Meta-Analysis of Permeability Literature Data Shows Possibilities and Limitations of Popular Methods

. 2025 Mar 03 ; 22 (3) : 1293-1304. [epub] 20250220

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, metaanalýza

Perzistentní odkaz   https://www.medvik.cz/link/pmid39977255

Permeability is an important molecular property in drug discovery, as it co-determines pharmacokinetics whenever a drug crosses the phospholipid bilayer, e.g., into the cell, in the gastrointestinal tract, or across the blood-brain barrier. Many methods for the determination of permeability have been developed, including cell line assays (CACO-2 and MDCK), cell-free model systems like parallel artificial membrane permeability assay (PAMPA) mimicking, e.g., gastrointestinal epithelia or the skin, as well as the black lipid membrane (BLM) and submicrometer liposomes. Furthermore, many in silico approaches have been developed for permeability prediction: meta-analysis of publicly available databases for permeability data (MolMeDB and ChEMBL) was performed to establish their usability. Four experimental and two computational methods were evaluated. It was shown that repeatability of the reported permeability measurement is not great even for the same method. For the PAMPA method, two different permeabilities are reported: intrinsic and apparent. They can vary in degrees of magnitude; thus, we suggest being extra cautious using literature data on permeability. When we compared data for the same molecules using different methods, the best agreement was between cell-based methods and between BLM and computational methods. Existence of unstirred water layer (UWL) permeability limits the data agreement between cell-based methods (and apparent PAMPA) with data that are not limited by UWL permeability (computational methods, BLM, intrinsic PAMPA). Therefore, different methods have different limitations. Cell-based methods provide results only in a small range of permeabilities (-8 to -4 in cm/s), and computational methods can predict a wider range of permeabilities beyond physical limitations, but their precision is therefore limited. BLM with liposomes can be used for both fast and slow permeating molecules, but its usage is more complicated than standard transwell techniques. To sum up, when working with in-house measured or published permeability data, we recommend caution in interpreting and combining them.

Zobrazit více v PubMed

Di L.; Artursson P.; Avdeef A.; Benet L. Z.; Houston J. B.; Kansy M.; Kerns E. H.; Lennernäs H.; Smith D. A.; Sugano K. The Critical Role of Passive Permeability in Designing Successful Drugs. ChemMedChem 2020, 15 (20), 1862–1874. 10.1002/cmdc.202000419. PubMed DOI

Hidalgo I. J.; Raub T. J.; Borchardt R. T. Characterization of the Human Colon Carcinoma Cell Line (Caco-2) as a Model System for Intestinal Epithelial Permeability. Gastroenterology 1989, 96 (3), 736–749. 10.1016/0016-5085(89)90897-4. PubMed DOI

Irvine J. D.; Takahashi L.; Lockhart K.; Cheong J.; Tolan J. W.; Selick H. E.; Grove J. R. MDCK (Madin-Darby Canine Kidney) Cells: A Tool for Membrane Permeability Screening. J. Pharm. Sci. 1999, 88 (1), 28–33. 10.1021/js9803205. PubMed DOI

Fedi A.; Vitale C.; Ponschin G.; Ayehunie S.; Fato M.; Scaglione S. In Vitro Models Replicating the Human Intestinal Epithelium for Absorption and Metabolism Studies: A Systematic Review. J. Controlled Release 2021, 335, 247–268. 10.1016/j.jconrel.2021.05.028. PubMed DOI

Kansy M.; Senner F.; Gubernator K. Physicochemical High Throughput Screening: Parallel Artificial Membrane Permeation Assay in the Description of Passive Absorption Processes. J. Med. Chem. 1998, 41 (7), 1007–1010. 10.1021/jm970530e. PubMed DOI

Avdeef A. In Absorption and Drug Development: Solubility, Permeability, and Charge State; Wiley, 2003; pp 116–246. 10.1002/047145026X. DOI

Di L.; Kerns E. H.; Fan K.; McConnell O. J.; Carter G. T. High Throughput Artificial Membrane Permeability Assay for Blood–Brain Barrier. Eur. J. Med. Chem. 2003, 38 (3), 223–232. 10.1016/S0223-5234(03)00012-6. PubMed DOI

Ottaviani G.; Martel S.; Carrupt P.-A. Parallel Artificial Membrane Permeability Assay: A New Membrane for the Fast Prediction of Passive Human Skin Permeability. J. Med. Chem. 2006, 49 (13), 3948–3954. 10.1021/jm060230+. PubMed DOI

Henriques P.; Bicker J.; Silva S.; Doktorovová S.; Fortuna A. Nasal-PAMPA: A Novel Non-Cell-Based High Throughput Screening Assay for Prediction of Nasal Drug Permeability. Int. J. Pharm. 2023, 643, 123252.10.1016/j.ijpharm.2023.123252. PubMed DOI

Mueller P.; Rudin D. O.; Ti Tien H.; Wescott W. C. Reconstitution of Cell Membrane Structure in Vitro and Its Transformation into an Excitable System. Nature 1962, 194 (4832), 979–980. 10.1038/194979a0. PubMed DOI

Sugano K.; Kansy M.; Artursson P.; Avdeef A.; Bendels S.; Di L.; Ecker G. F.; Faller B.; Fischer H.; Gerebtzoff G.; Lennernaes H.; Senner F. Coexistence of Passive and Carrier-Mediated Processes in Drug Transport. Nat. Rev. Drug Discovery 2010, 9 (8), 597–614. 10.1038/nrd3187. PubMed DOI

Winterhalter M. Black Lipid Membranes. Curr. Opin. Colloid Interface Sci. 2000, 5 (3–4), 250–255. 10.1016/S1359-0294(00)00063-7. DOI

Lomize A. L.; Pogozheva I. D. Physics-Based Method for Modeling Passive Membrane Permeability and Translocation Pathways of Bioactive Molecules. J. Chem. Inf. Model. 2019, 59 (7), 3198–3213. 10.1021/acs.jcim.9b00224. PubMed DOI PMC

Bittermann K.; Goss K.-U. Predicting Apparent Passive Permeability of Caco-2 and MDCK Cell-Monolayers: A Mechanistic Model. PLoS One 2017, 12 (12), e019031910.1371/journal.pone.0190319. PubMed DOI PMC

Berben P.; Bauer-Brandl A.; Brandl M.; Faller B.; Flaten G. E.; Jacobsen A.-C.; Brouwers J.; Augustijns P. Drug Permeability Profiling Using Cell-Free Permeation Tools: Overview and Applications. Eur. J. Pharm. Sci. 2018, 119, 219–233. 10.1016/j.ejps.2018.04.016. PubMed DOI

Padhi A. K.; Janežič M.; Zhang K. Y. J.. Molecular Dynamics Simulations: Principles, Methods, and Applications in Protein Conformational Dynamics. In Advances in Protein Molecular and Structural Biology Methods; Elsevier, 2022; pp 439–454.10.1016/B978-0-323-90264-9.00026-X. DOI

Guo J.; Bao Y.; Li M.; Li S.; Xi L.; Xin P.; Wu L.; Liu H.; Mu Y. Application of Computational Approaches in Biomembranes: From Structure to Function. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2023, 13, e167910.1002/wcms.1679. DOI

Paloncýová M.; Fabre G.; DeVane R. H.; Trouillas P.; Berka K.; Otyepka M. Benchmarking of Force Fields for Molecule–Membrane Interactions. J. Chem. Theory Comput. 2014, 10 (9), 4143–4151. 10.1021/ct500419b. PubMed DOI

Kiirikki A. M.; Antila H. S.; Bort L. S.; Buslaev P.; Favela-Rosales F.; Ferreira T. M.; Fuchs P. F. J.; Garcia-Fandino R.; Gushchin I.; Kav B.; Kučerka N.; Kula P.; Kurki M.; Kuzmin A.; Lalitha A.; Lolicato F.; Madsen J. J.; Miettinen M. S.; Mingham C.; Monticelli L.; Nencini R.; Nesterenko A. M.; Piggot T. J.; Piñeiro A. ´.; Reuter N.; Samantray S.; Suárez-Lestón F.; Talandashti R.; Ollila O. H. S. Overlay Databank Unlocks Data-Driven Analyses of Biomolecules for All. Nat. Commun. 2024, 15 (1), 1136.10.1038/s41467-024-45189-z. PubMed DOI PMC

Lichtinger S. M.; Biggin P. C. Tackling Hysteresis in Conformational Sampling: How to Be Forgetful with MEMENTO. J. Chem. Theory Comput. 2023, 19 (12), 3705–3720. 10.1021/acs.jctc.3c00140. PubMed DOI PMC

Paloncýová M.; DeVane R. H.; Murch B. P.; Berka K.; Otyepka M. Rationalization of Reduced Penetration of Drugs through Ceramide Gel Phase Membrane. Langmuir 2014, 30 (46), 13942–13948. 10.1021/la503289v. PubMed DOI

Paloncýová M.; Vávrová K.; Sovová Ž.; DeVane R.; Otyepka M.; Berka K. Structural Changes in Ceramide Bilayers Rationalize Increased Permeation through Stratum Corneum Models with Shorter Acyl Tails. J. Phys. Chem. B 2015, 119 (30), 9811–9819. 10.1021/acs.jpcb.5b05522. PubMed DOI

Schwöbel J. A. H.; Ebert A.; Bittermann K.; Huniar U.; Goss K.-U.; Klamt A. COSMO Perm: Mechanistic Prediction of Passive Membrane Permeability for Neutral Compounds and Ions and Its pH Dependence. J. Phys. Chem. B 2020, 124 (16), 3343–3354. 10.1021/acs.jpcb.9b11728. PubMed DOI

Diamond J. M.; Katz Y. Interpretation of Nonelectrolyte Partition Coefficients between Dimyristoyl Lecithin and Water. J. Membr. Biol. 1974, 17 (1), 121–154. 10.1007/BF01870176. PubMed DOI

Lomize A. L.; Pogozheva I. D.; Mosberg H. I. Anisotropic Solvent Model of the Lipid Bilayer. 2. Energetics of Insertion of Small Molecules, Peptides, and Proteins in Membranes. J. Chem. Inf. Model. 2011, 51 (4), 930–946. 10.1021/ci200020k. PubMed DOI PMC

Lomize A. L.; Pogozheva I. D.; Lomize M. A.; Mosberg H. I. Positioning of Proteins in Membranes: A Computational Approach. Protein Sci. 2006, 15 (6), 1318–1333. 10.1110/ps.062126106. PubMed DOI PMC

Sprous D. G.; Palmer R. K.; Swanson J. T.; Lawless M. QSAR in the Pharmaceutical Research Setting: QSAR Models for Broad, Large Problems. Curr. Top. Med. Chem. 2010, 10 (6), 619–637. 10.2174/156802610791111506. PubMed DOI

Pham-The H.; Cabrera-Pérez M. Á.; Nam N.-H.; Castillo-Garit J. A.; Rasulev B.; Le-Thi-Thu H.; Casañola-Martin G. M. In Silico Assessment of ADME Properties: Advances in Caco-2 Cell Monolayer Permeability Modeling. Curr. Top. Med. Chem. 2019, 18 (26), 2209–2229. 10.2174/1568026619666181130140350. PubMed DOI

Egan W. J.; Lauri G. Prediction of Intestinal Permeability. Adv. Drug Delivery Rev. 2002, 54 (3), 273–289. 10.1016/S0169-409X(02)00004-2. PubMed DOI

Vilar S.; Sobarzo-Sanchez E.; Santana L.; Uriarte E. Ligand and Structure-Based Modeling of Passive Diffusion through the Blood-Brain Barrier. Comput. Mater. Contin. 2018, 25 (9), 1073–1089. 10.2174/0929867324666171106163742. PubMed DOI

Barratt M. D. Quantitative Structure-Activity Relationships for Skin Permeability. Toxicol. in Vitro 1995, 9 (1), 27–37. 10.1016/0887-2333(94)00190-6. PubMed DOI

Wang N.-N.; Dong J.; Deng Y.-H.; Zhu M.-F.; Wen M.; Yao Z.-J.; Lu A.-P.; Wang J.-B.; Cao D.-S. ADME Properties Evaluation in Drug Discovery: Prediction of Caco-2 Cell Permeability Using a Combination of NSGA-II and Boosting. J. Chem. Inf. Model. 2016, 56 (4), 763–773. 10.1021/acs.jcim.5b00642. PubMed DOI

Fredlund L.; Winiwarter S.; Hilgendorf C. In Vitro Intrinsic Permeability: A Transporter-Independent Measure of Caco-2 Cell Permeability in Drug Design and Development. Mol. Pharmaceutics 2017, 14 (5), 1601–1609. 10.1021/acs.molpharmaceut.6b01059. PubMed DOI

Sun H.; Nguyen K.; Kerns E.; Yan Z.; Yu K. R.; Shah P.; Jadhav A.; Xu X. Highly Predictive and Interpretable Models for PAMPA Permeability. Bioorg. Med. Chem. 2017, 25 (3), 1266–1276. 10.1016/j.bmc.2016.12.049. PubMed DOI PMC

Gousiadou C.; Doganis P.; Sarimveis H. Development of Artificial Neural Network Models to Predict the PAMPA Effective Permeability of New, Orally Administered Drugs Active against the Coronavirus SARS-CoV-2. Netw. Model. Anal. Health Inform. Bioinform. 2023, 12 (1), 16.10.1007/s13721-023-00410-9. PubMed DOI PMC

Holton T. A.; Pollastri G.; Shields D. C.; Mooney C. CPPpred: Prediction of Cell Penetrating Peptides. Bioinformatics 2013, 29 (23), 3094–3096. 10.1093/bioinformatics/btt518. PubMed DOI

Williams-Noonan B. J.; Speer M. N.; Le T. C.; Sadek M. M.; Thompson P. E.; Norton R. S.; Yuriev E.; Barlow N.; Chalmers D. K.; Yarovsky I. Membrane Permeating Macrocycles: Design Guidelines from Machine Learning. J. Chem. Inf. Model. 2022, 62 (19), 4605–4619. 10.1021/acs.jcim.2c00809. PubMed DOI

Kim S.; Chen J.; Cheng T.; Gindulyte A.; He J.; He S.; Li Q.; Shoemaker B. A.; Thiessen P. A.; Yu B.; Zaslavsky L.; Zhang J.; Bolton E. E. PubChem 2023 Update. Nucleic Acids Res. 2023, 51 (D1), D1373–D1380. 10.1093/nar/gkac956. PubMed DOI PMC

Zdrazil B.; Felix E.; Hunter F.; Manners E. J; Blackshaw J.; Corbett S.; de Veij M.; Ioannidis H.; Lopez D. M.; Mosquera J. F; Magarinos M. P.; Bosc N.; Arcila R.; Kiziloren T.; Gaulton A.; Bento A P.; Adasme M. F; Monecke P.; Landrum G. A; Leach A. R The ChEMBL Database in 2023: A Drug Discovery Platform Spanning Multiple Bioactivity Data Types and Time Periods. Nucleic Acids Res. 2024, 52 (D1), D1180–D1192. 10.1093/nar/gkad1004. PubMed DOI PMC

Juračka J.; Šrejber M.; Melíková M.; Bazgier V.; Berka K. MolMeDB: Molecules on Membranes Database. Database 2019, 2019, baz078.10.1093/database/baz078. PubMed DOI PMC

Berthold M. R.; Cebron N.; Dill F.; Gabriel T. R.; Kötter T.; Meinl T.; Ohl P.; Thiel K.; Wiswedel B. KNIME - the Konstanz Information Miner: Version 2.0 and Beyond. ACM SIGKDD—SIGKDD Explor. 2009, 11 (1), 26–31. 10.1145/1656274.1656280. DOI

Sugano K.; Takata N.; Machida M.; Saitoh K.; Terada K. Prediction of Passive Intestinal Absorption Using Bio-Mimetic Artificial Membrane Permeation Assay and the Paracellular Pathway Model. Int. J. Pharm. 2002, 241 (2), 241–251. 10.1016/S0378-5173(02)00240-5. PubMed DOI

Berka K.; Hendrychová T.; Anzenbacher P.; Otyepka M. Membrane Position of Ibuprofen Agrees with Suggested Access Path Entrance to Cytochrome P450 2C9 Active Site. J. Phys. Chem. A 2011, 115 (41), 11248–11255. 10.1021/jp204488j. PubMed DOI PMC

Cramariuc O.; Rog T.; Javanainen M.; Monticelli L.; Polishchuk A. V.; Vattulainen I. Mechanism for Translocation of Fluoroquinolones across Lipid Membranes. Biochim. Biophys. Acta, Biomembr. 2012, 1818 (11), 2563–2571. 10.1016/j.bbamem.2012.05.027. PubMed DOI

Lundborg M.; Wennberg C.; Lindahl E.; Norlén L. Simulating the Skin Permeation Process of Ionizable Molecules. J. Chem. Inf. Model. 2024, 64 (13), 5295–5302. 10.1021/acs.jcim.4c00722. PubMed DOI PMC

R Core Team . R: A Language and Environment for Statistical Computing, 2023. https://www.R-project.org/.

Google . Welcome to Colaboratory! https://colab.research.google.com/gist/lzhou1110/2a30a81cb8c175514ed627bc18016774/hello-colaboratory.ipynb.

Goble C.; Soiland-Reyes S.; Bacall F.; Owen S.; Williams A.; Eguinoa I.; Droesbeke B.; Leo S.; Pireddu L.; Rodríguez-Navas L.; Fernández J. M.; Capella-Gutierrez S.; Ménager H.; Grüning B.; Serrano-Solano B.; Ewels P.; Coppens F.. Implementing FAIR Digital Objects in the EOSC-Life Workflow Collaboratory, 2021.10.5281/ZENODO.4605654. DOI

Lex A.; Gehlenborg N.; Strobelt H.; Vuillemot R.; Pfister H. UpSet Visualization of Intersecting Sets. IEEE Trans. Vis. Comput. Graph. 2014, 20 (12), 1983–1992. 10.1109/TVCG.2014.2346248. PubMed DOI PMC

Barry P. H.; Diamond J. M. Effects of Unstirred Layers on Membrane Phenomena. Physiol. Rev. 1984, 64 (3), 763–872. 10.1152/physrev.1984.64.3.763. PubMed DOI

Palumbo P.; Picchini U.; Beck B.; Van Gelder J.; Delbar N.; DeGaetano A. A General Approach to the Apparent Permeability Index. J. Pharmacokinet. Pharmacodyn. 2008, 35 (2), 235–248. 10.1007/s10928-008-9086-4. PubMed DOI

Goswami T.; Li X.; Jasti B. R. Effect of Lipophilicity and Drug Ionization on Permeation Across Porcine Sublingual Mucosa. AAPS PharmSciTech 2017, 18 (1), 175–181. 10.1208/s12249-016-0479-1. PubMed DOI

Avdeef A.; Artursson P.; Neuhoff S.; Lazorova L.; Gråsjö J.; Tavelin S. Caco-2 Permeability of Weakly Basic Drugs Predicted with the Double-Sink PAMPA Method. Eur. J. Pharm. Sci. 2005, 24 (4), 333–349. 10.1016/j.ejps.2004.11.011. PubMed DOI

Huque F. T. T.; Box K.; Platts J. A.; Comer J. Permeability through DOPC/Dodecane Membranes: Measurement and LFER Modelling. Eur. J. Pharm. Sci. 2004, 23 (3), 223–232. 10.1016/j.ejps.2004.07.009. PubMed DOI

Avdeef A.; Tsinman O. PAMPA—A Drug Absorption in Vitro Model. Eur. J. Pharm. Sci. 2006, 28 (1–2), 43–50. 10.1016/j.ejps.2005.12.008. PubMed DOI

Tsinman O.; Tsinman K.; Sun N.; Avdeef A. Physicochemical Selectivity of the BBB Microenvironment Governing Passive Diffusion—Matching with a Porcine Brain Lipid Extract Artificial Membrane Permeability Model. Pharm. Res. 2011, 28 (2), 337–363. 10.1007/s11095-010-0280-x. PubMed DOI PMC

Velický M.; Tam K. Y.; Dryfe R. A. W. In Situ Artificial Membrane Permeation Assay under Hydrodynamic Control: Correlation between Drug in Vitro Permeability and Fraction Absorbed in Humans. Eur. J. Pharm. Sci. 2011, 44 (3), 299–309. 10.1016/j.ejps.2011.08.007. PubMed DOI

Colabufo N. A.; Berardi F.; Cantore M.; Perrone M. G.; Contino M.; Inglese C.; Niso M.; Perrone R.; Azzariti A.; Simone G. M.; Porcelli L.; Paradiso A. Small P-Gp Modulating Molecules: SAR Studies on Tetrahydroisoquinoline Derivatives. Bioorg. Med. Chem. 2008, 16 (1), 362–373. 10.1016/j.bmc.2007.09.039. PubMed DOI

Sun H.; Chow E. C.; Liu S.; Du Y.; Pang K. S. The Caco-2 Cell Monolayer: Usefulness and Limitations. Expert Opin. Drug Metab. Toxicol. 2008, 4 (4), 395–411. 10.1517/17425255.4.4.395. PubMed DOI

Volpe D. A. Drug-Permeability and Transporter Assays in Caco-2 and Mdck Cell Lines. Future Med. Chem. 2011, 3 (16), 2063–2077. 10.4155/fmc.11.149. PubMed DOI

Lakeram M.; Lockley D. J.; Pendlington R.; Forbes B. Optimisation of the Caco-2 Permeability Assay Using Experimental Design Methodology. Pharm. Res. 2008, 25 (7), 1544–1551. 10.1007/s11095-008-9556-9. PubMed DOI

Hubatsch I.; Ragnarsson E. G. E.; Artursson P. Determination of Drug Permeability and Prediction of Drug Absorption in Caco-2 Monolayers. Nat. Protoc. 2007, 2 (9), 2111–2119. 10.1038/nprot.2007.303. PubMed DOI

Zhu C.; Jiang L.; Chen T.-M.; Hwang K.-K. A Comparative Study of Artificial Membrane Permeability Assay for High Throughput Profiling of Drug Absorption Potential. Eur. J. Med. Chem. 2002, 37 (5), 399–407. 10.1016/S0223-5234(02)01360-0. PubMed DOI

Von Richter O.; Glavinas H.; Krajcsi P.; Liehner S.; Siewert B.; Zech K. A Novel Screening Strategy to Identify ABCB1 Substrates and Inhibitors. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2009, 379 (1), 11–26. 10.1007/s00210-008-0345-0. PubMed DOI

Kerns E. H.; Di L.; Petusky S.; Farris M.; Ley R.; Jupp P. Combined Application of Parallel Artificial Membrane Permeability Assay and Caco-2 Permeability Assays in Drug Discovery. J. Pharm. Sci. 2004, 93 (6), 1440–1453. 10.1002/jps.20075. PubMed DOI

Bittermann K.; Spycher S.; Endo S.; Pohler L.; Huniar U.; Goss K.-U.; Klamt A. Prediction of Phospholipid–Water Partition Coefficients of Ionic Organic Chemicals Using the Mechanistic Model COSMO Mic. J. Phys. Chem. B 2014, 118 (51), 14833–14842. 10.1021/jp509348a. PubMed DOI

Stenberg P.; Norinder U.; Luthman K.; Artursson P. Experimental and Computational Screening Models for the Prediction of Intestinal Drug Absorption. J. Med. Chem. 2001, 44 (12), 1927–1937. 10.1021/jm001101a. PubMed DOI

Teksin Z. S.; Seo P. R.; Polli J. E. Comparison of Drug Permeabilities and BCS Classification: Three Lipid-Component PAMPA System Method versus Caco-2 Monolayers. AAPS J. 2010, 12 (2), 238–241. 10.1208/s12248-010-9176-2. PubMed DOI PMC

Fujikawa M.; Nakao K.; Shimizu R.; Akamatsu M. QSAR Study on Permeability of Hydrophobic Compounds with Artificial Membranes. Bioorg. Med. Chem. 2007, 15 (11), 3756–3767. 10.1016/j.bmc.2007.03.040. PubMed DOI

Avdeef A.; Nielsen P. E.; Tsinman O. PAMPA—a Drug Absorption in Vitro Model: 11. Matching the in Vivo Unstirred Water Layer Thickness by Individual-Well Stirring in Microtitre Plates. Eur. J. Pharm. Sci. 2004, 22 (5), 365–374. 10.1016/j.ejps.2004.04.009. PubMed DOI

Brunner J.; Graham D. E.; Hauser H.; Semenza G. Ion and Sugar Permeabilities of Lecithin Bilayers: Comparison of Curved and Planar Bilayers. J. Membr. Biol. 1980, 57 (2), 133–141. 10.1007/BF01868999. PubMed DOI

Helander H. F.; Fändriks L. Surface Area of the Digestive Tract – Revisited. Scand. J. Gastroenterol. 2014, 49 (6), 681–689. 10.3109/00365521.2014.898326. PubMed DOI

Schiller C.; Frohlich C.-P.; Giessmann T.; Siegmund W.; Monnikes H.; Hosten N.; Weitschies W. Intestinal Fluid Volumes and Transit of Dosage Forms as Assessed by Magnetic Resonance Imaging. ACM SIGKDD—SIGKDD Explor 2005, 22 (10), 971–979. 10.1111/j.1365-2036.2005.02683.x. PubMed DOI

Deur C.; Agrawal A. K.; Baum H.; Booth J.; Bove S.; Brieland J.; Bunker A.; Connolly C.; Cornicelli J.; Dumin J.; Finzel B.; Gan X.; Guppy S.; Kamilar G.; Kilgore K.; Lee P.; Loi C.-M.; Lou Z.; Morris M.; Philippe L.; Przybranowski S.; Riley F.; Samas B.; Sanchez B.; Tecle H.; Wang Z.; Welch K.; Wilson M.; Yates K. N-(6,7-Dichloro-2,3-Dioxo-1,2,3,4-Tetrahydroquinoxalin-5-Yl)-N-Alkylsulfonamides as Peripherally Restricted N-Methyl-d-Aspartate Receptor Antagonists for the Treatment of Pain. Bioorg. Med. Chem. Lett. 2007, 17 (16), 4599–4603. 10.1016/j.bmcl.2007.05.083. PubMed DOI

Chiba J.; Iimura S.; Yoneda Y.; Watanabe T.; Muro F.; Tsubokawa M.; Iigou Y.; Satoh A.; Takayama G.; Yokoyama M.; Takashi T.; Nakayama A.; Machinaga N. Synthesis and Biological Evaluation of Benzoic Acid Derivatives as Potent, Orally Active VLA-4 Antagonists. Bioorg. Med. Chem. 2007, 15 (4), 1679–1693. 10.1016/j.bmc.2006.12.006. PubMed DOI

Flaten G. E.; Kottra G.; Stensen W.; Isaksen G.; Karstad R.; Svendsen J. S.; Daniel H.; Svenson J. In Vitro Characterization of Human Peptide Transporter hPEPT1 Interactions and Passive Permeation Studies of Short Cationic Antimicrobial Peptides. J. Med. Chem. 2011, 54 (7), 2422–2432. 10.1021/jm1015704. PubMed DOI

Holz M.; Heil S. R.; Sacco A. Temperature-Dependent Self-Diffusion Coefficients of Water and Six Selected Molecular Liquids for Calibration in Accurate 1H NMR PFG Measurements. Phys. Chem. Chem. Phys. 2000, 2 (20), 4740–4742. 10.1039/b005319h. DOI

Derrick T. S.; McCord E. F.; Larive C. K. Analysis of Protein/Ligand Interactions with NMR Diffusion Measurements: The Importance of Eliminating the Protein Background. J. Magn. Reson. 2002, 155 (2), 217–225. 10.1006/jmre.2002.2513. PubMed DOI

Amidon G. L.; Lennernäs H.; Shah V. P.; Crison J. R. A Theoretical Basis for a Biopharmaceutic Drug Classification: The Correlation of in Vitro Drug Product Dissolution and in Vivo Bioavailability. Pharm. Res. 1995, 12 (3), 413–420. 10.1023/A:1016212804288. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace