aggregation of membrane proteins in the Martini model. PLoS One 2017, 12, e018793610.1371/journal.pone.0187936. PubMed DOI PMC

Yoo J.; Aksimentiev A. New tricks for old dogs: Improving the accuracy of biomolecular force fields by pair-specific corrections to non-bonded interactions. Phys. Chem. Chem. Phys. 2018, 20, 8432–8449. 10.1039/C7CP08185E. PubMed DOI PMC

Meyer T.; D’Abramo M.; Hospital A.; Rueda M.; Ferrer-Costa C.; Pérez A.; Carrillo O.; Camps J.; Fenollosa C.; Repchevsky D.; Gelpí J. L.; Orozco M. MoDEL (Molecular Dynamics Extended Library): A Database of Atomistic Molecular Dynamics Trajectories. Structure 2010, 18, 1399–1409. 10.1016/j.str.2010.07.013. PubMed DOI

Hospital A.; Andrio P.; Cugnasco C.; Codo L.; Becerra Y.; Dans P. D.; Battistini F.; Torres J.; Gõni R.; Orozco M.; Gelpí J. L. BIGNASim: A NoSQL database structure and analysis portal for nucleic acids simulation data. Nucleic Acids Res. 2016, 44, D272–D278. 10.1093/nar/gkv1301. PubMed DOI PMC

Kiirikki A. M.; et al. Overlay databank unlocks data-driven analyses of biomolecules for all. Nat. Commun. 2024, 15, 1136.10.1038/s41467-024-45189-z. PubMed DOI PMC

Knapp B.; Ospina L.; Deane C. M. Avoiding False Positive Conclusions in Molecular Simulation: The Importance of Replicas. J. Chem. Theory Comput. 2018, 14, 6127–6138. 10.1021/acs.jctc.8b00391. PubMed DOI

Jumper J.; et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021, 596, 583–589. 10.1038/s41586-021-03819-2. PubMed DOI PMC

McBride J. M.; Polev K.; Abdirasulov A.; Reinharz V.; Grzybowski B. A.; Tlusty T. AlphaFold2 can predict single-mutation effects on structure and phenotype. Phys. Rev. Lett. 2023, 131, 218401.10.1103/PhysRevLett.131.218401. PubMed DOI

Chakravarty D.; Porter L. L. AlphaFold2 fails to predict protein fold switching. Protein Sci. 2022, 31, e435310.1002/pro.4353. PubMed DOI PMC

Terwilliger T. C.; Liebschner D.; Croll T. I.; Williams C. J.; McCoy A. J.; Poon B. K.; Afonine P. V.; Oeffner R. D.; Richardson J. S.; Read R. J.; Adams P. D. AlphaFold predictions are valuable hypotheses and accelerate but do not replace experimental structure determination. Nat. Methods 2024, 21, 110–116. 10.1038/s41592-023-02087-4. PubMed DOI PMC

Lane T. J. Protein structure prediction has reached the single-structure frontier. Nat. Methods 2023, 20, 170–173. 10.1038/s41592-022-01760-4. PubMed DOI PMC

Vani B. P.; Aranganathan A.; Wang D.; Tiwary P. AlphaFold2-RAVE: From Sequence to Boltzmann Ranking. J. Chem. Theory Comput. 2023, 19, 4351–4354. 10.1021/acs.jctc.3c00290. PubMed DOI PMC

Kmiecik S.; Gront D.; Kolinski M.; Wieteska L.; Dawid A. E.; Kolinski A. Coarse-Grained Protein Models and Their Applications. Chem. Rev. 2016, 116, 7898–7936. 10.1021/acs.chemrev.6b00163. PubMed DOI

Marx D.; Hutter J.. Ab Initio Molecular Dynamics Basic Theory and Advanced Methods; Cambridge University Press, 2009; pp 1–567.10.1017/CBO9780511609633 DOI

Souza P. C.; et al. Martini 3: a general purpose force field for coarse-grained molecular dynamics. Nat. Methods 2021, 18, 382–388. 10.1038/s41592-021-01098-3. PubMed DOI

Yamada T.; Miyazaki Y.; Harada S.; Kumar A.; Vanni S.; Shinoda W. Improved Protein Model in SPICA Force Field. J. Chem. Theory Comput. 2023, 19, 8967–8977. 10.1021/acs.jctc.3c01016. PubMed DOI

Klein F.; Soñora M.; Helene Santos L.; Nazareno Frigini E.; Ballesteros-Casallas A.; Rodrigo Machado M.; Pantano S. The SIRAH force field: A suite for simulations of complex biological systems at the coarse-grained and multiscale levels. J. Struct. Biol. 2023, 215, 107985.10.1016/j.jsb.2023.107985. PubMed DOI

Vácha R.; Frenkel D. Relation between molecular shape and the morphology of self-assembling aggregates: A simulation study. Biophys. J. 2011, 101, 1432–1439. 10.1016/j.bpj.2011.07.046. PubMed DOI PMC

Sukeník L.; Mukhamedova L.; Procházková M.; Škubník K.; Plevka P.; Vácha R. Cargo Release from Nonenveloped Viruses and Virus-like Nanoparticles: Capsid Rupture or Pore Formation. ACS Nano 2021, 15, 19233–19243. 10.1021/acsnano.1c04814. PubMed DOI

Molteni C.; Parrinello M. Glucose in aqueous solution by first principles molecular dynamics. J. Am. Chem. Soc. 1998, 120, 2168–2171. 10.1021/ja973008q. DOI

MacKerell A. D.; et al. All-atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B 1998, 102, 3586–3616. 10.1021/jp973084f. PubMed DOI

Goetz R.; Lipowsky R. Computer simulations of bilayer membranes: Self-assembly and interfacial tension. J. Chem. Phys. 1998, 108, 7397–7409. 10.1063/1.476160. DOI

Wang T.; He X.; Li M.; Shao B.; Liu T. Y. AIMD-Chig: Exploring the conformational space of a 166-atom protein Chignolin with ab initio molecular dynamics. Sci. Data 2023, 10, 1–12. 10.1038/s41597-023-02465-9. PubMed DOI PMC

Shim K. S.; Greskamp B.; Towles B.; Edwards B.; Grossman J. P.; Shaw D. E. The Specialized High-Performance Network on Anton 3. Proc. - Int. Symp. High-Performance Comput. Archit. 2022, 1211–1223. 10.1109/HPCA53966.2022.00092. DOI

Kozinsky B.; Musaelian A.; Johansson A.; Batzner S. Scaling the Leading Accuracy of Deep Equivariant Models to Biomolecular Simulations of Realistic Size. Proc. Int. Conf. High Perform. Comput. Networking, Storage Anal. SC 2023 2023, 1–12. 10.1145/3581784.3627041. DOI

Csizi K. S.; Reiher M. Universal QM/MM approaches for general nanoscale applications. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2023, 13, e165610.1002/wcms.1656. DOI

Raghavan B.; Paulikat M.; Ahmad K.; Callea L.; Rizzi A.; Ippoliti E.; Mandelli D.; Bonati L.; De Vivo M.; Carloni P. Drug Design in the Exascale Era: A Perspective from Massively Parallel QM/MM Simulations. J. Chem. Inf. Model. 2023, 63, 3647–3658. 10.1021/acs.jcim.3c00557. PubMed DOI PMC

Kamerlin S. C.; Warshel A. At the dawn of the 21st century: Is dynamics the missing link for understanding enzyme catalysis. Proteins Struct. Funct. Bioinforma. 2010, 78, 1339–1375. 10.1002/prot.22654. PubMed DOI PMC

Kontkanen O. V.; Biriukov D.; Futera Z. Reorganization free energy of copper proteins in solution, in vacuum, and on metal surfaces. J. Chem. Phys. 2022, 156, 175101.10.1063/5.0085141. PubMed DOI

Rzepiela A. J.; Louhivuori M.; Peter C.; Marrink S. J. Hybrid simulations: Combining atomistic and coarse-grained force fields using virtual sites. Phys. Chem. Chem. Phys. 2011, 13, 10437–10448. 10.1039/c0cp02981e. PubMed DOI

Kar P.; Feig M. Hybrid All-Atom/Coarse-Grained Simulations of Proteins by Direct Coupling of CHARMM and PRIMO Force Fields. J. Chem. Theory Comput. 2017, 13, 5753–5765. 10.1021/acs.jctc.7b00840. PubMed DOI PMC

Liu Y.; De Vries A. H.; Barnoud J.; Pezeshkian W.; Melcr J.; Marrink S. J. Dual Resolution Membrane Simulations Using Virtual Sites. J. Phys. Chem. B 2020, 124, 3944–3953. 10.1021/acs.jpcb.0c01842. PubMed DOI PMC

Lolicato F.; et al. Disulfide bridge-dependent dimerization triggers FGF2 membrane translocation into the extracellular space. eLife 2024, 12, RP88579.10.7554/eLife.88579.2. PubMed DOI PMC

Hess B.; Scheek R. M. Orientation restraints in molecular dynamics simulations using time and ensemble averaging. J. Magn. Reson. 2003, 164, 19–27. 10.1016/S1090-7807(03)00178-2. PubMed DOI

Igaev M.; Kutzner C.; Bock L. V.; Vaiana A. C.; Grubmüller H. Automated cryo-EM structure refinement using correlation-driven molecular dynamics. eLife 2019, 8, e4354210.7554/eLife.43542. PubMed DOI PMC

Reith D.; Meyer H.; Müller-Plathe F. CG-OPT: A software package for automatic force field design. Comput. Phys. Commun. 2002, 148, 299–313. 10.1016/S0010-4655(02)00562-3. DOI

Krämer A.; Hülsmann M.; Köddermann T.; Reith D. Automated parameterization of intermolecular pair potentials using global optimization techniques. Comput. Phys. Commun. 2014, 185, 3228–3239. 10.1016/j.cpc.2014.08.022. DOI

Wang L. P.; Martinez T. J.; Pande V. S. Building force fields: An automatic, systematic, and reproducible approach. J. Phys. Chem. Lett. 2014, 5, 1885–1891. 10.1021/jz500737m. PubMed DOI PMC

Betz R. M.; Walker R. C. Paramfit: Automated optimization of force field parameters for molecular dynamics simulations. J. Comput. Chem. 2015, 36, 79–87. 10.1002/jcc.23775. PubMed DOI

Zahariev F.; De Silva N.; Gordon M. S.; Windus T. L.; Pérez García M. ParFit: A Python-Based Object-Oriented Program for Fitting Molecular Mechanics Parameters to ab Initio Data. J. Chem. Inf. Model. 2017, 57, 391–396. 10.1021/acs.jcim.6b00654. PubMed DOI

Sauceda H. E.; Gastegger M.; Chmiela S.; Müller K. R.; Tkatchenko A. Molecular force fields with gradient-domain machine learning (GDML): Comparison and synergies with classical force fields. J. Chem. Phys. 2020, 153, 124109.10.1063/5.0023005. PubMed DOI

Befort B. J.; Defever R. S.; Tow G. M.; Dowling A. W.; Maginn E. J. Machine Learning Directed Optimization of Classical Molecular Modeling Force Fields. J. Chem. Inf. Model. 2021, 61, 4400–4414. 10.1021/acs.jcim.1c00448. PubMed DOI

Unke O. T.; Chmiela S.; Sauceda H. E.; Gastegger M.; Poltavsky I.; Schütt K. T.; Tkatchenko A.; Müller K. R. Machine Learning Force Fields. Chem. Rev. 2021, 121, 10142–10186. 10.1021/acs.chemrev.0c01111. PubMed DOI PMC

Unke O. T.; Chmiela S.; Gastegger M.; Schütt K. T.; Sauceda H. E.; Müller K. R. SpookyNet: Learning force fields with electronic degrees of freedom and nonlocal effects. Nat. Commun. 2021, 12, 1–14. 10.1038/s41467-021-27504-0. PubMed DOI PMC

Yu Y.; Krämer A.; Venable R. M.; Simmonett A. C.; Mackerell A. D.; Klauda J. B.; Pastor R. W.; Brooks B. R. Semi-automated Optimization of the CHARMM36 Lipid Force Field to Include Explicit Treatment of Long-Range Dispersion. J. Chem. Theory Comput. 2021, 17, 1562–1580. 10.1021/acs.jctc.0c01326. PubMed DOI PMC

Empereur-Mot C.; Pedersen K. B.; Capelli R.; Crippa M.; Caruso C.; Perrone M.; Souza P. C. T.; Marrink S. J.; Pavan G. M. Automatic Optimization of Lipid Models in the Martini Force Field Using SwarmCG. J. Chem. Inf. Model. 2023, 63, 3827.10.1021/acs.jcim.3c00530. PubMed DOI PMC

Chmiela S.; Vassilev-Galindo V.; Unke O. T.; Kabylda A.; Sauceda H. E.; Tkatchenko A.; Müller K. R. Accurate global machine learning force fields for molecules with hundreds of atoms. Sci. Adv. 2023, 9, eadf08710.1126/sciadv.adf0873. PubMed DOI PMC

Illarionov A.; et al. Combining Force Fields and Neural Networks for an Accurate Representation of Chemically Diverse Molecular Interactions. J. Am. Chem. Soc. 2023, 145, 23620–23629. 10.1021/jacs.3c07628. PubMed DOI PMC

Wu S.; Yang X.; Zhao X.; Li Z.; Lu M.; Xie X.; Yan J. Applications and Advances in Machine Learning Force Fields. J. Chem. Inf. Model. 2023, 63, 6972–6985. 10.1021/acs.jcim.3c00889. PubMed DOI

Chen G.; Inizan T. J.; Plé T.; Lagardère L.; Piquemal J.-P.; Maday Y.. Advancing Force Fields Parameterization: A Directed Graph Attention Networks Approach. ChemRxiv, December 22, 2023, ver. 1.10.26434/chemrxiv-2023-nz8hc (accessed 2024-03-04). PubMed DOI

Bonomi M.; Barducci A.; Parrinello M. Reconstructing the equilibrium boltzmann distribution from well-tempered metadynamics. J. Comput. Chem. 2009, 30, 1615–1621. 10.1002/jcc.21305. PubMed DOI

Kikutsuji T.; Mori Y.; Okazaki K. I.; Mori T.; Kim K.; Matubayasi N. Explaining reaction coordinates of alanine dipeptide isomerization obtained from deep neural networks using Explainable Artificial Intelligence (XAI). J. Chem. Phys. 2022, 156, 154108.10.1063/5.0087310. PubMed DOI

Yao S.; Van R.; Pan X.; Park J. H.; Mao Y.; Pu J.; Mei Y.; Shao Y. Machine learning based implicit solvent model for aqueous-solution alanine dipeptide molecular dynamics simulations. RSC Adv. 2023, 13, 4565–4577. 10.1039/D2RA08180F. PubMed DOI PMC

Baiardi A.; Christandl M.; Reiher M. Quantum Computing for Molecular Biology. ChemBioChem. 2023, 24, e20230012010.1002/cbic.202300120. PubMed DOI

Feng S.; Park S.; Choi Y. K.; Im W. CHARMM-GUI Membrane Builder: Past, Current, and Future Developments and Applications. J. Chem. Theory Comput. 2023, 19, 2161–2185. 10.1021/acs.jctc.2c01246. PubMed DOI PMC

Kroon P. C.; Grunewald F.; Barnoud J.; van Tilburg M.; Souza P. C. T.; Wassenaar T. A.; Marrink S. J. Martinize2 and Vermouth: Unified Framework for Topology Generation. eLife 2023, 12, RP90627.10.7554/eLife.90627.1. DOI

Huang J.; Rauscher S.; Nawrocki G.; Ran T.; Feig M.; De Groot B. L.; Grubmüller H.; MacKerell A. D. CHARMM36m: An improved force field for folded and intrinsically disordered proteins. Nat. Methods 2017, 14, 71–73. 10.1038/nmeth.4067. PubMed DOI PMC

Tian C.; Kasavajhala K.; Belfon K. A.; Raguette L.; Huang H.; Migues A. N.; Bickel J.; Wang Y.; Pincay J.; Wu Q.; Simmerling C. Ff19SB: Amino-Acid-Specific Protein Backbone Parameters Trained against Quantum Mechanics Energy Surfaces in Solution. J. Chem. Theory Comput. 2020, 16, 528–552. 10.1021/acs.jctc.9b00591. PubMed DOI

Salomon-Ferrer R.; Case D. A.; Walker R. C. An overview of the Amber biomolecular simulation package. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2013, 3, 198–210. 10.1002/wcms.1121. DOI

Brooks B. R.; et al. CHARMM: The biomolecular simulation program. J. Comput. Chem. 2009, 30, 1545–1614. 10.1002/jcc.21287. PubMed DOI PMC

Abraham M. J.; Murtola T.; Schulz R.; Páll S.; Smith J. C.; Hess B.; Lindahl E. Gromacs: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 2015, 1–2, 19–25. 10.1016/j.softx.2015.06.001. DOI

Phillips J. C.; et al. Scalable molecular dynamics on CPU and GPU architectures with NAMD. J. Chem. Phys. 2020, 153, 44130.10.1063/5.0014475. PubMed DOI PMC

Eastman P.; Swails J.; Chodera J. D.; McGibbon R. T.; Zhao Y.; Beauchamp K. A.; Wang L. P.; Simmonett A. C.; Harrigan M. P.; Stern C. D.; Wiewiora R. P.; Brooks B. R.; Pande V. S. OpenMM 7: Rapid development of high performance algorithms for molecular dynamics. PLoS Comput. Biol. 2017, 13, e100565910.1371/journal.pcbi.1005659. PubMed DOI PMC

Bowers K. J.; Chow D. E.; Xu H.; Dror R. O.; Eastwood M. P.; Gregersen B. A.; Klepeis J. L.; Kolossvary I.; Moraes M. A.; Sacerdoti F. D.; Salmon J. K.; Shan Y.; Shaw D. E.. Scalable Algorithms for Molecular Dynamics Simulations on Commodity Clusters. Proceedings of the 2006 ACM/IEEE Conference on Supercomputing, New York, 2007, 43–43. 10.1109/sc.2006.54 DOI

Hilpert C.; Beranger L.; Souza P. C.; Vainikka P. A.; Nieto V.; Marrink S. J.; Monticelli L.; Launay G. Facilitating CG Simulations with MAD: The MArtini Database Server. J. Chem. Inf. Model. 2023, 63, 702–710. 10.1021/acs.jcim.2c01375. PubMed DOI

Schmitt S.; Kanagalingam G.; Fleckenstein F.; Froescher D.; Hasse H.; Stephan S. Extension of the MolMod Database to Transferable Force Fields. J. Chem. Inf. Model. 2023, 63, 7148–7158. 10.1021/acs.jcim.3c01484. PubMed DOI

Boothroyd S.; Wang L. P.; Mobley D. L.; Chodera J. D.; Shirts M. R. Open Force Field Evaluator: An Automated, Efficient, and Scalable Framework for the Estimation of Physical Properties from Molecular Simulation. J. Chem. Theory Comput. 2022, 18, 3566–3576. 10.1021/acs.jctc.1c01111. PubMed DOI PMC

Hospital A.; Battistini F.; Soliva R.; Gelpí J. L.; Orozco M. Surviving the deluge of biosimulation data. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2020, 10, e144910.1002/wcms.1449. DOI

Marx V. The big challenges of big data. Nature 2013, 498, 255–260. 10.1038/498255a. PubMed DOI

Stephens Z. D.; Lee S. Y.; Faghri F.; Campbell R. H.; Zhai C.; Efron M. J.; Iyer R.; Schatz M. C.; Sinha S.; Robinson G. E. Big data: Astronomical or genomical?. PLoS Biol. 2015, 13, e100219510.1371/journal.pbio.1002195. PubMed DOI PMC

Wilson S. L.; Way G. P.; Bittremieux W.; Armache J. P.; Haendel M. A.; Hoffman M. M. Sharing biological data: why, when, and how. FEBS Lett. 2021, 595, 847–863. 10.1002/1873-3468.14067. PubMed DOI PMC

Berman H.; Henrick K.; Nakamura H. Announcing the worldwide Protein Data Bank. Nat. Struct. Biol. 2003, 10, 980.10.1038/nsb1203-980. PubMed DOI

Domański J.; Stansfeld P. J.; Sansom M. S.; Beckstein O. Lipidbook: A public repository for force-field parameters used in membrane simulations. J. Membr. Biol. 2010, 236, 255–258. 10.1007/s00232-010-9296-8. PubMed DOI

Newport T. D.; Sansom M. S.; Stansfeld P. J. The MemProtMD database: A resource for membrane-embedded protein structures and their lipid interactions. Nucleic Acids Res. 2019, 47, D390–D397. 10.1093/nar/gky1047. PubMed DOI PMC

Rodríguez-Espigares I.; et al. GPCRmd uncovers the dynamics of the 3D-GPCRome. Nat. Methods 2020, 17, 777–787. 10.1038/s41592-020-0884-y. PubMed DOI

Suarez-Leston F.; Calvelo M.; Tolufashe G. F.; Muñoz A.; Veleiro U.; Porto C.; Bastos M.; Piñeiro Á.; Garcia-Fandino R. SuPepMem: A database of innate immune system peptides and their cell membrane interactions. Comput. Struct. Biotechnol. J. 2022, 20, 874–881. 10.1016/j.csbj.2022.01.025. PubMed DOI PMC

Bateman A.; et al. UniProt: the Universal Protein Knowledgebase in 2023. Nucleic Acids Res. 2023, 51, D523–D531. 10.1093/nar/gkac1052. PubMed DOI PMC

Hoch J. C.; et al. Biological Magnetic Resonance Data Bank. Nucleic Acids Res. 2023, 51, D368–D376. 10.1093/nar/gkac1050. PubMed DOI PMC

Baek M.; et al. Accurate prediction of protein structures and interactions using a three-track neural network. Science 2021, 373, 871–876. 10.1126/science.abj8754. PubMed DOI PMC

Feig M.; Abdullah M.; Johnsson L.; Pettitt B. M. Large scale distributed data repository: Design of a molecular dynamics trajectory database. Futur. Gener. Comput. Syst. 1999, 16, 101–110. 10.1016/S0167-739X(99)00039-4. DOI

Tai K.; Murdock S.; Wu B.; Ng M. H.; Johnston S.; Fangohr H.; Cox S. J.; Jeffreys P.; Essex J. W.; Sansom M. S. BioSimGrid: Towards a worldwide repository for biomolecular simulations. Org. Biomol. Chem. 2004, 2, 3219–3221. 10.1039/b411352g. PubMed DOI

van der Kamp M. W.; Schaeffer R. D.; Jonsson A. L.; Scouras A. D.; Simms A. M.; Toofanny R. D.; Benson N. C.; Anderson P. C.; Merkley E. D.; Rysavy S.; Bromley D.; Beck D. A.; Daggett V. Dynameomics: A Comprehensive Database of Protein Dynamics. Structure 2010, 18, 423–435. 10.1016/j.str.2010.01.012. PubMed DOI PMC

Abraham M. J.; et al. Sharing Data from Molecular Simulations. J. Chem. Inf. Model. 2019, 59, 4093–4099. 10.1021/acs.jcim.9b00665. PubMed DOI

Hildebrand P. W.; Rose A. S.; Tiemann J. K. Bringing Molecular Dynamics Simulation Data into View. Trends Biochem. Sci. 2019, 44, 902–913. 10.1016/j.tibs.2019.06.004. PubMed DOI

Abriata L. A.; Lepore R.; Dal Peraro M. About the need to make computational models of biological macromolecules available and discoverable. Bioinformatics 2020, 36, 2952–2954. 10.1093/bioinformatics/btaa086. PubMed DOI

Bekker G. J.; Kawabata T.; Kurisu G. The Biological Structure Model Archive (BSM-Arc): an archive for in silico models and simulations. Biophys. Rev. 2020, 12, 371–375. 10.1007/s12551-020-00632-5. PubMed DOI PMC

Antila H. S.; Kav B.; Miettinen M. S.; Martinez-Seara H.; Jungwirth P.; Ollila O. H. Emerging Era of Biomolecular Membrane Simulations: Automated Physically-Justified Force Field Development and Quality-Evaluated Databanks. J. Phys. Chem. B 2022, 126, 4169–4183. 10.1021/acs.jpcb.2c01954. DOI

Tiemann J. K. S.; Szczuka M.; Bouarroudj L.; Oussaren M.; Garcia S.; Howard R. J.; Delemotte L.; Lindahl E.; Baaden M.; Lindorff-Larsen K.; Chavent M.; Poulain P. MDverse: Shedding Light on the Dark Matter of Molecular Dynamics Simulations. eLife 2023, 12, RP90061.10.7554/eLife.90061.1. DOI

Musen M. A. Without appropriate metadata, data-sharing mandates are pointless. Nature 2022, 609, 222.10.1038/d41586-022-02820-7. PubMed DOI

Antila H. S.; M. Ferreira T.; Ollila O. H.; Miettinen M. S. Using Open Data to Rapidly Benchmark Biomolecular Simulations: Phospholipid Conformational Dynamics. J. Chem. Inf. Model. 2021, 61, 938–949. 10.1021/acs.jcim.0c01299. PubMed DOI PMC

Beltrán D.; Hospital A.; Gelpí J. L.; Orozco M. A new paradigm for molecular dynamics databases: the COVID-19 database, the legacy of a titanic community effort. Nucleic Acids Res. 2024, 52, D393.10.1093/nar/gkad991. PubMed DOI PMC

Amaro R. E.; Mulholland A. J. A Community Letter Regarding Sharing Biomolecular Simulation Data for COVID-19. J. Chem. Inf. Model. 2020, 60, 2653–2656. 10.1021/acs.jcim.0c00319. PubMed DOI

Mulholland A. J.; Amaro R. E. COVID19 - Computational Chemists Meet the Moment. J. Chem. Inf. Model. 2020, 60, 5724–5726. 10.1021/acs.jcim.0c01395. PubMed DOI

Wilkinson M. D.; et al. Comment: The FAIR Guiding Principles for scientific data management and stewardship. Sci. Data 2016, 3, 1–9. 10.1038/sdata.2016.18. PubMed DOI PMC

Bonomi M.; et al. Promoting transparency and reproducibility in enhanced molecular simulations. Nat. Methods 2019, 16, 670–673. 10.1038/s41592-019-0506-8. PubMed DOI

Porubsky V. L.; Goldberg A. P.; Rampadarath A. K.; Nickerson D. P.; Karr J. R.; Sauro H. M. Best Practices for Making Reproducible Biochemical Models. Cell Syst. 2020, 11, 109–120. 10.1016/j.cels.2020.06.012. PubMed DOI PMC

Gabelica M.; Bojčić R.; Puljak L. Many researchers were not compliant with their published data sharing statement: a mixed-methods study. J. Clin. Epidemiol. 2022, 150, 33–41. 10.1016/j.jclinepi.2022.05.019. PubMed DOI

Elofsson A.; Hess B.; Lindahl E.; Onufriev A.; van der Spoel D.; Wallqvist A. Ten simple rules on how to create open access and reproducible molecular simulations of biological systems. PLoS Comput. Biol. 2019, 15, e100664910.1371/journal.pcbi.1006649. PubMed DOI PMC

Merz K. M.; Amaro R.; Cournia Z.; Rarey M.; Soares T.; Tropsha A.; Wahab H. A.; Wang R. Editorial: Method and Data Sharing and Reproducibility of Scientific Results. J. Chem. Inf. Model. 2020, 60, 5868–5869. 10.1021/acs.jcim.0c01389. PubMed DOI

Solomon G. C.; Zhang J. Z.; Cuk T. ACS Physical Chemistry Au: A Journal Celebrating Open Science across the Broad Horizons of Physical Chemistry. ACS Phys. Chem. Au 2021, 1, 1–2. 10.1021/acsphyschemau.1c00040. PubMed DOI PMC

Wong-ekkabut J.; Karttunen M. The good, the bad and the user in soft matter simulations. Biochim. Biophys. Acta - Biomembr. 2016, 1858, 2529–2538. 10.1016/j.bbamem.2016.02.004. PubMed DOI

Linton J. D. Research: All journals need to correct errors. Nature 2013, 504, 33.10.1038/504033d. PubMed DOI

Allison D. B.; Brown A. W.; George B. J.; Kaiser K. A. Reproducibility: A tragedy of errors. Nature 2016, 530, 27–29. 10.1038/530027a. PubMed DOI PMC

Van Noorden R. More than 10,000 research papers were retracted in 2023 - a new record. Nature 2023, 624, 479–481. 10.1038/d41586-023-03974-8. PubMed DOI

Liverpool L. AI intensifies fight against ’paper mills’ that churn out fake research. Nature 2023, 618, 222–223. 10.1038/d41586-023-01780-w. PubMed DOI

Gapsys V.; Hahn D. F.; Tresadern G.; Mobley D. L.; Rampp M.; De Groot B. L. Pre-Exascale Computing of Protein-Ligand Binding Free Energies with Open Source Software for Drug Design. J. Chem. Inf. Model. 2022, 62, 1172–1177. 10.1021/acs.jcim.1c01445. PubMed DOI PMC

Kyro G. W.; Brent R. I.; Batista V. S. HAC-Net: A Hybrid Attention-Based Convolutional Neural Network for Highly Accurate Protein-Ligand Binding Affinity Prediction. J. Chem. Inf. Model. 2023, 63, 1947–1960. 10.1021/acs.jcim.3c00251. PubMed DOI

Dutta P.; Jain D.; Gupta R.; Rai B. Deep learning models for the estimation of free energy of permeation of small molecules across lipid membranes. Digit. Discovery 2023, 2, 189–201. 10.1039/D2DD00119E. DOI

Kabelka I.; Vácha R. Advances in Molecular Understanding of α-Helical Membrane-Active Peptides. Acc. Chem. Res. 2021, 54, 2196–2204. 10.1021/acs.accounts.1c00047. PubMed DOI

Deb R.; Kabelka I.; PÅibyl J.; Vácha R.. De novo design of peptides that form transmembrane barrel pores killing antibiotic resistant bacteria. bioRxiv, May 9, 2022, ver. 1.10.1101/2022.05.09.491086 (accessed 2024-03-04). DOI

Fonseca G.; Poltavsky I.; Tkatchenko A. Force Field Analysis Software and Tools (FFAST): Assessing Machine Learning Force Fields Under the Microscope. J. Chem. Theory Comput. 2023, 19, 8706–8717. 10.1021/acs.jctc.3c00985. PubMed DOI PMC

Perez S.; et al. Glycosaminoglycans: What Remains To Be Deciphered?. JACS Au 2023, 3, 628–656. 10.1021/jacsau.2c00569. PubMed DOI PMC

Vallet S. D.; Berthollier C.; Ricard-Blum S. The glycosaminoglycan interactome 2.0. Am. J. Physiol. - Cell Physiol. 2022, 322, C1271–C1278. 10.1152/ajpcell.00095.2022. PubMed DOI

Riopedre-Fernandez M.; Biriukov D.; Dračínský M.; Martinez-Seara H. Hyaluronan-arginine enhanced and dynamic interaction emerges from distinctive molecular signature due to electrostatics and side-chain specificity. Carbohydr. Polym. 2024, 325, 121568.10.1016/j.carbpol.2023.121568. PubMed DOI

Ives C. M.; Singh O.; D’Andrea S.; Fogarty C. A.; Harbison A. M.; Satheesan A.; Tropea B.; Fadda E.. Restoring Protein Glycosylation with GlycoShape. bioRxiv, December 11, 2023. 10.1101/2023.12.11.571101 (accessed 2024-03-04). DOI

Ricard-Blum S.; Perez S. Glycosaminoglycan interaction networks and databases. Curr. Opin. Struct. Biol. 2022, 74, 102355.10.1016/j.sbi.2022.102355. PubMed DOI

Casalino L.; Gaieb Z.; Goldsmith J. A.; Hjorth C. K.; Dommer A. C.; Harbison A. M.; Fogarty C. A.; Barros E. P.; Taylor B. C.; Mclellan J. S.; Fadda E.; Amaro R. E. Beyond shielding: The roles of glycans in the SARS-CoV-2 spike protein. ACS Cent. Sci. 2020, 6, 1722–1734. 10.1021/acscentsci.0c01056. PubMed DOI PMC

Bubeck S.; Chandrasekaran V.; Eldan R.; Gehrke J.; Horvitz E.; Kamar E.; Lee P.; Lee Y. T.; Li Y.; Lundberg S.; Nori H.; Palangi H.; Ribeiro M. T.; Zhang Y.. Sparks of Artificial General Intelligence: Early experiments with GPT-4. arXiv, April 13, 2023, ver. 5. 10.48550/arXiv.2303.12712 (accessed 2024-03-04). DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...