Overlay databank unlocks data-driven analyses of biomolecules for all
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
PubMed
38326316
PubMed Central
PMC10850068
DOI
10.1038/s41467-024-45189-z
PII: 10.1038/s41467-024-45189-z
Knihovny.cz E-zdroje
- MeSH
- buněčná membrána MeSH
- membránové lipidy * MeSH
- simulace molekulární dynamiky MeSH
- strojové učení MeSH
- umělá inteligence * MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- membránové lipidy * MeSH
Tools based on artificial intelligence (AI) are currently revolutionising many fields, yet their applications are often limited by the lack of suitable training data in programmatically accessible format. Here we propose an effective solution to make data scattered in various locations and formats accessible for data-driven and machine learning applications using the overlay databank format. To demonstrate the practical relevance of such approach, we present the NMRlipids Databank-a community-driven, open-for-all database featuring programmatic access to quality-evaluated atom-resolution molecular dynamics simulations of cellular membranes. Cellular membrane lipid composition is implicated in diseases and controls major biological functions, but membranes are difficult to study experimentally due to their intrinsic disorder and complex phase behaviour. While MD simulations have been useful in understanding membrane systems, they require significant computational resources and often suffer from inaccuracies in model parameters. Here, we demonstrate how programmable interface for flexible implementation of data-driven and machine learning applications, and rapid access to simulation data through a graphical user interface, unlock possibilities beyond current MD simulation and experimental studies to understand cellular membranes. The proposed overlay databank concept can be further applied to other biomolecules, as well as in other fields where similar barriers hinder the AI revolution.
Chemistry University of Southampton Highfield SO17 1BJ Southampton UK
Department of Biomedicine University of Bergen 5020 Bergen Norway
Department of Chemistry University of Bergen 5007 Bergen Norway
Department of Informatics Computational Biology Unit University of Bergen 5008 Bergen Norway
Department of Physics University of Helsinki FI 00014 Helsinki Finland
Heidelberg University Biochemistry Center 69120 Heidelberg Germany
Hochschule Mannheim University of Applied Sciences 68163 Mannheim Germany
Institut National de la Santé et de la Recherche Médicale Lyon France
Institute of Biotechnology RWTH Aachen University Worringerweg 3 52074 Aachen Germany
MD USE Innovations S L Edificio Emprendia 15782 Santiago de Compostela Spain
Nanoscience Center and Department of Chemistry University of Jyväskylä 40014 Jyväskylä Finland
NMR group Institute for Physics Martin Luther University Halle Wittenberg 06120 Halle Germany
riadne ai GmbH Häusserstraße 3 69115 Heidelberg Germany
School of Pharmacy University of Eastern Finland 70211 Kuopio Finland
Université Paris Cité F 75006 Paris France
University of Helsinki Institute of Biotechnology Helsinki Finland
University of Lyon CNRS Molecular Microbiology and Structural Biochemistry F 69007 Lyon France
University of Potsdam Institute of Physics and Astronomy 14476 Potsdam Golm Germany
Zobrazit více v PubMed
Sever R. We need a plan d. Nat. Methods. 2023;20:473–474. doi: 10.1038/s41592-023-01817-y. PubMed DOI
Montelione GT, et al. Recommendations of the wwpdb nmr validation task force. Structure. 2013;21:1563–1570. doi: 10.1016/j.str.2013.07.021. PubMed DOI PMC
Jumper J, et al. Highly accurate protein structure prediction with alphafold. Nature. 2021;596:583–589. doi: 10.1038/s41586-021-03819-2. PubMed DOI PMC
Tiemann, J. K. S. et al. Mdverse: shedding light on the dark matter of molecular dynamics simulations. eLife10.7554/elife.90061.1 (2023). PubMed PMC
Klukowski P, Riek R, Güntert P. Rapid protein assignments and structures from raw nmr spectra with the deep learning technique artina. Nat. Commun. 2022;13:6151. doi: 10.1038/s41467-022-33879-5. PubMed DOI PMC
Botan A, et al. Toward atomistic resolution structure of phosphatidylcholine headgroup and glycerol backbone at different ambient conditions. J. Phys. Chem. B. 2015;119:15075–15088. doi: 10.1021/acs.jpcb.5b04878. PubMed DOI PMC
van Meer G, Voelker DR, Feigenson GW. Membrane lipids: where they are and how they behave. Nat. Rev. Mol. Cell Biol. 2008;9:112–124. doi: 10.1038/nrm2330. PubMed DOI PMC
Lorent JH, et al. Plasma membranes are asymmetric in lipid unsaturation, packing and protein shape. Nat. Chem. Biol. 2020;16:644–652. doi: 10.1038/s41589-020-0529-6. PubMed DOI PMC
Slatter DA, et al. Mapping the human platelet lipidome reveals cytosolic Phospholipase A2 as a regulator of mitochondrial bioenergetics during activation. Cell Metab. 2016;23:930–944. doi: 10.1016/j.cmet.2016.04.001. PubMed DOI PMC
Torres M, et al. Lipids in pathophysiology and development of the membrane lipid therapy: new bioactive lipids. Membranes. 2021;11:919. doi: 10.3390/membranes11120919. PubMed DOI PMC
Topgaard, D. Chapter 1 translational motion of water in biological tissues - a brief primer. In Advanced Diffusion Encoding Methods in MRI, 1–11 (The Royal Society of Chemistry, 2020).
Nitsche LC, Kasting GB, Nitsche JM. Microscopic models of drug/chemical diffusion through the skin barrier: effects of diffusional anisotropy of the intercellular lipid. J. Pharma. Sci. 2019;108:1692–1712. doi: 10.1016/j.xphs.2018.11.014. PubMed DOI
Ollila OS, Pabst G. Atomistic resolution structure and dynamics of lipid bilayers in simulations and experiments. Biochim. Biophys. Acta. 2016;1858:2512–2528. doi: 10.1016/j.bbamem.2016.01.019. PubMed DOI
Catte A, et al. Molecular electrometer and binding of cations to phospholipid bilayers. Phys. Chem. Chem. Phys. 2016;18:32560–32569. doi: 10.1039/C6CP04883H. PubMed DOI
Antila H, et al. Headgroup structure and cation binding in phosphatidylserine lipid bilayers. J. Phys. Chem. B. 2019;123:9066–9079. doi: 10.1021/acs.jpcb.9b06091. PubMed DOI
Bacle A, et al. Inverse conformational selection in lipid-protein binding. J. Am. Chem. Soc. 2021;143:13701–13709. doi: 10.1021/jacs.1c05549. PubMed DOI
Wilkinson MD, et al. The fair guiding principles for scientific data management and stewardship. Sci. Data. 2016;3:160018. doi: 10.1038/sdata.2016.18. PubMed DOI PMC
Universal molecule and atom names in the nmrlipids databank. https://nmrlipids.github.io/moleculesAndMapping.html. Accessed: 2013-10-10.
Examples and tutorials for using the nmrlipids databank. https://nmrlipids.github.io/exampleAndTutorials.html. accessed 10 Oct 2013.
Antila HS, et al. Emerging era of biomolecular membrane simulations: automated physically-justified force field development and quality-evaluated databanks. J. Phys. Chem. B. 2022;126:4169–4183. doi: 10.1021/acs.jpcb.2c01954. DOI
Gupta C, Sarkar D, Tieleman DP, Singharoy A. The ugly, bad, and good stories of large-scale biomolecular simulations. Curr. Opin. Struct. Biol. 2022;73:102338. doi: 10.1016/j.sbi.2022.102338. PubMed DOI
Johnson GT, et al. cellpack: a virtual mesoscope to model and visualize structural systems biology. Nat. Methods. 2015;12:85–91. doi: 10.1038/nmeth.3204. PubMed DOI PMC
Thornburg ZR, et al. Fundamental behaviors emerge from simulations of a living minimal cell. Cell. 2022;185:345–360.e28. doi: 10.1016/j.cell.2021.12.025. PubMed DOI PMC
Wurl A, M. Ferreira T. Atomistic md simulations of n-alkanes in a phospholipid bilayer: Charmm36 versus slipids. Macromol. Theory Simul. 2023;32:2200078. doi: 10.1002/mats.202200078. DOI
Shahane G, Ding W, Palaiokostas M, Orsi M. Physical properties of model biological lipid bilayers: insights from all-atom molecular dynamics simulations. J. Mol. Model. 2019;25:76. doi: 10.1007/s00894-019-3964-0. PubMed DOI
Kumar N, Sastry GN. Study of lipid heterogeneity on bilayer membranes using molecular dynamics simulations. J. Mol. Graph. Modell. 2021;108:108000. doi: 10.1016/j.jmgm.2021.108000. PubMed DOI
Oliveira AA, et al. Examining the effect of charged lipids on mitochondrial outer membrane dynamics using atomistic simulations. Biomolecules. 2022;12:183. doi: 10.3390/biom12020183. PubMed DOI PMC
Phillips R, Ursell T, Wiggins P, Sens P. Emerging roles for lipids in shaping membrane-protein function. Nature. 2009;459:379–385. doi: 10.1038/nature08147. PubMed DOI PMC
Steck T, Lange Y. How slow is the transbilayer diffusion (flip-flop) of cholesterol? Biophys. J. 2012;102:945–946. doi: 10.1016/j.bpj.2011.10.059. PubMed DOI PMC
Parisio G, Ferrarini A, Sperotto MM. Model studies of lipid flip-flop in membranes. Int. J. Adv. Eng. Sci. Appl. Math. 2016;8:134–146. doi: 10.1007/s12572-015-0155-9. DOI
Gu R-X, Baoukina S, Tieleman DP. Cholesterol flip-flop in heterogeneous membranes. J. Chem. Theory Comput. 2019;15:2064–2070. doi: 10.1021/acs.jctc.8b00933. PubMed DOI
Javanainen M, Martinez-Seara H. Rapid diffusion of cholesterol along polyunsaturated membranes via deep dives. Phys. Chem. Chem. Phys. 2019;21:11660–11669. doi: 10.1039/C9CP02022E. PubMed DOI
Baral S, Levental I, Lyman E. Composition dependence of cholesterol flip-flop rates in physiological mixtures. Chem. Phys. Lipids. 2020;232:104967. doi: 10.1016/j.chemphyslip.2020.104967. PubMed DOI
Hansen S, Lehr C-M, Schaefer UF. Improved input parameters for diffusion models of skin absorption. Adv. Drug Delivery Rev. 2013;65:251–264. doi: 10.1016/j.addr.2012.04.011. PubMed DOI
Wen J, Koo SM, Lape N. How sensitive are transdermal transport predictions by microscopic stratum corneum models to geometric and transport parameter input? J. Pharm. Sci. 2018;107:612–623. doi: 10.1016/j.xphs.2017.09.015. PubMed DOI
Roberts MS, et al. Topical drug delivery: history, percutaneous absorption, and product development. Adv. Drug Delivery Rev. 2021;177:113929. doi: 10.1016/j.addr.2021.113929. PubMed DOI
Venable RM, Krämer A, Pastor RW. Molecular dynamics simulations of membrane permeability. Chem. Rev. 2019;119:5954–5997. doi: 10.1021/acs.chemrev.8b00486. PubMed DOI PMC
Camilo CRdS, Ruggiero JR, de Araujo AS. A method for detection of water permeation events in molecular dynamics simulations of lipid bilayers. Brazil. J. Phys. 2022;52:1–13. doi: 10.1007/s13538-022-01071-1. DOI
Jansen M, Blume A. A comparative study of diffusive and osmotic water permeation across bilayers composed of phospholipids with different head groups and fatty acyl chains. Biophys. J. 1995;68:997–1008. doi: 10.1016/S0006-3495(95)80275-4. PubMed DOI PMC
Nagle JF, Mathai JC, Zeidel ML, Tristram-Nagle S. Theory of passive permeability through lipid bilayers. J. General Physiol. 2008;131:77–85. doi: 10.1085/jgp.200709849. PubMed DOI PMC
Frallicciardi J, Melcr J, Siginou P, Marrink SJ, Poolman B. Membrane thickness, lipid phase and sterol type are determining factors in the permeability of membranes to small solutes. Nat. Commun. 2022;13:1605. doi: 10.1038/s41467-022-29272-x. PubMed DOI PMC
Khakimov AM, Rudakova MA, Doroginitskii MM, Filippov AV. Temperature dependence of water self-diffusion through lipid bilayers assessed by NMR. Biophysics. 2008;53:147–152. doi: 10.1134/S000635090802005X. PubMed DOI
Kadaoluwa Pathirannahalage SP, et al. Systematic comparison of the structural and dynamic properties of commonly used water models for molecular dynamics simulations. J. Chem. Inform. Model. 2021;61:4521–4536. doi: 10.1021/acs.jcim.1c00794. PubMed DOI
Tanner JE. Transient diffusion in a system partitioned by permeable barriers. application to nmr measurements with a pulsed field gradient. J. Chem. Phys. 1978;69:1748–1754. doi: 10.1063/1.436751. DOI
Wästerby P, Orädd G, Lindblom G. Anisotropic water diffusion in macroscopically oriented lipid bilayers studied by pulsed magnetic field gradient nmr. J. Magnetic Reson. 2002;157:156–159. doi: 10.1006/jmre.2002.2583. PubMed DOI
Baek M, et al. Accurate prediction of protein structures and interactions using a three-track neural network. Science. 2021;373:871–876. doi: 10.1126/science.abj8754. PubMed DOI PMC
Lin Z, et al. Evolutionary-scale prediction of atomic-level protein structure with a language model. Science. 2023;379:1123–1130. doi: 10.1126/science.ade2574. PubMed DOI
Gowers, R. J. et al. Mdanalysis: a python package for the rapid analysis of molecular dynamics simulations, 10.25080/Majora-629e541a-00e (2019).
Michaud-Agrawal N, Denning EJ, Woolf TB, Beckstein O. Mdanalysis: a toolkit for the analysis of molecular dynamics simulations. J. Comput. Chem. 2011;32:2319–2327. doi: 10.1002/jcc.21787. PubMed DOI PMC
User input and content of readme.yaml files. https://nmrlipids.github.io/READMEcontent.html. accessed 10 Oct 2013.
Adding experimental data into the nmrlipids databank. https://nmrlipids.github.io/addingExpData.html. accessed 10 Oct 2013.
Scherer P, Seelig J. Structure and dynamics of the phosphatidylcholine and the phosphatidylethanolamine head group in L-M fibroblasts as studied by deuterium nuclear magnetic resonance. EMBO J. 1987;6:2915–2922. doi: 10.1002/j.1460-2075.1987.tb02595.x. PubMed DOI PMC
Ferreira TM, et al. Cholesterol and POPC segmental order parameters in lipid membranes: solid state 1H-13C NMR and MD simulation studies. Phys. Chem. Chem. Phys. 2013;15:1976–1989. doi: 10.1039/C2CP42738A. PubMed DOI
Melcr J, Ferreira TM, Jungwirth P, Ollila OHS. Improved cation binding to lipid bilayers with negatively charged pops by effective inclusion of electronic polarization. J. Chem. Theo. Comput. 2020;16:738–748. doi: 10.1021/acs.jctc.9b00824. PubMed DOI
Hanashima S, et al. Cholesterol-induced conformational change in the sphingomyelin headgroup. Biophys. J. 2019;117:307–318. doi: 10.1016/j.bpj.2019.06.019. PubMed DOI PMC
Doktorova M, et al. Molecular structure of sphingomyelin in fluid phase bilayers determined by the joint analysis of small-angle neutron and x-ray scattering data. J. Phys. Chem. B. 2020;124:5186–5200. doi: 10.1021/acs.jpcb.0c03389. PubMed DOI PMC
Kučerka N, et al. Lipid bilayer structure determined by the simultaneous analysis of neutron and x-ray scattering data. Biophys. J. 2008;95:2356–2367. doi: 10.1529/biophysj.108.132662. PubMed DOI PMC
Kučerka N, Nieh MP, Katsaras J. Fluid phase lipid areas and bilayer thicknesses of commonly used phosphatidylcholines as a function of temperature. Biochim. Biophys. Acta. 2011;1808:2761–2771. doi: 10.1016/j.bbamem.2011.07.022. PubMed DOI
Pan J, et al. Molecular structures of fluid phase phosphatidylglycerol bilayers as determined by small angle neutron and x-ray scattering. Biochim. Biophys. Acta - Biomembranes. 2012;1818:2135–2148. doi: 10.1016/j.bbamem.2012.05.007. PubMed DOI PMC
Pan J, et al. The molecular structure of a phosphatidylserine bilayer determined by scattering and molecular dynamics simulations. Soft Matter. 2014;10:3716–3725. doi: 10.1039/c4sm00066h. PubMed DOI
Kučerka N, et al. Molecular structures of fluid phosphatidylethanolamine bilayers obtained from simulation-to-experiment comparisons and experimental scattering density profiles. J. Phys. Chem. B. 2015;119:1947–1956. doi: 10.1021/jp511159q. PubMed DOI
Javanainen M, et al. Quantitative comparison against experiments reveals imperfections in force fields’ descriptions of popc-cholesterol interactions. J. Chem. Theory Comput. 2023;19:6342–6352. doi: 10.1021/acs.jctc.3c00648. PubMed DOI PMC
Buslaev P, Gordeliy V, Grudinin S, Gushchin I. Principal component analysis of lipid molecule conformational changes in molecular dynamics simulations. J. Chem. Theory Comput. 2016;12:1019–1028. doi: 10.1021/acs.jctc.5b01106. PubMed DOI
Buslaev P, Mustafin K, Gushchin I. Principal component analysis highlights the influence of temperature, curvature and cholesterol on conformational dynamics of lipids. Biochim. Biophys. Acta -Biomembranes. 2020;1862:183253. doi: 10.1016/j.bbamem.2020.183253. PubMed DOI
Wurl A, Saalwächter K, Mendes Ferreira T. Time-domain r-pdlf nmr for molecular structure determination in complex lipid membranes. Magnetic Resonance Discuss. 2022;2022:1–18. PubMed PMC
Antila HS, M. Ferreira T, Ollila OHS, Miettinen MS. Using open data to rapidly benchmark biomolecular simulations: Phospholipid conformational dynamics. J.Chem. Inf. Model. 2021;61:938–949. doi: 10.1021/acs.jcim.0c01299. PubMed DOI PMC
Kučerka N, Katsaras J, Nagle J. Comparing membrane simulations to scattering experiments: Introducing the SIMtoEXP software. J. Membr. Biol. 2010;235:43–50. doi: 10.1007/s00232-010-9254-5. PubMed DOI PMC
Smith P, Lorenz CD. Lipyphilic: a python toolkit for the analysis of lipid membrane simulations. J. Chem. Theory Comput. 2021;17:5907–5919. doi: 10.1021/acs.jctc.1c00447. PubMed DOI
Bauer, P., Hess, B. & Lindahl, E. Gromacs 2022.3 manual, 10.5281/zenodo.7037337 (2022).
Escribá PV, et al. Membrane lipid therapy: modulation of the cell membrane composition and structure as a molecular base for drug discovery and new disease treatment. Progress Lipid Res. 2015;59:38–53. doi: 10.1016/j.plipres.2015.04.003. PubMed DOI
Casares D, Escribá PV, Rosselló CA. Membrane lipid composition: effect on membrane and organelle structure, function and compartmentalization and therapeutic avenues. Int. J. Mol. Sci. 2019;20:2167. doi: 10.3390/ijms20092167. PubMed DOI PMC
Chwastek G, et al. Principles of membrane adaptation revealed through environmentally induced bacterial lipidome remodeling. Cell Rep. 2020;32:108165. doi: 10.1016/j.celrep.2020.108165. PubMed DOI
Binotti B, Jahn R, Pérez-Lara Á. An overview of the synaptic vesicle lipid composition. Archives Biochem. Biophys. 2021;709:108966. doi: 10.1016/j.abb.2021.108966. PubMed DOI
Gerl MJ, et al. Quantitative analysis of the lipidomes of the influenza virus envelope and MDCK cell apical membrane. J. Cell Biol. 2012;196:213–221. doi: 10.1083/jcb.201108175. PubMed DOI PMC
Ivanova PT, et al. Lipid composition of the viral envelope of three strains of influenza virus—not all viruses are created equal. ACS Infect. Dis. 2015;1:435–442. doi: 10.1021/acsinfecdis.5b00040. PubMed DOI PMC
Rudakova M, Filippov A, Skirda V. Water diffusivity in model biological membranes. Appl. Magnetic Resonance. 2004;27:519. doi: 10.1007/BF03166747. DOI
Free Energy of Membrane Pore Formation and Stability from Molecular Dynamics Simulations