Excessive aggregation of membrane proteins in the Martini model
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
29131844
PubMed Central
PMC5683612
DOI
10.1371/journal.pone.0187936
PII: PONE-D-17-30170
Knihovny.cz E-zdroje
- MeSH
- chemické modely * MeSH
- dimerizace MeSH
- konformace proteinů MeSH
- mapy interakcí proteinů MeSH
- membránové proteiny chemie metabolismus MeSH
- nukleární magnetická rezonance biomolekulární MeSH
- rezonanční přenos fluorescenční energie MeSH
- termodynamika MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- membránové proteiny MeSH
The coarse-grained Martini model is employed extensively to study membrane protein oligomerization. While this approach is exceptionally promising given its computational efficiency, it is alarming that a significant fraction of these studies demonstrate unrealistic protein clusters, whose formation is essentially an irreversible process. This suggests that the protein-protein interactions are exaggerated in the Martini model. If this held true, then it would limit the applicability of Martini to study multi-protein complexes, as the rapidly clustering proteins would not be able to properly sample the correct dimerization conformations. In this work we first demonstrate the excessive protein aggregation by comparing the dimerization free energies of helical transmembrane peptides obtained with the Martini model to those determined from FRET experiments. Second, we show that the predictions provided by the Martini model for the structures of transmembrane domain dimers are in poor agreement with the corresponding structures resolved using NMR. Next, we demonstrate that the first issue can be overcome by slightly scaling down the Martini protein-protein interactions in a manner, which does not interfere with the other Martini interaction parameters. By preventing excessive, irreversible, and non-selective aggregation of membrane proteins, this approach renders the consideration of lateral dynamics and protein-lipid interactions in crowded membranes by the Martini model more realistic. However, this adjusted model does not lead to an improvement in the predicted dimer structures. This implicates that the poor agreement between the Martini model and NMR structures cannot be cured by simply uniformly reducing the interactions between all protein beads. Instead, a careful amino-acid specific adjustment of the protein-protein interactions is likely required.
Department of Physics University of Helsinki Helsinki Finland
Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences Prague Czech Republic
Laboratory of Physics Tampere University of Technology Tampere Finland
Zobrazit více v PubMed
Ferré S, Casadó V, Devi LA, Filizola M, Jockers R, Lohse MJ, et al. G Protein–Coupled Receptor Oligomerization Revisited: Functional and Pharmacological Perspectives. Pharmacol Rev. 2014;66(2):413–434. doi: 10.1124/pr.113.008052 PubMed DOI PMC
Gomes I, Ayoub MA, Fujita W, Jaeger WC, Pfleger KD, Devi LA. G Protein-Coupled Receptor Heteromers. Annu Rev Pharmacol Toxicol. 2016;56:403–425. doi: 10.1146/annurev-pharmtox-011613-135952 PubMed DOI PMC
Haass C, Selkoe DJ. Soluble Protein Oligomers in Neurodegeneration: Lessons From the Alzheimer’s Amyloid β-Peptide. Nat Rev Mol Cell Biol. 2007;8(2):101–112. doi: 10.1038/nrm2101 PubMed DOI
Ghosh A, Sonavane U, Joshi R. Multiscale Modelling to Understand the Self-Assembly Mechanism of Human β2-Adrenergic Receptor in Lipid Bilayer. Computat Biol Chem. 2014;48:29–39. doi: 10.1016/j.compbiolchem.2013.11.002 PubMed DOI
Mondal S, Johnston JM, Wang H, Khelashvili G, Filizola M, Weinstein H. Membrane Driven Spatial Organization of GPCRs. Sci Rep. 2013;3:2909 doi: 10.1038/srep02909 PubMed DOI PMC
Periole X, Huber T, Marrink SJ, Sakmar TP. G Protein-Coupled Receptors Self-Assemble in Dynamics Simulations of Model Bilayers. J Am Chem Soc. 2007;129(33):10126–10132. doi: 10.1021/ja0706246 PubMed DOI
Guixà-González R, Javanainen M, Gómez-Soler M, Cordobilla B, Domingo JC, Sanz F, et al. Membrane Omega-3 Fatty Acids Modulate the Oligomerisation Kinetics of Adenosine A2A and Dopamine D2 Receptors. Sci Rep. 2016;6 doi: 10.1038/srep19839 PubMed DOI PMC
Provasi D, Boz MB, Johnston JM, Filizola M. Preferred Supramolecular Organization and Dimer Interfaces of Opioid Receptors From Simulated Self-Association. PLoS Comput Biol. 2015;11(3):e1004148 doi: 10.1371/journal.pcbi.1004148 PubMed DOI PMC
Koldsø H, Sansom MS. Organization and Dynamics of Receptor Proteins in a Plasma Membrane. J Am Chem Soc. 2015;137(46):14694–14704. doi: 10.1021/jacs.5b08048 PubMed DOI PMC
Johnston JM, Aburi M, Provasi D, Bortolato A, Urizar E, Lambert NA, et al. Making Structural Sense of Dimerization Interfaces of Delta Opioid Receptor Homodimers. Biochemistry. 2011;50(10):1682–1690. doi: 10.1021/bi101474v PubMed DOI PMC
Johnston JM, Filizola M. Differential Stability of the Crystallographic Interfaces of Mu-And Kappa-Opioid Receptors. PLoS One. 2014;9(2):e90694 doi: 10.1371/journal.pone.0090694 PubMed DOI PMC
Periole X. Interplay of G Protein-Coupled Receptors With the Membrane: Insights From Supra-Atomic Coarse Grain Molecular Dynamics Simulations. Chem Rev. 2016;117(1):156–185. doi: 10.1021/acs.chemrev.6b00344 PubMed DOI
Parton DL, Klingelhoefer JW, Sansom MS. Aggregation of Model Membrane Proteins, Modulated by Hydrophobic Mismatch, Membrane Curvature, and Protein Class. Biophys J. 2011;101(3):691–699. doi: 10.1016/j.bpj.2011.06.048 PubMed DOI PMC
Rassam P, Copeland NA, Birkholz O, Tóth C, Chavent M, Duncan AL, et al. Supramolecular Assemblies Underpin Turnover of Outer Membrane Proteins in Bacteria. Nature. 2015;523(7560):333–336. doi: 10.1038/nature14461 PubMed DOI PMC
Javanainen M, Hammaren H, Monticelli L, Jeon JH, Miettinen MS, Martinez-Seara H, et al. Anomalous and Normal Diffusion of Proteins and Lipids in Crowded Lipid Membranes. Faraday Disc. 2013;161:397–417. doi: 10.1039/C2FD20085F PubMed DOI
Jeon JH, Javanainen M, Martinez-Seara H, Metzler R, Vattulainen I. Protein Crowding in Lipid Bilayers Gives Rise to Non-Gaussian Anomalous Lateral Diffusion of Phospholipids and Proteins. Phys Rev X. 2016;6(2):021006.
Goose JE, Sansom MS. Reduced Lateral Mobility of Lipids and Proteins in Crowded Membranes. PLoS Comput Biol. 2013;9(4):e1003033 doi: 10.1371/journal.pcbi.1003033 PubMed DOI PMC
Chavent M, Reddy T, Goose J, Dahl ACE, Stone JE, Jobard B, et al. Methodologies for the Analysis of Instantaneous Lipid Diffusion in MD Simulations of Large Membrane Systems. Faraday Disc. 2014;169:455–475. doi: 10.1039/C3FD00145H PubMed DOI PMC
Arnarez C, Marrink S, Periole X. Molecular Mechanism of Cardiolipin-Mediated Assembly of Respiratory Chain Supercomplexes. Chem Sci. 2016;7:4435–4443. doi: 10.1039/C5SC04664E PubMed DOI PMC
Reddy T, Shorthouse D, Parton DL, Jefferys E, Fowler PW, Chavent M, et al. Nothing to Sneeze At: A Dynamic and Integrative Computational Model of an Influenza a Virion. Structure. 2015;23(3):584–597. doi: 10.1016/j.str.2014.12.019 PubMed DOI PMC
Marrink SJ, Risselada HJ, Yefimov S, Tieleman DP, De Vries AH. The MARTINI Force Field: Coarse Grained Model for Biomolecular Simulations. J Phys Chem B. 2007;111(27):7812–7824. doi: 10.1021/jp071097f PubMed DOI
Monticelli L, Kandasamy SK, Periole X, Larson RG, Tieleman DP, Marrink SJ. The MARTINI Coarse-Grained Force Field: Extension to Proteins. J Chem Theory Comput. 2008;4(5):819–834. doi: 10.1021/ct700324x PubMed DOI
de Jong DH, Singh G, Bennett WD, Arnarez C, Wassenaar TA, Schäfer LV, et al. Improved Parameters for the Martini Coarse-Grained Protein Force Field. J Chem Theory Comput. 2012;9(1):687–697. doi: 10.1021/ct300646g PubMed DOI
Bond PJ, Sansom MS. Insertion and Assembly of Membrane Proteins via Simulation. J Am Chem Soc. 2006;128(8):2697–2704. doi: 10.1021/ja0569104 PubMed DOI PMC
Stansfeld PJ, Goose JE, Caffrey M, Carpenter EP, Parker JL, Newstead S, et al. MemProtMD: Automated Insertion of Membrane Protein Structures Into Explicit Lipid Membranes. Structure. 2015;23(7):1350–1361. doi: 10.1016/j.str.2015.05.006 PubMed DOI PMC
Qi Y, Ingólfsson HI, Cheng X, Lee J, Marrink SJ, Im W. CHARMM-GUI Martini Maker for Coarse-Grained Simulations With the Martini Force Field. J Chem Theory Comput. 2015;11(9):4486–4494. doi: 10.1021/acs.jctc.5b00513 PubMed DOI
Wassenaar TA, Ingólfsson HI, Böckmann RA, Tieleman DP, Marrink SJ. Computational Lipidomics With insane: A Versatile Tool for Generating Custom Membranes for Molecular Simulations. J Chem Theory Comput. 2015;11(5):2144–2155. doi: 10.1021/acs.jctc.5b00209 PubMed DOI
Wassenaar TA, Pluhackova K, Moussatova A, Sengupta D, Marrink SJ, Tieleman DP, et al. High-Throughput Simulations of Dimer and Trimer Assembly of Membrane Proteins. The DAFT Approach. J Chem Theory Comput. 2015;11(5):2278–2291. doi: 10.1021/ct5010092 PubMed DOI
Wassenaar TA, Pluhackova K, Böckmann RA, Marrink SJ, Tieleman DP. Going Backward: A Flexible Geometric Approach to Reverse Transformation From Coarse Grained to Atomistic Models. J Chem Theory Comput. 2014;10(2):676–690. doi: 10.1021/ct400617g PubMed DOI
Javanainen M, Martinez-Seara H. Efficient Preparation and Analysis of Membrane and Membrane Protein Systems. Biochim Biophys Acta. 2016;1858(10):2468–2482. doi: 10.1016/j.bbamem.2016.02.036 PubMed DOI
Nishizawa M, Nishizawa K. Potential of Mean Force Analysis of the Self-Association of Leucine-Rich Transmembrane α-Helices: Difference Between Atomistic and Coarse-Grained Simulations. J Chem Phys. 2014;141(7):075101 doi: 10.1063/1.4891932 PubMed DOI
Stark AC, Andrews CT, Elcock AH. Toward Optimized Potential Functions for Protein–Protein Interactions in Aqueous Solutions: Osmotic Second Virial Coefficient Calculations Using the Martini Coarse-Grained Force Field. J Chem Theory Comput. 2013;9(9):4176–4185. doi: 10.1021/ct400008p PubMed DOI PMC
Dunton TA, Goose JE, Gavaghan DJ, Sansom MS, Osborne JM. The Free Energy Landscape of Dimerization of a Membrane Protein, NanC. PLoS Comput Biol. 2014;10(1):e1003417 doi: 10.1371/journal.pcbi.1003417 PubMed DOI PMC
Chavent M, Chetwynd AP, Stansfeld PJ, Sansom MS. Dimerization of the EphA1 Receptor Tyrosine Kinase Transmembrane Domain: Insights Into the Mechanism of Receptor Activation. Biochemistry. 2014;53(42):6641–6652. doi: 10.1021/bi500800x PubMed DOI PMC
Periole X, Knepp AM, Sakmar TP, Marrink SJ, Huber T. Structural Determinants of the Supramolecular Organization of G Protein-Coupled Receptors in Bilayers. J Am Chem Soc. 2012;134(26):10959–10965. doi: 10.1021/ja303286e PubMed DOI PMC
Johnston JM, Wang H, Provasi D, Filizola M. Assessing the Relative Stability of Dimer Interfaces in G Protein-Coupled Receptors. PLoS Comput Biol. 2012;8(8):e1002649 doi: 10.1371/journal.pcbi.1002649 PubMed DOI PMC
Provasi D, Johnston JM, Filizola M. Lessons From Free Energy Simulations of δ-Opioid Receptor Homodimers Involving the Fourth Transmembrane Helix. Biochemistry. 2010;49(31):6771–6776. doi: 10.1021/bi100686t PubMed DOI PMC
Casuso I, Khao J, Chami M, Paul-Gilloteaux P, Husain M, Duneau JP, et al. Characterization of the Motion of Membrane Proteins Using High-Speed Atomic Force Microscopy. Nat Nanotech. 2012;7(8):525–529. doi: 10.1038/nnano.2012.109 PubMed DOI
You M, Li E, Wimley WC, Hristova K. Förster Resonance Energy Transfer in Liposomes: Measurements of Transmembrane Helix Dimerization in the Native Bilayer Environment. Anal Biochem. 2005;340(1):154–164. doi: 10.1016/j.ab.2005.01.035 PubMed DOI PMC
Chen L, Novicky L, Merzlyakov M, Hristov T, Hristova K. Measuring the Energetics of Membrane Protein Dimerization in Mammalian Membranes. J Am Chem Soc. 2010;132(10):3628–3635. doi: 10.1021/ja910692u PubMed DOI PMC
Chen L, Merzlyakov M, Cohen T, Shai Y, Hristova K. Energetics of ErbB1 Transmembrane Domain Dimerization in Lipid Bilayers. Biophys J. 2009;96(11):4622–4630. doi: 10.1016/j.bpj.2009.03.004 PubMed DOI PMC
Prakash A, Janosi L, Doxastakis M. Self-Association of Models of Transmembrane Domains of ErbB Receptors in a Lipid Bilayer. Biophys J. 2010;99(11):3657–3665. doi: 10.1016/j.bpj.2010.10.023 PubMed DOI PMC
Lelimousin M, Limongelli V, Sansom MS. Conformational Changes in the Epidermal Growth Factor Receptor: Role of the Transmembrane Domain Investigated by Coarse-Grained Metadynamics Free Energy Calculations. J Am Chem Soc. 2016;138:10611–10622. doi: 10.1021/jacs.6b05602 PubMed DOI PMC
Artemenko EO, Egorova NS, Arseniev AS, Feofanov AV. Transmembrane Domain of EphA1 Receptor Forms Dimers in Membrane-Like Environment. Biochim Biophys Acta. 2008;1778(10):2361–2367. doi: 10.1016/j.bbamem.2008.06.003 PubMed DOI
Li E, You M, Hristova K. FGFR3 Dimer Stabilization Due to a Single Amino Acid Pathogenic Mutation. J Mol Biol. 2006;356(3):600–612. doi: 10.1016/j.jmb.2005.11.077 PubMed DOI PMC
Li E, You M, Hristova K. Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis and Förster Resonance Energy Transfer Suggest Weak Interactions Between Fibroblast Growth Factor Receptor 3 (FGFR3) Transmembrane Domains in the Absence of Extracellular Domains and Ligands. Biochemistry. 2005;44(1):352–360. doi: 10.1021/bi048480k PubMed DOI
Merzlyakov M, Chen L, Hristova K. Studies of Receptor Tyrosine Kinase Transmembrane Domain Interactions: The EmEx-FRET Method. J Membr Biol. 2007;215(2–3):93–103. doi: 10.1007/s00232-007-9009-0 PubMed DOI PMC
You M, Li E, Hristova K. The Achondroplasia Mutation Does Not Alter the Dimerization Energetics of the Fibroblast Growth Factor Receptor 3 Transmembrane Domain. Biochemistry. 2006;45(17):5551–5556. doi: 10.1021/bi060113g PubMed DOI
Sarabipour S, Hristova K. Glycophorin a Transmembrane Domain Dimerization in Plasma Membrane Vesicles Derived From CHO, HEK 293T, and A431 Cells. Biochim Biophys Acta. 2013;1828(8):1829–1833. doi: 10.1016/j.bbamem.2013.03.022 PubMed DOI PMC
Sengupta D, Marrink SJ. Lipid-Mediated Interactions Tune the Association of Glycophorin a Helix and Its Disruptive Mutants in Membranes. Phys Chem Chem Phys. 2010;12(40):12987–12996. doi: 10.1039/c0cp00101e PubMed DOI
Janosi L, Prakash A, Doxastakis M. Lipid-Modulated Sequence-Specific Association of Glycophorin a in Membranes. Biophys J. 2010;99(1):284–292. doi: 10.1016/j.bpj.2010.04.005 PubMed DOI PMC
Domański J, Hedger G, Best RB, Stansfeld PJ, Sansom MS. Convergence and Sampling in Determining Free Energy Landscapes for Membrane Protein Association. J Phys Chem B. 2017;121(15):3364–3375. doi: 10.1021/acs.jpcb.6b08445 PubMed DOI PMC
Hong H, Blois TM, Cao Z, Bowie JU. Method to Measure Strong Protein–Protein Interactions in Lipid Bilayers Using a Steric Trap. Proc Natl Acad Sci USA. 2010;107(46):19802–19807. doi: 10.1073/pnas.1010348107 PubMed DOI PMC
Nash A, Notman R, Dixon AM. De Novo Design of Transmembrane Helix–Helix Interactions and Measurement of Stability in a Biological Membrane. Biochim Biophys Acta. 2015;1848(5):1248–1257. doi: 10.1016/j.bbamem.2015.02.020 PubMed DOI
Finger C, Volkmer T, Prodöhl A, Otzen DE, Engelman DM, Schneider D. The Stability of Transmembrane Helix Interactions Measured in a Biological Membrane. J Mol Biol. 2006;358(5):1221–1228. doi: 10.1016/j.jmb.2006.02.065 PubMed DOI
Castillo N, Monticelli L, Barnoud J, Tieleman DP. Free Energy of WALP23 Dimer Association in DMPC, DPPC, and DOPC Bilayers. Chem Phys Lipids. 2013;169:95–105. doi: 10.1016/j.chemphyslip.2013.02.001 PubMed DOI
Schäfer LV, de Jong DH, Holt A, Rzepiela AJ, de Vries AH, Poolman B, et al. Lipid Packing Drives the Segregation of Transmembrane Helices Into Disordered Lipid Domains in Model Membranes. Proc Natl Acad Sci USA. 2011;108(4):1343–1348. doi: 10.1073/pnas.1009362108 PubMed DOI PMC
Ash WL. Helix-Helix Interactions in Membrane Proteins Probed With Computer Simulations. University of Calgary; 2009.
Yano Y, Matsuzaki K. Measurement of Thermodynamic Parameters for Hydrophobic Mismatch 1: Self-Association of a Transmembrane Helix. Biochemistry. 2006;45(10):3370–3378. doi: 10.1021/bi052286w PubMed DOI
Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, et al. The Protein Data Bank. Nucl Acids Res. 2000;28(1):235–242. doi: 10.1093/nar/28.1.235 PubMed DOI PMC
Bocharov EV, Mayzel ML, Volynsky PE, Goncharuk MV, Ermolyuk YS, Schulga AA, et al. Spatial Structure and pH-Dependent Conformational Diversity of Dimeric Transmembrane Domain of the Receptor Tyrosine Kinase EphA1. J Biol Chem. 2008;283(43):29385–29395. doi: 10.1074/jbc.M803089200 PubMed DOI PMC
Bocharov EV, Lesovoy DM, Pavlov KV, Pustovalova YE, Bocharova OV, Arseniev AS. Alternative Packing of EGFR Transmembrane Domain Suggests That Protein–Lipid Interactions Underlie Signal Conduction Across Membrane. Biochim Biophys Acta. 2016;1858(6):1254–1261. doi: 10.1016/j.bbamem.2016.02.023 PubMed DOI
de Jong DH, Baoukina S, Ingólfsson HI, Marrink SJ. Martini Straight: Boosting Performance Using a Shorter Cutoff and GPUs. Comput Phys Commun. 2016;199:1–7. doi: 10.1016/j.cpc.2015.09.014 DOI
Bussi G, Donadio D, Parrinello M. Canonical Sampling Through Velocity Rescaling. J Chem Phys. 2007;126(1):014101 doi: 10.1063/1.2408420 PubMed DOI
Parrinello M, Rahman A. Polymorphic Transitions in Single Crystals: A New Molecular Dynamics Method. J Appl Phys. 1981;52(12):7182–7190. doi: 10.1063/1.328693 DOI
Yesylevskyy SO, Schäfer LV, Sengupta D, Marrink SJ. Polarizable Water Model for the Coarse-Grained MARTINI Force Field. PLoS Comput Biol. 2010;6(6):e1000810 doi: 10.1371/journal.pcbi.1000810 PubMed DOI PMC
Michalowsky J, Schäfer LV, Holm C, Smiatek J. A Refined Polarizable Water Model for the Coarse-Grained MARTINI Force Field With Long-Range Electrostatic Interactions. J Chem Phys. 2017;146(5):054501 doi: 10.1063/1.4974833 PubMed DOI
Periole X, Cavalli M, Marrink SJ, Ceruso MA. Combining an Elastic Network With a Coarse-Grained Molecular Force Field: Structure, Dynamics, and Intermolecular Recognition. J Chem Theory Comput. 2009;5(9):2531–2543. doi: 10.1021/ct9002114 PubMed DOI
Hub JS, De Groot BL, Van Der Spoel D. g_wham—a Free Weighted Histogram Analysis Implementation Including Robust Error and Autocorrelation Estimates. J Chem Theory Comput. 2010;6(12):3713–3720. doi: 10.1021/ct100494z DOI
Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B, et al. GROMACS: High Performance Molecular Simulations Through Multi-Level Parallelism From Laptops to Supercomputers. SoftwareX. 2015;1:19–25. doi: 10.1016/j.softx.2015.06.001 DOI
Cymer F, Veerappan A, Schneider D. Transmembrane Helix–Helix Interactions Are Modulated by the Sequence Context and by Lipid Bilayer Properties. Biochim Biophys Acta. 2012;1818(4):963–973. doi: 10.1016/j.bbamem.2011.07.035 PubMed DOI
MacKenzie KR, Prestegard JH, Engelman DM. A Transmembrane Helix Dimer: Structure and Implications. Science. 1997;276(5309):131–133. doi: 10.1126/science.276.5309.131 PubMed DOI
Lau TL, Kim C, Ginsberg MH, Ulmer TS. The Structure of the Integrin αIIbβ3 Transmembrane Complex Explains Integrin Transmembrane Signalling. EMBO J. 2009;28(9):1351–1361. doi: 10.1038/emboj.2009.63 PubMed DOI PMC
Sulistijo ES, MacKenzie KR. Structural Basis for Dimerization of the BNIP3 Transmembrane Domain. Biochemistry. 2009;48(23):5106–5120. doi: 10.1021/bi802245u PubMed DOI
Call ME, Schnell JR, Xu C, Lutz RA, Chou JJ, Wucherpfennig KW. The Structure of the ζζ Transmembrane Dimer Reveals Features Essential for Its Assembly With the T Cell Receptor. Cell. 2006;127(2):355–368. doi: 10.1016/j.cell.2006.08.044 PubMed DOI PMC
Call ME, Wucherpfennig KW, Chou JJ. The Structural Basis for Intramembrane Assembly of an Activating Immunoreceptor Complex. Nat Immunol. 2010;11(11):1023–1029. doi: 10.1038/ni.1943 PubMed DOI PMC
Prasanna X, Chattopadhyay A, Sengupta D. Cholesterol Modulates the Dimer Interface of the β2-Adrenergic Receptor via Cholesterol Occupancy Sites. Biophys J. 2014;106(6):1290–1300. doi: 10.1016/j.bpj.2014.02.002 PubMed DOI PMC
Computational Design of Pore-Forming Peptides with Potent Antimicrobial and Anticancer Activities
Optimizing properties of translocation-enhancing transmembrane proteins
Phospholipids are imported into mitochondria by VDAC, a dimeric beta barrel scramblase
Protein Crowding and Cholesterol Increase Cell Membrane Viscosity in a Temperature Dependent Manner
Enhanced translocation of amphiphilic peptides across membranes by transmembrane proteins
Martini 3: a general purpose force field for coarse-grained molecular dynamics
Mcl-1 and Bok transmembrane domains: Unexpected players in the modulation of apoptosis
Magainin 2 and PGLa in Bacterial Membrane Mimics I: Peptide-Peptide and Lipid-Peptide Interactions