Lipid Scrambling Pathways in the Sec61 Translocon Complex
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
R01 GM132649
NIGMS NIH HHS - United States
PubMed
40325981
PubMed Central
PMC12082634
DOI
10.1021/jacs.4c11142
Knihovny.cz E-zdroje
- MeSH
- endoplazmatické retikulum metabolismus MeSH
- lidé MeSH
- membránové proteiny * metabolismus chemie MeSH
- simulace molekulární dynamiky MeSH
- translokační kanály SEC metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- membránové proteiny * MeSH
- translokační kanály SEC MeSH
Cellular homeostasis depends on the rapid, ATP-independent translocation of newly synthesized lipids across the endoplasmic reticulum (ER) membrane. Lipid translocation is facilitated by membrane proteins known as scramblases, a few of which have recently been identified in the ER. Our previous structure of the translocon-associated protein (TRAP) bound to the Sec61 translocation channel revealed local membrane thinning, suggesting that the Sec61/TRAP complex might be involved in lipid scrambling. Using complementary fluorescence spectroscopy assays, we detected nonselective scrambling by reconstituted translocon complexes. This activity was unaffected by Sec61 inhibitors that block its lateral gate, suggesting a second lipid scrambling pathway within the complex. Molecular dynamics simulations indicate that the trimeric TRAP subunit forms this alternative route, facilitating lipid translocation via a "credit card" mechanism, using a crevice lined with polar residues to shield lipid head groups from the hydrophobic membrane interior. Kinetic and thermodynamic analyses confirmed that local membrane thinning enhances scrambling efficiency and that both Sec61 and TRAP scramble phosphatidylcholine faster than phosphatidylethanolamine and phosphatidylserine, reflecting the intrinsic lipid flip-flop tendencies of these lipid species. As the Sec61 scrambling site lies in the lateral gate region, it is likely inaccessible during protein translocation, in line with our experiments on Sec61-inhibited samples. Hence, our findings suggest that the metazoan-specific trimeric TRAP bundle is a viable candidate for lipid scrambling activity that is insensitive to the functional state of the translocon.
Central European Institute of Technology Masaryk University Kamenice 5 CZ 62500 Brno Czech Republic
Institute of Biotechnology HiLIFE University of Helsinki FI 00790 Helsinki Finland
J Heyrovský Institute of Physical Chemistry CZ 18223 Prague 8 Czech Republic
Onego Bio Hämeentie 157 FI 00560 Helsinki Finland
Unit of Physics University of Tampere FI 33720 Tampere Finland
Zobrazit více v PubMed
Van Meer G.; Voelker D. R.; Feigenson G. W. Membrane Lipids: Where They Are and How They Behave. Nat. Rev. Mol. Cell Biol. 2008, 9, 112–124. 10.1038/nrm2330. PubMed DOI PMC
Jacquemyn J.; Cascalho A.; Goodchild R. E. The Ins and Outs of Endoplasmic Reticulum-Controlled Lipid Biosynthesis. EMBO Rep. 2017, 18, 1905–1921. 10.15252/embr.201643426. PubMed DOI PMC
Sunshine H.; Iruela-Arispe M. L. Membrane Lipids and Cell Signaling. Curr. Opin. Lipidol. 2017, 28, 408.10.1097/MOL.0000000000000443. PubMed DOI PMC
Walther T. C.; Farese R. V. Jr Lipid Droplets and Cellular Lipid Metabolism. Annu. Rev. Biochem. 2012, 81, 687–714. 10.1146/annurev-biochem-061009-102430. PubMed DOI PMC
Sezgin E.; Levental I.; Mayor S.; Eggeling C. The Mystery of Membrane Organization: Composition, Regulation and Roles of Lipid Rafts. Nat. Rev. Mol. Cell Biol. 2017, 18, 361–374. 10.1038/nrm.2017.16. PubMed DOI PMC
Hossein A.; Deserno M. Spontaneous Curvature, Differential Stress, and Bending Modulus of Asymmetric Lipid Membranes. Biophys. J. 2020, 118, 624–642. 10.1016/j.bpj.2019.11.3398. PubMed DOI PMC
Fagone P.; Jackowski S. Membrane Phospholipid Synthesis and Endoplasmic Reticulum Function. J. Lipid Res. 2009, 50, S311–S316. 10.1194/jlr.R800049-JLR200. PubMed DOI PMC
Kobayashi T.; Menon A. K. Transbilayer Lipid Asymmetry. Curr. Biol. 2018, 28, R386–R391. 10.1016/j.cub.2018.01.007. PubMed DOI
Marquardt D.; Heberle F. A.; Miti T.; Eicher B.; London E.; Katsaras J.; Pabst G. 1H NMR Shows Slow Phospholipid Flip-Flop in Gel and Fluid Bilayers. Langmuir 2017, 33, 3731–3741. 10.1021/acs.langmuir.6b04485. PubMed DOI PMC
Lorent J.; Levental K.; Ganesan L.; Rivera-Longsworth G.; Sezgin E.; Doktorova M.; Lyman E.; Levental I. Plasma Membranes Are Asymmetric in Lipid Unsaturation, Packing and Protein Shape. Nat. Chem. Biol. 2020, 16, 644–652. 10.1038/s41589-020-0529-6. PubMed DOI PMC
Allhusen J. S.; Conboy J. C. he Ins and Outs of Lipid Flip-Flop. Acc. Chem. Res. 2017, 50, 58–65. 10.1021/acs.accounts.6b00435. PubMed DOI
Contreras F.-X.; Sánchez-Magraner L.; Alonso A.; Goñi F. M. Transbilayer (Flip-Flop) Lipid Motion and Lipid Scrambling in Membranes. FEBS Lett. 2010, 584, 1779–1786. 10.1016/j.febslet.2009.12.049. PubMed DOI
Sanyal S.; Menon A. K. Flipping Lipids: Why an Whats the Reason For?. ACS Chem. Biol. 2009, 4, 895–909. 10.1021/cb900163d. PubMed DOI PMC
Backer J. M.; Dawidowicz E. A. Reconstitution of a Phospholipid Flippase From Rat Liver Microsomes. Nature 1987, 327, 341–343. 10.1038/327341a0. PubMed DOI
Bishop W. R.; Bell R. M. Assembly of the Endoplasmic Reticulum Phospholipid Bilayer: The Phosphatidylcholine Transporter. Cell 1985, 42, 51–60. 10.1016/S0092-8674(85)80100-8. PubMed DOI
Menon A. K.; Watkins W. E.; Hrafnsdóttir S. Specific Proteins Are Required to Translocate Phosphatidylcholine Bidirectionally Across the Endoplasmic Reticulum. Curr. Biol. 2000, 10, 241–252. 10.1016/S0960-9822(00)00356-0. PubMed DOI
Chang Q.-l.; Gummadi S. N.; Menon A. K. Chemical Modification Identifies Two Populations of Glycerophospholipid Flippase in Rat Liver ER. Biochemistry 2004, 43, 10710–10718. 10.1021/bi049063a. PubMed DOI
Menon I.; Huber T.; Sanyal S.; Banerjee S.; Barré P.; Canis S.; Warren J. D.; Hwa J.; Sakmar T. P.; Menon A. K. Opsin Is a Phospholipid Flippase. Curr. Biol. 2011, 21, 149–153. 10.1016/j.cub.2010.12.031. PubMed DOI PMC
Suzuki J.; Umeda M.; Sims P. J.; Nagata S. Calcium-Dependent Phospholipid Scrambling by TMEM16F. Nature 2010, 468, 834–838. 10.1038/nature09583. PubMed DOI
Brunner J. D.; Lim N. K.; Schenck S.; Duerst A.; Dutzler R. X-Ray Structure of a Calcium-Activated TMEM16 Lipid Scramblase. Nature 2014, 516, 207–212. 10.1038/nature13984. PubMed DOI
Kalienkova V.; Mosina V. C.; Paulino C. The Groovy TMEM16 Family: Molecular Mechanisms of Lipid Scrambling and Ion Conduction. J. Mol. Biol. 2021, 433, 16694110.1016/j.jmb.2021.166941. PubMed DOI
Gyobu S.; Ishihara K.; Suzuki J.; Segawa K.; Nagata S. Characterization of the Scrambling Domain of the TMEM16 Family. Proc. Natl. Acad. Sci. U.S.A. 2017, 114, 6274–6279. 10.1073/pnas.1703391114. PubMed DOI PMC
Bethel N. P.; Grabe M. Atomistic Insight Into Lipid Translocation by a TMEM16 Scramblase. Proc. Natl. Acad. Sci. U.S.A. 2016, 113, 14049–14054. 10.1073/pnas.1607574113. PubMed DOI PMC
Feng Z.; Di Zanni E.; Alvarenga O.; Chakraborty S.; Rychlik N.; Accardi A. In or Out of the Groove? Mechanisms of Lipid Scrambling by TMEM16 Proteins. Cell Calcium 2024, 121, 10289610.1016/j.ceca.2024.102896. PubMed DOI PMC
Huang D.; et al. TMEM41B Acts as an ER Scramblase Required for Lipoprotein Biogenesis and Lipid Homeostasis. Cell Metab. 2021, 33, 1655–1670. 10.1016/j.cmet.2021.05.006. PubMed DOI
Bushell S. R.; et al. The Structural Basis of Lipid Scrambling and Inactivation in the Endoplasmic Reticulum Scramblase TMEM16K. Nat. Commun. 2019, 10, 3956.10.1038/s41467-019-11753-1. PubMed DOI PMC
Tsuji T.; Cheng J.; Tatematsu T.; Ebata A.; Kamikawa H.; Fujita A.; Gyobu S.; Segawa K.; Arai H.; Taguchi T.; Nagata S.; Fujimoto T. Predominant Localization of Phosphatidylserine at the Cytoplasmic Leaflet of the ER, and Its TMEM16K-Dependent Redistribution. Proc. Natl. Acad. Sci. U.S.A. 2019, 116, 13368–13373. 10.1073/pnas.1822025116. PubMed DOI PMC
Li Y. E.; et al. TMEM41B and VMP1 Are Scramblases and Regulate the Distribution of Cholesterol and Phosphatidylserine. J. Cell. Biol. 2021, 220, e20210310510.1083/jcb.202103105. PubMed DOI PMC
Ghanbarpour A.; Valverde D. P.; Melia T. J.; Reinisch K. M. A Model for a Partnership of Lipid Transfer Proteins and Scramblases in Membrane Expansion and Organelle Biogenesis. Proc. Natl. Acad. Sci. U.S.A. 2021, 118, e210156211810.1073/pnas.2101562118. PubMed DOI PMC
Reinisch K. M.; Chen X.-W.; Melia T. J. “VTT”--Domain Proteins VMP1 and TMEM41B Function in Lipid Homeostasis Globally and Locally as ER Scramblases. Contact 2021, 4, 2515256421102449410.1177/25152564211024494. PubMed DOI PMC
Li D.; Rocha-Roa C.; Schilling M. A.; Reinisch K. M.; Vanni S. Lipid Scrambling Is a General Feature of Protein Insertases. Proc. Natl. Acad. Sci. U.S.A. 2024, 121, e231947612110.1073/pnas.2319476121. PubMed DOI PMC
Bartoš L.; Menon A. K.; Vácha R. Insertases Scramble Lipids: Molecular Simulations of MTCH2. Structure 2024, 32, 505–510. 10.1016/j.str.2024.01.012. PubMed DOI PMC
Karki S.; Javanainen M.; Rehan S.; Tranter D.; Kellosalo J.; Huiskonen J. T.; Happonen L.; Paavilainen V. Molecular View of ER Membrane Remodeling by the SEC61/Trap Translocon. EMBO Rep. 2023, 24, e5791010.15252/embr.202357910. PubMed DOI PMC
Pauwels E.; Shewakramani N. R.; De Wijngaert B.; Camps A.; Provinciael B.; Stroobants J.; Kalies K.-U.; Hartmann E.; Maes P.; Vermeire K.; Das K. Structural Insights Into Trap Association With Ribosome-Sec61 Complex and Translocon Inhibition by a CADA Derivative. Sci. Adv. 2023, 9, eadf079710.1126/sciadv.adf0797. PubMed DOI PMC
Jaskolowski M.; Jomaa A.; Gamerdinger M.; Shrestha S.; Leibundgut M.; Deuerling E.; Ban N. Molecular Basis of the Trap Complex Function in ER Protein Biogenesis. Nat. Struct. Mol. Biol. 2023, 30, 770.10.1038/s41594-023-00990-0. PubMed DOI PMC
Gemmer M.; Chaillet M. L.; van Loenhout J.; Cuevas Arenas R.; Vismpas D.; Grollers-Mulderij M.; Koh F. A.; Albanese P.; Scheltema R. A.; Howes S. C.; Kotecha A.; Fedry J.; Forster F. Visualization of Translation and Protein Biogenesis at the ER Membrane. Nature 2023, 614, 160–167. 10.1038/s41586-022-05638-5. PubMed DOI PMC
Li X.; Itani O. A.; Haataja L.; Dumas K. J.; Yang J.; Cha J.; Flibotte S.; Shih H.-J.; Delaney C. E.; Xu J.; Qi L.; Arvan P.; Liu M.; Hu P. J. Requirement for Translocon-Associated Protein (TRAP)α In Insulin Biogenesis. Sci. Adv. 2019, 5, eaax029210.1126/sciadv.aax0292. PubMed DOI PMC
Nguyen D.; Stutz R.; Schorr S.; Lang S.; Pfeffer S.; Freeze H. H.; Förster F.; Helms V.; Dudek J.; Zimmermann R. Proteomics Reveals Signal Peptide Features Determining the Client Specificity in Human TRAP-Dependent ER Protein Import. Nat. Commun. 2018, 9, 3765.10.1038/s41467-018-06188-z. PubMed DOI PMC
Pomorski T.; Menon A. Lipid Flippases and Their Biological Functions. Cell. Mol. Life Sci. 2006, 63, 2908–2921. 10.1007/s00018-006-6167-7. PubMed DOI PMC
Vehring S.; Pakkiri L.; Schröer A.; Alder-Baerens N.; Herrmann A.; Menon A. K.; Pomorski T. Flip-Flop of Fluorescently Labeled Phospholipids in Proteoliposomes Reconstituted With Saccharomyces Cerevisiae Microsomal Proteins. Eukaryot. Cell 2007, 6, 1625–1634. 10.1128/EC.00198-07. PubMed DOI PMC
Watkins W. E. III; Menon A. Reconstitution of Phospholipid Flippase Activity from E. coli Inner Membrane: A Test of the Protein Translocon as a Candidate Flippase. Biol. Chem. 2002, 383, 1435–1440. 10.1515/BC.2002.162. PubMed DOI
Rehan S.; et al. Signal Peptide Mimicry Primes Sec61 for Client-Selective Inhibition. Nat. Chem. Biol. 2023, 19, 1054–1062. 10.1038/s41589-023-01326-1. PubMed DOI PMC
Jahn H.; Bartoš L.; Dearden G. I.; Dittman J. S.; Holthuis J. C.; Vácha R.; Menon A. K. Phospholipids Are Imported Into Mitochondria by VDAC, a Dimeric Beta Barrel Scramblase. Nat. Commun. 2023, 14, 8115.10.1038/s41467-023-43570-y. PubMed DOI PMC
Malvezzi M.; Chalat M.; Janjusevic R.; Picollo A.; Terashima H.; Menon A. K.; Accardi A. Ca2+-Dependent Phospholipid Scrambling by a Reconstituted TMEM16 Ion Channel. Nat. Commun. 2013, 4, 2367.10.1038/ncomms3367. PubMed DOI PMC
Kubelt J.; Menon A. K.; Müller P.; Herrmann A. Transbilayer Movement of Fluorescent Phospholipid Analogues in the Cytoplasmic Membrane of Escherichia Coli. Biochemistry 2002, 41, 5605–5612. 10.1021/bi0118714. PubMed DOI
Itskanov S.; Wang L.; Junne T.; Sherriff R.; Xiao L.; Blanchard N.; Shi W. Q.; Forsyth C.; Hoepfner D.; Spiess M.; Park E. A Common Mechanism of Sec61 Translocon Inhibition by Small Molecules. Nat. Chem. Biol. 2023, 19, 1063.10.1038/s41589-023-01337-y. PubMed DOI PMC
Zong G.; et al. Ipomoeassin F Binds Sec61α To Inhibit Protein Translocation. J. Am. Chem. Soc. 2019, 141, 8450–8461. 10.1021/jacs.8b13506. PubMed DOI PMC
Paatero A. O.; Kellosalo J.; Dunyak B. M.; Almaliti J.; Gestwicki J. E.; Gerwick W. H.; Taunton J.; Paavilainen V. O. Apratoxin Kills Cells by Direct Blockade of the Sec61 Protein Translocation Channel. Cell. Chem. Biol. 2016, 23, 561–566. 10.1016/j.chembiol.2016.04.008. PubMed DOI
Russo A. Understanding the Mammalian Trap Complex Function(s). Open Biol. 2020, 10, 190244.10.1098/rsob.190244. PubMed DOI PMC
Webb B.; Sali A. Comparative Protein Structure Modeling Using MODELLER. Curr. Protoc. Bioinformatics 2016, 54, 5–6. 10.1002/cpbi.3. PubMed DOI PMC
Souza P. C.; et al. Martini 3: A General Purpose Force Field for Coarse-Grained Molecular Dynamics. Nat. Methods 2021, 18, 382–388. 10.1038/s41592-021-01098-3. PubMed DOI
De Jong D. H.; Baoukina S.; Ingólfsson H. I.; Marrink S. J. Performance Using a Shorter Cutoff and GPUs. Comput. Phys. Commun. 2016, 199, 1–7. 10.1016/j.cpc.2015.09.014. DOI
Khelashvili G.; Menon A. K. Phospholipid Scrambling by G Protein-Coupled Receptors. Annu. Rev. Biophys. 2022, 51, 39–61. 10.1146/annurev-biophys-090821-083030. PubMed DOI PMC
Morra G.; Razavi A. M.; Pandey K.; Weinstein H.; Menon A. K.; Khelashvili G. Mechanisms of Lipid Scrambling by the G Protein-Coupled Receptor Opsin. Structure 2018, 26, 356–367. 10.1016/j.str.2017.11.020. PubMed DOI PMC
Berg B. V. D.; Clemons W. M. Jr; Collinson I.; Modis Y.; Hartmann E.; Harrison S. C.; Rapoport T. A. X-Ray Structure of a Protein-Conducting Channel. Nature 2004, 427, 36–44. 10.1038/nature02218. PubMed DOI
Voorhees R. M.; Fernández I. S.; Scheres S. H.; Hegde R. S. Structure of the Mammalian Ribosome-Sec61 Complex to 3.4 Å Resolution. Cell 2014, 157, 1632–1643. 10.1016/j.cell.2014.05.024. PubMed DOI PMC
Voorhees R. M.; Hegde R. S. Structure of the Sec61 Channel Opened by a Signal Sequence. Science 2016, 351, 88–91. 10.1126/science.aad4992. PubMed DOI PMC
Gamayun I.; O’Keefe S.; Pick T.; Klein M.-C.; Nguyen D.; McKibbin C.; Piacenti M.; Williams H. M.; Flitsch S. L.; Whitehead R. C.; Swanton E.; Helms V.; High S.; Zimmermann R.; Cavalié A. Eeyarestatin Compounds Selectively Enhance Sec61-Mediated Ca2+ Leakage From the Endoplasmic Reticulum. Cell Chem. Biol. 2019, 26, 571–583. 10.1016/j.chembiol.2019.01.010. PubMed DOI PMC
Luesch H.; Paavilainen V. O. Natural Products as Modulators of Eukaryotic Protein Secretion. Nat. Prod. Rep. 2020, 37, 717–736. 10.1039/C9NP00066F. PubMed DOI PMC
Bennett W. D.; Tieleman D. P. The Importance of Membrane Defects–Lessons from Simulations. Acc. Chem. Res. 2014, 47, 2244–2251. 10.1021/ar4002729. PubMed DOI
Watanabe H.; Hanashima S.; Yano Y.; Yasuda T.; Murata M. Passive Translocation of Phospholipids in Asymmetric Model Membranes: Solid-State 1H NMR Characterization of Flip-Flop Kinetics Using Deuterated Sphingomyelin and Phosphatidylcholine. Langmuir 2023, 39, 15189–15199. 10.1021/acs.langmuir.3c01650. PubMed DOI
Nakano M.; Fukuda M.; Kudo T.; Endo H.; Handa T. Determination of Interbilayer and Transbilayer Lipid Transfers by Time-Resolved Small-Angle Neutron Scattering. Phys. Rev. Lett. 2007, 98, 238101.10.1103/PhysRevLett.98.238101. PubMed DOI
Porcar L.; Gerelli Y. On the Lipid Flip-Flop and Phase Transition Coupling. Soft Matter 2020, 16, 7696–7703. 10.1039/D0SM01161D. PubMed DOI
Marrink S. J.; Tieleman D. P. Perspective on the Martini Model. Chem. Soc. Rev. 2013, 42, 6801–6822. 10.1039/c3cs60093a. PubMed DOI
Javanainen M.; Martinez-Seara H.; Vattulainen I. Excessive Aggregation of Membrane Proteins in the Martini Model. PLoS One 2017, 12, e0187936.10.1371/journal.pone.0187936. PubMed DOI PMC
Klein W.; Rutz C.; Eckhard J.; Provinciael B.; Specker E.; Neuenschwander M.; Kleinau G.; Scheerer P.; von Kries J.-P.; Nazare M.; Nazaré M.; Vermeire K.; Schülein R. Use of a Sequential High Throughput Screening Assay to Identify Novel Inhibitors of the Eukaryotic SRP-Sec61 Targeting/Translocation Pathway. PLoS One 2018, 13, e0208641.10.1371/journal.pone.0208641. PubMed DOI PMC
Qi Y.; Ingólfsson H. I.; Cheng X.; Lee J.; Marrink S. J.; Im W. CHARMM-GUI martini maker for coarse-grained simulations with the Martini force field. J. Chem. Theory Comput. 2015, 11, 4486–4494. 10.1021/acs.jctc.5b00513. PubMed DOI
Páll S.; Zhmurov A.; Bauer P.; Abraham M.; Lundborg M.; Gray A.; Hess B.; Lindahl E. Heterogeneous Parallelization and Acceleration of Molecular Dynamics Simulations in GROMACS. J. Chem. Phys. 2020, 153, 134110.10.1063/5.0018516. PubMed DOI
Abraham M. J.; Murtola T.; Schulz R.; Páll S.; Smith J. C.; Hess B.; Lindahl E. GROMACS: High Performance Molecular Simulations Through Multi-Level Parallelism From Laptops to Supercomputers. SoftwareX 2015, 1, 19–25. 10.1016/j.softx.2015.06.001. DOI
Páll S.; Hess B. A Flexible Algorithm for Calculating Pair Interactions on SIMD Architectures. Comput. Phys. Commun. 2013, 184, 2641–2650. 10.1016/j.cpc.2013.06.003. DOI
Bussi G.; Donadio D.; Parrinello M. Canonical Sampling Through Velocity Rescaling. J. Chem. Phys. 2007, 126, 014101.10.1063/1.2408420. PubMed DOI
Parrinello M.; Rahman A. Polymorphic Transitions in Single Crystals: A New Molecular Dynamics Method. J. Appl. Phys. 1981, 52, 7182–7190. 10.1063/1.328693. DOI
Lindahl V.; Lidmar J.; Hess B. Accelerated Weight Histogram Method for Exploring Free Energy Landscapes. J. Chem. Phys. 2014, 141, 044110.10.1063/1.4890371. PubMed DOI
MacCallum J. L.; Tieleman D. P. Computer Simulation of the Distribution of Hexane in a Lipid Bilayer: Spatially Resolved Free Energy, Entropy, and Enthalpy Profiles. J. Am. Chem. Soc. 2006, 128, 125–130. 10.1021/ja0535099. PubMed DOI
Gapsys V.; de Groot B. L.; Briones R. Computational Analysis of Local Membrane Properties. J. Compt. Aid. Mol. Des. 2013, 27, 845–858. 10.1007/s10822-013-9684-0. PubMed DOI PMC
Klauda J. B.; Venable R. M.; Freites J. A.; O’Connor J. W.; Tobias D. J.; Mondragon-Ramirez C.; Vorobyov I.; MacKerell A. D. Jr; Pastor R. W. Update of the CHARMM All-Atom Additive Force Field for Lipids: Validation on Six Lipid Types. J. Phys. Chem. B 2010, 114, 7830–7843. 10.1021/jp101759q. PubMed DOI PMC
Darden T.; York D.; Pedersen L. Particle Mesh Ewald: An N·log(N) Method for Ewald Sums in Large Systems. J. Chem. Phys. 1993, 98, 10089–10092. 10.1063/1.464397. DOI
Essmann U.; Perera L.; Berkowitz M. L.; Darden T.; Lee H.; Pedersen L. G.; Smooth A. Particle Mesh Ewald Method. J. Chem. Phys. 1995, 103, 8577–8593. 10.1063/1.470117. DOI
Nosé S. A Unified Formulation of the Constant Temperature Molecular Dynamics Methods. J. Chem. Phys. 1984, 81, 511–519. 10.1063/1.447334. DOI
Hoover W. G. Canonical Dynamics: Equilibrium Phase-Space Distributions. Phys. Rev. A 1985, 31, 1695.10.1103/PhysRevA.31.1695. PubMed DOI
Hess B.; Bekker H.; Berendsen H. J.; Fraaije J. G. LINCS: A Linear Constraint Solver for Molecular Simulations. J. Comput. Chem. 1997, 18, 1463–1472. 10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H. DOI
Hess B. P-LINCS: A Parallel Linear Constraint Solver for Molecular Simulation. J. Chem. Theory Comput. 2008, 4, 116–122. 10.1021/ct700200b. PubMed DOI
Miyamoto S.; Kollman P. A. SETTLE: An Analytical Version of the SHAKE and RATTLE Algorithm for Rigid Water Models. J. Comput. Chem. 1992, 13, 952–962. 10.1002/jcc.540130805. DOI
Walter P.; Blobel G. Preparation of Microsomal Membranes for Cotranslational Protein Translocation. Methods Enzymol. 1983, 96, 84–93. 10.1016/S0076-6879(83)96010-X. PubMed DOI
Vermeire K.; Allan S.; Provinciael B.; Hartmann E.; Kalies K.-U. Ribonuclease-Neutralized Pancreatic Microsomal Membranes From Livestock for in Vitro Co-Translational Protein Translocation. Anal. Biochem. 2015, 484, 102–104. 10.1016/j.ab.2015.05.019. PubMed DOI
Brunner J. D.; Schenck S. Preparation of Proteoliposomes With Purified TMEM16 Protein for Accurate Measures of Lipid Scramblase Activity. Intracellular Lipid Transport: Methods and Protocols 2019, 1949, 181–199. 10.1007/978-1-4939-9136-5_14. PubMed DOI
Rigaud J.-L.; Lévy D. Reconstitution of Membrane Proteins Into Liposomes. Methods Enzymol. 2003, 372, 65–86. 10.1016/S0076-6879(03)72004-7. PubMed DOI
Geertsma E. R.; Nik Mahmood N.; Schuurman-Wolters G. K.; Poolman B. Membrane Reconstitution of ABC Transporters and Assays of Translocator Function. Nat. Protoc. 2008, 3, 256–266. 10.1038/nprot.2007.519. PubMed DOI
Perez-Riverol Y.; Bai J.; Bandla C.; García-Seisdedos D.; Hewapathirana S.; Kamatchinathan S.; Kundu D. J.; Prakash A.; Frericks-Zipper A.; Eisenacher M.; Walzer M.; Wang S.; Brazma A.; Vizcaíno J. The PRIDE Database Resources in 2022: A Hub for Mass Spectrometry-Based Proteomics Evidences. Nucleic Acids Res. 2022, 50, D543–D552. 10.1093/nar/gkab1038. PubMed DOI PMC