-
Je něco špatně v tomto záznamu ?
Clinical decision-making in benzodiazepine deprescribing by healthcare providers vs. AI-assisted approach
I. Bužančić, D. Belec, M. Držaić, I. Kummer, J. Brkić, D. Fialová, M. Ortner Hadžiabdić
Jazyk angličtina Země Anglie, Velká Británie
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
MSCF-ITN-764632
Marie Skłodowska-Curie Foundation
CZ.02.1.01/0.0/0.0/18_069/0010046
InoMed
SVV 260 551
European Horizon 2020 I-CARE4OLD
START/MED/093 EN.02.2.69/0.0/0.0/19_073/0016935
European Horizon 2020 I-CARE4OLD
965341
European Horizon 2020 I-CARE4OLD
Faculty of Pharmacy, Charles University
NLK
Europe PubMed Central
od 1974 do Před 1 rokem
Wiley Free Content
od 1997 do Před 1 rokem
PubMed
37949663
DOI
10.1111/bcp.15963
Knihovny.cz E-zdroje
- MeSH
- benzodiazepiny škodlivé účinky MeSH
- depreskripce * MeSH
- klinické rozhodování MeSH
- lidé MeSH
- umělá inteligence * MeSH
- zdravotnický personál MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
AIMS: The aim of this study was to compare the clinical decision-making for benzodiazepine deprescribing between a healthcare provider (HCP) and an artificial intelligence (AI) chatbot GPT4 (ChatGPT-4). METHODS: We analysed real-world data from a Croatian cohort of community-dwelling benzodiazepine patients (n = 154) within the EuroAgeism H2020 ESR 7 project. HCPs evaluated the data using pre-established deprescribing criteria to assess benzodiazepine discontinuation potential. The research team devised and tested AI prompts to ensure consistency with HCP judgements. An independent researcher employed ChatGPT-4 with predetermined prompts to simulate clinical decisions for each patient case. Data derived from human-HCP and ChatGPT-4 decisions were compared for agreement rates and Cohen's kappa. RESULTS: Both HPC and ChatGPT identified patients for benzodiazepine deprescribing (96.1% and 89.6%, respectively), showing an agreement rate of 95% (κ = .200, P = .012). Agreement on four deprescribing criteria ranged from 74.7% to 91.3% (lack of indication κ = .352, P < .001; prolonged use κ = .088, P = .280; safety concerns κ = .123, P = .006; incorrect dosage κ = .264, P = .001). Important limitations of GPT-4 responses were identified, including 22.1% ambiguous outputs, generic answers and inaccuracies, posing inappropriate decision-making risks. CONCLUSIONS: While AI-HCP agreement is substantial, sole AI reliance poses a risk for unsuitable clinical decision-making. This study's findings reveal both strengths and areas for enhancement of ChatGPT-4 in the deprescribing recommendations within a real-world sample. Our study underscores the need for additional research on chatbot functionality in patient therapy decision-making, further fostering the advancement of AI for optimal performance.
Center for Applied Pharmacy Faculty of Pharmacy and Biochemistry University of Zagreb Zagreb Croatia
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc24006987
- 003
- CZ-PrNML
- 005
- 20240423155629.0
- 007
- ta
- 008
- 240412s2024 enk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1111/bcp.15963 $2 doi
- 035 __
- $a (PubMed)37949663
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a enk
- 100 1_
- $a Bužančić, Iva $u Center for Applied Pharmacy, Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia $u City Pharmacy Zagreb, Zagreb, Croatia
- 245 10
- $a Clinical decision-making in benzodiazepine deprescribing by healthcare providers vs. AI-assisted approach / $c I. Bužančić, D. Belec, M. Držaić, I. Kummer, J. Brkić, D. Fialová, M. Ortner Hadžiabdić
- 520 9_
- $a AIMS: The aim of this study was to compare the clinical decision-making for benzodiazepine deprescribing between a healthcare provider (HCP) and an artificial intelligence (AI) chatbot GPT4 (ChatGPT-4). METHODS: We analysed real-world data from a Croatian cohort of community-dwelling benzodiazepine patients (n = 154) within the EuroAgeism H2020 ESR 7 project. HCPs evaluated the data using pre-established deprescribing criteria to assess benzodiazepine discontinuation potential. The research team devised and tested AI prompts to ensure consistency with HCP judgements. An independent researcher employed ChatGPT-4 with predetermined prompts to simulate clinical decisions for each patient case. Data derived from human-HCP and ChatGPT-4 decisions were compared for agreement rates and Cohen's kappa. RESULTS: Both HPC and ChatGPT identified patients for benzodiazepine deprescribing (96.1% and 89.6%, respectively), showing an agreement rate of 95% (κ = .200, P = .012). Agreement on four deprescribing criteria ranged from 74.7% to 91.3% (lack of indication κ = .352, P < .001; prolonged use κ = .088, P = .280; safety concerns κ = .123, P = .006; incorrect dosage κ = .264, P = .001). Important limitations of GPT-4 responses were identified, including 22.1% ambiguous outputs, generic answers and inaccuracies, posing inappropriate decision-making risks. CONCLUSIONS: While AI-HCP agreement is substantial, sole AI reliance poses a risk for unsuitable clinical decision-making. This study's findings reveal both strengths and areas for enhancement of ChatGPT-4 in the deprescribing recommendations within a real-world sample. Our study underscores the need for additional research on chatbot functionality in patient therapy decision-making, further fostering the advancement of AI for optimal performance.
- 650 _2
- $a lidé $7 D006801
- 650 12
- $a umělá inteligence $7 D001185
- 650 _2
- $a benzodiazepiny $x škodlivé účinky $7 D001569
- 650 12
- $a depreskripce $7 D000069340
- 650 _2
- $a klinické rozhodování $7 D000066491
- 650 _2
- $a zdravotnický personál $7 D006282
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Belec, Dora $u Center for Applied Pharmacy, Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
- 700 1_
- $a Držaić, Margita $u Center for Applied Pharmacy, Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia $u City Pharmacy Zagreb, Zagreb, Croatia
- 700 1_
- $a Kummer, Ingrid $u Department of Social and Clinical Pharmacy, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
- 700 1_
- $a Brkić, Jovana $u Department of Social and Clinical Pharmacy, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic $u Department of Social Pharmacy and Pharmaceutical Legislation, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
- 700 1_
- $a Fialová, Daniela $u Department of Social and Clinical Pharmacy, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic $u Department of Geriatrics and Gerontology, 1st Faculty of Medicine in Prague, Charles University, Prague, Czech Republic
- 700 1_
- $a Ortner Hadžiabdić, Maja $u Center for Applied Pharmacy, Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia $1 https://orcid.org/0000000315789764
- 773 0_
- $w MED00000858 $t British journal of clinical pharmacology $x 1365-2125 $g Roč. 90, č. 3 (2024), s. 662-674
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/37949663 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y - $z 0
- 990 __
- $a 20240412 $b ABA008
- 991 __
- $a 20240423155626 $b ABA008
- 999 __
- $a ok $b bmc $g 2081151 $s 1216754
- BAS __
- $a 3
- BAS __
- $a PreBMC-MEDLINE
- BMC __
- $a 2024 $b 90 $c 3 $d 662-674 $e 20231203 $i 1365-2125 $m British journal of clinical pharmacology $n Br J Clin Pharmacol $x MED00000858
- GRA __
- $a MSCF-ITN-764632 $p Marie Skłodowska-Curie Foundation
- GRA __
- $a CZ.02.1.01/0.0/0.0/18_069/0010046 $p InoMed
- GRA __
- $a SVV 260 551 $p European Horizon 2020 I-CARE4OLD
- GRA __
- $a START/MED/093 EN.02.2.69/0.0/0.0/19_073/0016935 $p European Horizon 2020 I-CARE4OLD
- GRA __
- $a 965341 $p European Horizon 2020 I-CARE4OLD
- GRA __
- $p Faculty of Pharmacy, Charles University
- LZP __
- $a Pubmed-20240412