Overlay databank unlocks data-driven analyses of biomolecules for all

. 2024 Feb 07 ; 15 (1) : 1136. [epub] 20240207

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38326316
Odkazy

PubMed 38326316
PubMed Central PMC10850068
DOI 10.1038/s41467-024-45189-z
PII: 10.1038/s41467-024-45189-z
Knihovny.cz E-zdroje

Tools based on artificial intelligence (AI) are currently revolutionising many fields, yet their applications are often limited by the lack of suitable training data in programmatically accessible format. Here we propose an effective solution to make data scattered in various locations and formats accessible for data-driven and machine learning applications using the overlay databank format. To demonstrate the practical relevance of such approach, we present the NMRlipids Databank-a community-driven, open-for-all database featuring programmatic access to quality-evaluated atom-resolution molecular dynamics simulations of cellular membranes. Cellular membrane lipid composition is implicated in diseases and controls major biological functions, but membranes are difficult to study experimentally due to their intrinsic disorder and complex phase behaviour. While MD simulations have been useful in understanding membrane systems, they require significant computational resources and often suffer from inaccuracies in model parameters. Here, we demonstrate how programmable interface for flexible implementation of data-driven and machine learning applications, and rapid access to simulation data through a graphical user interface, unlock possibilities beyond current MD simulation and experimental studies to understand cellular membranes. The proposed overlay databank concept can be further applied to other biomolecules, as well as in other fields where similar barriers hinder the AI revolution.

Center for Global Health and Infectious Diseases Research Global and Planetary Health College of Public Health University of South Florida 33612 Tampa FL USA

Center for Research in Biological Chemistry and Molecular Materials Universidade de Santiago de Compostela E 15782 Santiago de Compostela Spain

Chemistry University of Southampton Highfield SO17 1BJ Southampton UK

Departamento de Ciencias Básicas Tecnológico Nacional de México ITS Zacatecas Occidente Sombrerete 99102 Zacatecas Mexico

Department of Applied Physics Faculty of Physics University of Santiago de Compostela E 15782 Santiago de Compostela Spain

Department of Biomedicine University of Bergen 5020 Bergen Norway

Department of Chemistry University of Bergen 5007 Bergen Norway

Department of Informatics Computational Biology Unit University of Bergen 5008 Bergen Norway

Department of Molecular Medicine Morsani College of Medicine University of South Florida 33612 Tampa FL USA

Department of Physical Chemistry of Drugs Faculty of Pharmacy Comenius University Bratislava 832 32 Bratislava Slovakia

Department of Physics University of Helsinki FI 00014 Helsinki Finland

Department of Theory and Bio Systems Max Planck Institute of Colloids and Interfaces 14424 Potsdam Germany

Division of Pharmaceutical Biosciences Faculty of Pharmacy University of Helsinki 00014 Helsinki Finland

Heidelberg University Biochemistry Center 69120 Heidelberg Germany

Hochschule Mannheim University of Applied Sciences 68163 Mannheim Germany

Institut Charles Gerhardt Montpellier Université Montpellier Place Eugène Bataillon 34095 Montpellier Cedex 05 France

Institut National de la Santé et de la Recherche Médicale Lyon France

Institute of Biological Information Processing Structural Biochemistry Forschungszentrum Jülich 52428 Jülich Germany

Institute of Biotechnology RWTH Aachen University Worringerweg 3 52074 Aachen Germany

Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Flemingovo nám 542 2 CZ 16610 Prague Czech Republic

MD USE Innovations S L Edificio Emprendia 15782 Santiago de Compostela Spain

Nanoscience Center and Department of Chemistry University of Jyväskylä 40014 Jyväskylä Finland

NMR group Institute for Physics Martin Luther University Halle Wittenberg 06120 Halle Germany

riadne ai GmbH Häusserstraße 3 69115 Heidelberg Germany

School of Pharmacy University of Eastern Finland 70211 Kuopio Finland

Sorbonne Université Ecole Normale Supérieure PSL University CNRS Laboratoire des Biomolécules F 75005 Paris France

Université Paris Cité F 75006 Paris France

University of Helsinki Institute of Biotechnology Helsinki Finland

University of Lyon CNRS Molecular Microbiology and Structural Biochemistry F 69007 Lyon France

University of Potsdam Institute of Physics and Astronomy 14476 Potsdam Golm Germany

VTT Technical Research Centre of Finland Espoo Finland

Zobrazit více v PubMed

Sever R. We need a plan d. Nat. Methods. 2023;20:473–474. doi: 10.1038/s41592-023-01817-y. PubMed DOI

Montelione GT, et al. Recommendations of the wwpdb nmr validation task force. Structure. 2013;21:1563–1570. doi: 10.1016/j.str.2013.07.021. PubMed DOI PMC

Jumper J, et al. Highly accurate protein structure prediction with alphafold. Nature. 2021;596:583–589. doi: 10.1038/s41586-021-03819-2. PubMed DOI PMC

Tiemann, J. K. S. et al. Mdverse: shedding light on the dark matter of molecular dynamics simulations. eLife10.7554/elife.90061.1 (2023). PubMed PMC

Klukowski P, Riek R, Güntert P. Rapid protein assignments and structures from raw nmr spectra with the deep learning technique artina. Nat. Commun. 2022;13:6151. doi: 10.1038/s41467-022-33879-5. PubMed DOI PMC

Botan A, et al. Toward atomistic resolution structure of phosphatidylcholine headgroup and glycerol backbone at different ambient conditions. J. Phys. Chem. B. 2015;119:15075–15088. doi: 10.1021/acs.jpcb.5b04878. PubMed DOI PMC

van Meer G, Voelker DR, Feigenson GW. Membrane lipids: where they are and how they behave. Nat. Rev. Mol. Cell Biol. 2008;9:112–124. doi: 10.1038/nrm2330. PubMed DOI PMC

Lorent JH, et al. Plasma membranes are asymmetric in lipid unsaturation, packing and protein shape. Nat. Chem. Biol. 2020;16:644–652. doi: 10.1038/s41589-020-0529-6. PubMed DOI PMC

Slatter DA, et al. Mapping the human platelet lipidome reveals cytosolic Phospholipase A2 as a regulator of mitochondrial bioenergetics during activation. Cell Metab. 2016;23:930–944. doi: 10.1016/j.cmet.2016.04.001. PubMed DOI PMC

Torres M, et al. Lipids in pathophysiology and development of the membrane lipid therapy: new bioactive lipids. Membranes. 2021;11:919. doi: 10.3390/membranes11120919. PubMed DOI PMC

Topgaard, D. Chapter 1 translational motion of water in biological tissues - a brief primer. In Advanced Diffusion Encoding Methods in MRI, 1–11 (The Royal Society of Chemistry, 2020).

Nitsche LC, Kasting GB, Nitsche JM. Microscopic models of drug/chemical diffusion through the skin barrier: effects of diffusional anisotropy of the intercellular lipid. J. Pharma. Sci. 2019;108:1692–1712. doi: 10.1016/j.xphs.2018.11.014. PubMed DOI

Ollila OS, Pabst G. Atomistic resolution structure and dynamics of lipid bilayers in simulations and experiments. Biochim. Biophys. Acta. 2016;1858:2512–2528. doi: 10.1016/j.bbamem.2016.01.019. PubMed DOI

Catte A, et al. Molecular electrometer and binding of cations to phospholipid bilayers. Phys. Chem. Chem. Phys. 2016;18:32560–32569. doi: 10.1039/C6CP04883H. PubMed DOI

Antila H, et al. Headgroup structure and cation binding in phosphatidylserine lipid bilayers. J. Phys. Chem. B. 2019;123:9066–9079. doi: 10.1021/acs.jpcb.9b06091. PubMed DOI

Bacle A, et al. Inverse conformational selection in lipid-protein binding. J. Am. Chem. Soc. 2021;143:13701–13709. doi: 10.1021/jacs.1c05549. PubMed DOI

Wilkinson MD, et al. The fair guiding principles for scientific data management and stewardship. Sci. Data. 2016;3:160018. doi: 10.1038/sdata.2016.18. PubMed DOI PMC

Universal molecule and atom names in the nmrlipids databank. https://nmrlipids.github.io/moleculesAndMapping.html. Accessed: 2013-10-10.

Examples and tutorials for using the nmrlipids databank. https://nmrlipids.github.io/exampleAndTutorials.html. accessed 10 Oct 2013.

Antila HS, et al. Emerging era of biomolecular membrane simulations: automated physically-justified force field development and quality-evaluated databanks. J. Phys. Chem. B. 2022;126:4169–4183. doi: 10.1021/acs.jpcb.2c01954. DOI

Gupta C, Sarkar D, Tieleman DP, Singharoy A. The ugly, bad, and good stories of large-scale biomolecular simulations. Curr. Opin. Struct. Biol. 2022;73:102338. doi: 10.1016/j.sbi.2022.102338. PubMed DOI

Johnson GT, et al. cellpack: a virtual mesoscope to model and visualize structural systems biology. Nat. Methods. 2015;12:85–91. doi: 10.1038/nmeth.3204. PubMed DOI PMC

Thornburg ZR, et al. Fundamental behaviors emerge from simulations of a living minimal cell. Cell. 2022;185:345–360.e28. doi: 10.1016/j.cell.2021.12.025. PubMed DOI PMC

Wurl A, M. Ferreira T. Atomistic md simulations of n-alkanes in a phospholipid bilayer: Charmm36 versus slipids. Macromol. Theory Simul. 2023;32:2200078. doi: 10.1002/mats.202200078. DOI

Shahane G, Ding W, Palaiokostas M, Orsi M. Physical properties of model biological lipid bilayers: insights from all-atom molecular dynamics simulations. J. Mol. Model. 2019;25:76. doi: 10.1007/s00894-019-3964-0. PubMed DOI

Kumar N, Sastry GN. Study of lipid heterogeneity on bilayer membranes using molecular dynamics simulations. J. Mol. Graph. Modell. 2021;108:108000. doi: 10.1016/j.jmgm.2021.108000. PubMed DOI

Oliveira AA, et al. Examining the effect of charged lipids on mitochondrial outer membrane dynamics using atomistic simulations. Biomolecules. 2022;12:183. doi: 10.3390/biom12020183. PubMed DOI PMC

Phillips R, Ursell T, Wiggins P, Sens P. Emerging roles for lipids in shaping membrane-protein function. Nature. 2009;459:379–385. doi: 10.1038/nature08147. PubMed DOI PMC

Steck T, Lange Y. How slow is the transbilayer diffusion (flip-flop) of cholesterol? Biophys. J. 2012;102:945–946. doi: 10.1016/j.bpj.2011.10.059. PubMed DOI PMC

Parisio G, Ferrarini A, Sperotto MM. Model studies of lipid flip-flop in membranes. Int. J. Adv. Eng. Sci. Appl. Math. 2016;8:134–146. doi: 10.1007/s12572-015-0155-9. DOI

Gu R-X, Baoukina S, Tieleman DP. Cholesterol flip-flop in heterogeneous membranes. J. Chem. Theory Comput. 2019;15:2064–2070. doi: 10.1021/acs.jctc.8b00933. PubMed DOI

Javanainen M, Martinez-Seara H. Rapid diffusion of cholesterol along polyunsaturated membranes via deep dives. Phys. Chem. Chem. Phys. 2019;21:11660–11669. doi: 10.1039/C9CP02022E. PubMed DOI

Baral S, Levental I, Lyman E. Composition dependence of cholesterol flip-flop rates in physiological mixtures. Chem. Phys. Lipids. 2020;232:104967. doi: 10.1016/j.chemphyslip.2020.104967. PubMed DOI

Hansen S, Lehr C-M, Schaefer UF. Improved input parameters for diffusion models of skin absorption. Adv. Drug Delivery Rev. 2013;65:251–264. doi: 10.1016/j.addr.2012.04.011. PubMed DOI

Wen J, Koo SM, Lape N. How sensitive are transdermal transport predictions by microscopic stratum corneum models to geometric and transport parameter input? J. Pharm. Sci. 2018;107:612–623. doi: 10.1016/j.xphs.2017.09.015. PubMed DOI

Roberts MS, et al. Topical drug delivery: history, percutaneous absorption, and product development. Adv. Drug Delivery Rev. 2021;177:113929. doi: 10.1016/j.addr.2021.113929. PubMed DOI

Venable RM, Krämer A, Pastor RW. Molecular dynamics simulations of membrane permeability. Chem. Rev. 2019;119:5954–5997. doi: 10.1021/acs.chemrev.8b00486. PubMed DOI PMC

Camilo CRdS, Ruggiero JR, de Araujo AS. A method for detection of water permeation events in molecular dynamics simulations of lipid bilayers. Brazil. J. Phys. 2022;52:1–13. doi: 10.1007/s13538-022-01071-1. DOI

Jansen M, Blume A. A comparative study of diffusive and osmotic water permeation across bilayers composed of phospholipids with different head groups and fatty acyl chains. Biophys. J. 1995;68:997–1008. doi: 10.1016/S0006-3495(95)80275-4. PubMed DOI PMC

Nagle JF, Mathai JC, Zeidel ML, Tristram-Nagle S. Theory of passive permeability through lipid bilayers. J. General Physiol. 2008;131:77–85. doi: 10.1085/jgp.200709849. PubMed DOI PMC

Frallicciardi J, Melcr J, Siginou P, Marrink SJ, Poolman B. Membrane thickness, lipid phase and sterol type are determining factors in the permeability of membranes to small solutes. Nat. Commun. 2022;13:1605. doi: 10.1038/s41467-022-29272-x. PubMed DOI PMC

Khakimov AM, Rudakova MA, Doroginitskii MM, Filippov AV. Temperature dependence of water self-diffusion through lipid bilayers assessed by NMR. Biophysics. 2008;53:147–152. doi: 10.1134/S000635090802005X. PubMed DOI

Kadaoluwa Pathirannahalage SP, et al. Systematic comparison of the structural and dynamic properties of commonly used water models for molecular dynamics simulations. J. Chem. Inform. Model. 2021;61:4521–4536. doi: 10.1021/acs.jcim.1c00794. PubMed DOI

Tanner JE. Transient diffusion in a system partitioned by permeable barriers. application to nmr measurements with a pulsed field gradient. J. Chem. Phys. 1978;69:1748–1754. doi: 10.1063/1.436751. DOI

Wästerby P, Orädd G, Lindblom G. Anisotropic water diffusion in macroscopically oriented lipid bilayers studied by pulsed magnetic field gradient nmr. J. Magnetic Reson. 2002;157:156–159. doi: 10.1006/jmre.2002.2583. PubMed DOI

Baek M, et al. Accurate prediction of protein structures and interactions using a three-track neural network. Science. 2021;373:871–876. doi: 10.1126/science.abj8754. PubMed DOI PMC

Lin Z, et al. Evolutionary-scale prediction of atomic-level protein structure with a language model. Science. 2023;379:1123–1130. doi: 10.1126/science.ade2574. PubMed DOI

Gowers, R. J. et al. Mdanalysis: a python package for the rapid analysis of molecular dynamics simulations, 10.25080/Majora-629e541a-00e (2019).

Michaud-Agrawal N, Denning EJ, Woolf TB, Beckstein O. Mdanalysis: a toolkit for the analysis of molecular dynamics simulations. J. Comput. Chem. 2011;32:2319–2327. doi: 10.1002/jcc.21787. PubMed DOI PMC

User input and content of readme.yaml files. https://nmrlipids.github.io/READMEcontent.html. accessed 10 Oct 2013.

Adding experimental data into the nmrlipids databank. https://nmrlipids.github.io/addingExpData.html. accessed 10 Oct 2013.

Scherer P, Seelig J. Structure and dynamics of the phosphatidylcholine and the phosphatidylethanolamine head group in L-M fibroblasts as studied by deuterium nuclear magnetic resonance. EMBO J. 1987;6:2915–2922. doi: 10.1002/j.1460-2075.1987.tb02595.x. PubMed DOI PMC

Ferreira TM, et al. Cholesterol and POPC segmental order parameters in lipid membranes: solid state 1H-13C NMR and MD simulation studies. Phys. Chem. Chem. Phys. 2013;15:1976–1989. doi: 10.1039/C2CP42738A. PubMed DOI

Melcr J, Ferreira TM, Jungwirth P, Ollila OHS. Improved cation binding to lipid bilayers with negatively charged pops by effective inclusion of electronic polarization. J. Chem. Theo. Comput. 2020;16:738–748. doi: 10.1021/acs.jctc.9b00824. PubMed DOI

Hanashima S, et al. Cholesterol-induced conformational change in the sphingomyelin headgroup. Biophys. J. 2019;117:307–318. doi: 10.1016/j.bpj.2019.06.019. PubMed DOI PMC

Doktorova M, et al. Molecular structure of sphingomyelin in fluid phase bilayers determined by the joint analysis of small-angle neutron and x-ray scattering data. J. Phys. Chem. B. 2020;124:5186–5200. doi: 10.1021/acs.jpcb.0c03389. PubMed DOI PMC

Kučerka N, et al. Lipid bilayer structure determined by the simultaneous analysis of neutron and x-ray scattering data. Biophys. J. 2008;95:2356–2367. doi: 10.1529/biophysj.108.132662. PubMed DOI PMC

Kučerka N, Nieh MP, Katsaras J. Fluid phase lipid areas and bilayer thicknesses of commonly used phosphatidylcholines as a function of temperature. Biochim. Biophys. Acta. 2011;1808:2761–2771. doi: 10.1016/j.bbamem.2011.07.022. PubMed DOI

Pan J, et al. Molecular structures of fluid phase phosphatidylglycerol bilayers as determined by small angle neutron and x-ray scattering. Biochim. Biophys. Acta - Biomembranes. 2012;1818:2135–2148. doi: 10.1016/j.bbamem.2012.05.007. PubMed DOI PMC

Pan J, et al. The molecular structure of a phosphatidylserine bilayer determined by scattering and molecular dynamics simulations. Soft Matter. 2014;10:3716–3725. doi: 10.1039/c4sm00066h. PubMed DOI

Kučerka N, et al. Molecular structures of fluid phosphatidylethanolamine bilayers obtained from simulation-to-experiment comparisons and experimental scattering density profiles. J. Phys. Chem. B. 2015;119:1947–1956. doi: 10.1021/jp511159q. PubMed DOI

Javanainen M, et al. Quantitative comparison against experiments reveals imperfections in force fields’ descriptions of popc-cholesterol interactions. J. Chem. Theory Comput. 2023;19:6342–6352. doi: 10.1021/acs.jctc.3c00648. PubMed DOI PMC

Buslaev P, Gordeliy V, Grudinin S, Gushchin I. Principal component analysis of lipid molecule conformational changes in molecular dynamics simulations. J. Chem. Theory Comput. 2016;12:1019–1028. doi: 10.1021/acs.jctc.5b01106. PubMed DOI

Buslaev P, Mustafin K, Gushchin I. Principal component analysis highlights the influence of temperature, curvature and cholesterol on conformational dynamics of lipids. Biochim. Biophys. Acta -Biomembranes. 2020;1862:183253. doi: 10.1016/j.bbamem.2020.183253. PubMed DOI

Wurl A, Saalwächter K, Mendes Ferreira T. Time-domain r-pdlf nmr for molecular structure determination in complex lipid membranes. Magnetic Resonance Discuss. 2022;2022:1–18. PubMed PMC

Antila HS, M. Ferreira T, Ollila OHS, Miettinen MS. Using open data to rapidly benchmark biomolecular simulations: Phospholipid conformational dynamics. J.Chem. Inf. Model. 2021;61:938–949. doi: 10.1021/acs.jcim.0c01299. PubMed DOI PMC

Kučerka N, Katsaras J, Nagle J. Comparing membrane simulations to scattering experiments: Introducing the SIMtoEXP software. J. Membr. Biol. 2010;235:43–50. doi: 10.1007/s00232-010-9254-5. PubMed DOI PMC

Smith P, Lorenz CD. Lipyphilic: a python toolkit for the analysis of lipid membrane simulations. J. Chem. Theory Comput. 2021;17:5907–5919. doi: 10.1021/acs.jctc.1c00447. PubMed DOI

Bauer, P., Hess, B. & Lindahl, E. Gromacs 2022.3 manual, 10.5281/zenodo.7037337 (2022).

Escribá PV, et al. Membrane lipid therapy: modulation of the cell membrane composition and structure as a molecular base for drug discovery and new disease treatment. Progress Lipid Res. 2015;59:38–53. doi: 10.1016/j.plipres.2015.04.003. PubMed DOI

Casares D, Escribá PV, Rosselló CA. Membrane lipid composition: effect on membrane and organelle structure, function and compartmentalization and therapeutic avenues. Int. J. Mol. Sci. 2019;20:2167. doi: 10.3390/ijms20092167. PubMed DOI PMC

Chwastek G, et al. Principles of membrane adaptation revealed through environmentally induced bacterial lipidome remodeling. Cell Rep. 2020;32:108165. doi: 10.1016/j.celrep.2020.108165. PubMed DOI

Binotti B, Jahn R, Pérez-Lara Á. An overview of the synaptic vesicle lipid composition. Archives Biochem. Biophys. 2021;709:108966. doi: 10.1016/j.abb.2021.108966. PubMed DOI

Gerl MJ, et al. Quantitative analysis of the lipidomes of the influenza virus envelope and MDCK cell apical membrane. J. Cell Biol. 2012;196:213–221. doi: 10.1083/jcb.201108175. PubMed DOI PMC

Ivanova PT, et al. Lipid composition of the viral envelope of three strains of influenza virus—not all viruses are created equal. ACS Infect. Dis. 2015;1:435–442. doi: 10.1021/acsinfecdis.5b00040. PubMed DOI PMC

Rudakova M, Filippov A, Skirda V. Water diffusivity in model biological membranes. Appl. Magnetic Resonance. 2004;27:519. doi: 10.1007/BF03166747. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace