Mcl-1 and Bok transmembrane domains: Unexpected players in the modulation of apoptosis
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
33093207
PubMed Central
PMC7668047
DOI
10.1073/pnas.2008885117
PII: 2008885117
Knihovny.cz E-zdroje
- Klíčová slova
- Bcl-2, Bok, Mcl-1, apoptosis, transmembrane,
- MeSH
- apoptóza fyziologie MeSH
- buněčná smrt fyziologie MeSH
- endoplazmatické retikulum metabolismus MeSH
- HeLa buňky MeSH
- lidé MeSH
- mitochondriální membrány metabolismus MeSH
- mitochondrie metabolismus MeSH
- protein MCL-1 metabolismus MeSH
- proteinové domény MeSH
- protoonkogenní proteiny c-bcl-2 metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- BOK protein, human MeSH Prohlížeč
- MCL1 protein, human MeSH Prohlížeč
- protein MCL-1 MeSH
- protoonkogenní proteiny c-bcl-2 MeSH
The Bcl-2 protein family comprises both pro- and antiapoptotic members that control the permeabilization of the mitochondrial outer membrane, a crucial step in the modulation of apoptosis. Recent research has demonstrated that the carboxyl-terminal transmembrane domain (TMD) of some Bcl-2 protein family members can modulate apoptosis; however, the transmembrane interactome of the antiapoptotic protein Mcl-1 remains largely unexplored. Here, we demonstrate that the Mcl-1 TMD forms homooligomers in the mitochondrial membrane, competes with full-length Mcl-1 protein with regards to its antiapoptotic function, and induces cell death in a Bok-dependent manner. While the Bok TMD oligomers locate preferentially to the endoplasmic reticulum (ER), heterooligomerization between the TMDs of Mcl-1 and Bok predominantly takes place at the mitochondrial membrane. Strikingly, the coexpression of Mcl-1 and Bok TMDs produces an increase in ER mitochondrial-associated membranes, suggesting an active role of Mcl-1 in the induced mitochondrial targeting of Bok. Finally, the introduction of Mcl-1 TMD somatic mutations detected in cancer patients alters the TMD interaction pattern to provide the Mcl-1 protein with enhanced antiapoptotic activity, thereby highlighting the clinical relevance of Mcl-1 TMD interactions.
Biochemie Zentrum Heidelberg University of Heidelberg 69120 Heidelberg Germany
Department of Physics University of Helsinki FI 00014 Helsinki Finland
Laboratorio de Péptidos y Proteínas Centro de Investigación Príncipe Felipe 46012 Valencia Spain
Laboratorio de Péptidos y Proteínas Centro de Investigación Príncipe Felipe 46012 Valencia Spain;
Zobrazit více v PubMed
Kluck R. M., Bossy-Wetzel E., Green D. R., Newmeyer D. D., The release of cytochrome c from mitochondria: A primary site for Bcl-2 regulation of apoptosis. Science 275, 1132–1136 (1997). PubMed
Birkinshaw R. W., Czabotar P. E., The BCL-2 family of proteins and mitochondrial outer membrane permeabilisation. Semin. Cell Dev. Biol. 72, 152–162 (2017). PubMed
Kale J., Osterlund E. J., Andrews D. W., BCL-2 family proteins: Changing partners in the dance towards death. Cell Death Differ. 25, 65–80 (2018). PubMed PMC
Edlich F., et al. , Bcl-x(L) retrotranslocates Bax from the mitochondria into the cytosol. Cell 145, 104–116 (2011). PubMed PMC
Ausman J., et al. , Ceramide-induced BOK promotes mitochondrial fission in preeclampsia. Cell Death Dis. 9, 298 (2018). PubMed PMC
Morciano G., et al. , Intersection of mitochondrial fission and fusion machinery with apoptotic pathways: Role of Mcl-1. Biol. Cell 108, 279–293 (2016). PubMed
Morciano G., et al. , Mcl-1 involvement in mitochondrial dynamics is associated with apoptotic cell death. Mol. Biol. Cell 27, 20–34 (2016). PubMed PMC
Schulman J. J., et al. , Bok regulates mitochondrial fusion and morphology. Cell Death Differ. 26, 2682–2694 (2019). PubMed PMC
Williams A., et al. , The non-apoptotic action of Bcl-xL: Regulating Ca(2+) signaling and bioenergetics at the ER-mitochondrion interface. J. Bioenerg. Biomembr. 48, 211–225 (2016). PubMed PMC
Andreu-Fernández V., et al. , Bax transmembrane domain interacts with prosurvival Bcl-2 proteins in biological membranes. Proc. Natl. Acad. Sci. U.S.A. 114, 310–315 (2017). PubMed PMC
Chang T., Glazko A. J., Effect of an adenosine deaminase inhibitor on the uptake and metabolism of arabinosyl adenine (Vidarabine) by intact human erythrocytes. Res. Commun. Chem. Pathol. Pharmacol. 14, 127–140 (1976). PubMed
Chen L., et al. , Differential targeting of prosurvival Bcl-2 proteins by their BH3-only ligands allows complementary apoptotic function. Mol. Cell 17, 393–403 (2005). PubMed
Stehle D., et al. , Contribution of BH3-domain and transmembrane-domain to the activity and interaction of the pore-forming Bcl-2 proteins Bok, Bak, and Bax. Sci. Rep. 8, 12434 (2018). PubMed PMC
Fernández-Marrero Y., Spinner S., Kaufmann T., Jost P. J., Survival control of malignant lymphocytes by anti-apoptotic MCL-1. Leukemia 30, 2152–2159 (2016). PubMed
Lin J., Fu D., Dai Y., Lin J., Xu T., Mcl-1 inhibitor suppresses tumor growth of esophageal squamous cell carcinoma in a mouse model. Oncotarget 8, 114457–114462 (2017). PubMed PMC
Sieghart W., et al. , Mcl-1 overexpression in hepatocellular carcinoma: A potential target for antisense therapy. J. Hepatol. 44, 151–157 (2006). PubMed
Campbell K. J., et al. , MCL-1 is a prognostic indicator and drug target in breast cancer. Cell Death Dis. 9, 19 (2018). PubMed PMC
Feng C., Yang F., Wang J., FBXO4 inhibits lung cancer cell survival by targeting Mcl-1 for degradation. Cancer Gene Ther. 24, 342–347 (2017). PubMed
Lee E. F., et al. , BCL-XL and MCL-1 are the key BCL-2 family proteins in melanoma cell survival. Cell Death Dis. 10, 342 (2019). PubMed PMC
Fletcher S., MCL-1 inhibitors–Where are we now (2019)? Expert Opin. Ther. Pat. 29, 909–919 (2019). PubMed
Akgul C., Moulding D. A., White M. R., Edwards S. W., In vivo localisation and stability of human Mcl-1 using green fluorescent protein (GFP) fusion proteins. FEBS Lett. 478, 72–76 (2000). PubMed
Andreu-Fernández V., et al. , Peptides derived from the transmembrane domain of Bcl-2 proteins as potential mitochondrial priming tools. ACS Chem. Biol. 9, 1799–1811 (2014). PubMed
Grau B., et al. , The role of hydrophobic matching on transmembrane helix packing in cells. Cell Stress 1, 90–106 (2017). PubMed PMC
Wassenaar T. A., et al. , High-throughput simulations of dimer and trimer assembly of membrane proteins. The DAFT approach. J. Chem. Theory Comput. 11, 2278–2291 (2015). PubMed
Lelimousin M., Limongelli V., Sansom M. S., Conformational changes in the epidermal growth factor receptor: Role of the transmembrane domain investigated by coarse-grained metaDynamics free energy calculations. J. Am. Chem. Soc. 138, 10611–10622 (2016). PubMed PMC
Lemmon M. A., et al. , Glycophorin A dimerization is driven by specific interactions between transmembrane alpha-helices. J. Biol. Chem. 267, 7683–7689 (1992). PubMed
Mineev K. S., et al. , Dimeric structure of the transmembrane domain of glycophorin a in lipidic and detergent environments. Acta Naturae 3, 90–98 (2011). PubMed PMC
Lemmon M. A., Flanagan J. M., Treutlein H. R., Zhang J., Engelman D. M., Sequence specificity in the dimerization of transmembrane alpha-helices. Biochemistry 31, 12719–12725 (1992). PubMed
García-Sáez A. J., et al. , Peptides derived from apoptotic Bax and Bid reproduce the poration activity of the parent full-length proteins. Biophys. J. 88, 3976–3990 (2005). PubMed PMC
Berger B. W., et al. , Consensus motif for integrin transmembrane helix association. Proc. Natl. Acad. Sci. U.S.A. 107, 703–708 (2010). PubMed PMC
Gotoh T., Terada K., Oyadomari S., Mori M., hsp70-DnaJ chaperone pair prevents nitric oxide- and CHOP-induced apoptosis by inhibiting translocation of Bax to mitochondria. Cell Death Differ. 11, 390–402 (2004). PubMed
Kerppola T. K., Bimolecular fluorescence complementation: Visualization of molecular interactions in living cells. Methods Cell Biol. 85, 431–470 (2008). PubMed PMC
Javadpour M. M., Eilers M., Groesbeek M., Smith S. O., Helix packing in polytopic membrane proteins: Role of glycine in transmembrane helix association. Biophys. J. 77, 1609–1618 (1999). PubMed PMC
Duarte J. M., Biyani N., Baskaran K., Capitani G., An analysis of oligomerization interfaces in transmembrane proteins. BMC Struct. Biol. 13, 21 (2013). PubMed PMC
Teese M. G., Langosch D., Role of GxxxG motifs in transmembrane domain interactions. Biochemistry 54, 5125–5135 (2015). PubMed
Orzáez M., Lukovic D., Abad C., Pérez-Payá E., Mingarro I., Influence of hydrophobic matching on association of model transmembrane fragments containing a minimised glycophorin A dimerisation motif. FEBS Lett. 579, 1633–1638 (2005). PubMed
Arbely E., Granot Z., Kass I., Orly J., Arkin I. T., A trimerizing GxxxG motif is uniquely inserted in the severe acute respiratory syndrome (SARS) coronavirus spike protein transmembrane domain. Biochemistry 45, 11349–11356 (2006). PubMed
Bi G., et al. , SOBIR1 requires the GxxxG dimerization motif in its transmembrane domain to form constitutive complexes with receptor-like proteins. Mol. Plant Pathol. 17, 96–107 (2016). PubMed PMC
Faingold O., Cohen T., Shai Y., A GxxxG-like motif within HIV-1 fusion peptide is critical to its immunosuppressant activity, structure, and interaction with the transmembrane domain of the T-cell receptor. J. Biol. Chem. 287, 33503–33511 (2012). PubMed PMC
Yano Y., et al. , GXXXG-mediated parallel and antiparallel dimerization of transmembrane helices and its inhibition by cholesterol: Single-pair FRET and 2D IR studies. Angew. Chem. Int. Ed. Engl. 56, 1756–1759 (2017). PubMed PMC
Pan L., et al. , Higher-order clustering of the transmembrane anchor of DR5 drives signaling. Cell 176, 1477–1489.e14 (2019). PubMed PMC
Kwon B., Lee M., Waring A. J., Hong M., Oligomeric structure and three-dimensional fold of the HIV gp41 membrane-proximal external region and transmembrane domain in phospholipid bilayers. J. Am. Chem. Soc. 140, 8246–8259 (2018). PubMed PMC
Willis S. N., et al. , Proapoptotic Bak is sequestered by Mcl-1 and Bcl-xL, but not Bcl-2, until displaced by BH3-only proteins. Genes Dev. 19, 1294–1305 (2005). PubMed PMC
Germain M., Duronio V., The N terminus of the anti-apoptotic BCL-2 homologue MCL-1 regulates its localization and function. J. Biol. Chem. 282, 32233–32242 (2007). PubMed
Hockings C., et al. , Mcl-1 and Bcl-xL sequestration of Bak confers differential resistance to BH3-only proteins. Cell Death Differ. 25, 721–734 (2018). PubMed PMC
Llambi F., et al. , BOK is a non-canonical BCL-2 family effector of apoptosis regulated by ER-associated degradation. Cell 165, 421–433 (2016). PubMed PMC
Javanainen M., Equilibration simulations of TM domains of Bcl-2 proteins Mcl-1, Bok, and Bax. Zenodo. 10.5281/zenodo.4012224. Deposited 2 September 2020. DOI
Javanainen M., Universal method for embedding proteins into complex lipid bilayers for molecular dynamics simulations. J. Chem. Theory Comput. 10, 2577–2582 (2014). PubMed
Marrink S. J., Tieleman D. P., Perspective on the martini model. Chem. Soc. Rev. 42, 6801–6822 (2013). PubMed
Javanainen M., Martinez-Seara H., Vattulainen I., Excessive aggregation of membrane proteins in the Martini model. PLoS One 12, e0187936 (2017). PubMed PMC
Lee J., et al. , CHARMM-GUI input generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM simulations using the CHARMM36 additive force field. J. Chem. Theory Comput. 12, 405–413 (2016). PubMed PMC
Lolicato F., Kulig W., Dimerization simulations of TM domains of Bcl-2 proteins: Mcl-1, Bok, and Bax. Zenodo. 10.5281/zenodo.4022900. Deposited 10 September 2020. DOI
Ren Z., Ren P. X., Balusu R., Yang X., Transmembrane helices tilt, bend, slide, torque, and unwind between functional states of rhodopsin. Sci. Rep. 6, 34129 (2016). PubMed PMC
Haschka M. D., Villunger A., There is something about BOK we just don’t get yet. FEBS J. 284, 708–710 (2017). PubMed
Echeverry N., et al. , Intracellular localization of the BCL-2 family member BOK and functional implications. Cell Death Differ. 20, 785–799 (2013). PubMed PMC
Einsele-Scholz S., et al. , Bok is a genuine multi-BH-domain protein that triggers apoptosis in the absence of Bax and Bak. J. Cell Sci. 129, 2213–2223 (2016). PubMed
Hsu S. Y., Kaipia A., McGee E., Lomeli M., Hsueh A. J., Bok is a pro-apoptotic Bcl-2 protein with restricted expression in reproductive tissues and heterodimerizes with selective anti-apoptotic Bcl-2 family members. Proc. Natl. Acad. Sci. U.S.A. 94, 12401–12406 (1997). PubMed PMC
D’Orsi B., et al. , Bok is not pro-apoptotic but suppresses poly ADP-ribose polymerase-dependent cell death pathways and protects against excitotoxic and seizure-induced neuronal injury. J. Neurosci. 36, 4564–4578 (2016). PubMed PMC
Onyeagucha B., et al. , Novel post-transcriptional and post-translational regulation of pro-apoptotic protein BOK and anti-apoptotic protein Mcl-1 determine the fate of breast cancer cells to survive or die. Oncotarget 8, 85984–85996 (2017). PubMed PMC
Alam M. S., Proximity ligation assay (PLA). Curr. Protoc. Immunol. 123, e58 (2018). PubMed PMC
Tate J. G., et al. , COSMIC: The catalogue of somatic mutations in cancer. Nucleic Acids Res. 47, D941–D947 (2019). PubMed PMC
Shihab H. A., et al. , An integrative approach to predicting the functional effects of non-coding and coding sequence variation. Bioinformatics 31, 1536–1543 (2015). PubMed PMC
Hellmuth S., Stemmann O., Separase-triggered apoptosis enforces minimal length of mitosis. Nature 580, 542–547 (2020). PubMed
Beroukhim R., et al. , The landscape of somatic copy-number alteration across human cancers. Nature 463, 899–905 (2010). PubMed PMC
Shah K., Huang H., Bradbury N. A., Li C., White C., Mcl-1 promotes lung cancer cell migration by directly interacting with VDAC to increase mitochondrial Ca2+ uptake and reactive oxygen species generation. Cell Death Dis. 5, e1482 (2017). PubMed PMC
Song K.-A., et al. , Increased synthesis of MCL-1 protein underlies initial survival of EGFR-mutant lung cancer to EGFR inhibitors and provides a novel drug target. Clin. Cancer Res. 24, 5658–5672 (2018). PubMed
Wen Q., et al. , Elevated expression of mcl-1 inhibits apoptosis and predicts poor prognosis in patients with surgically resected non-small cell lung cancer. Diagn. Pathol. 14, 108 (2019). PubMed PMC
Hird A. W., Tron A. E., Recent advances in the development of Mcl-1 inhibitors for cancer therapy. Pharmacol. Ther. 198, 59–67 (2019). PubMed