Virological characteristics of the SARS-CoV-2 Omicron EG.5.1 variant

. 2024 Sep ; 68 (9) : 305-330. [epub] 20240704

Jazyk angličtina Země Austrálie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38961765

Grantová podpora
Core Research for Evolutional Science and Technology

In middle to late 2023, a sublineage of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron XBB, EG.5.1 (a progeny of XBB.1.9.2), is spreading rapidly around the world. We performed multiscale investigations, including phylogenetic analysis, epidemic dynamics modeling, infection experiments using pseudoviruses, clinical isolates, and recombinant viruses in cell cultures and experimental animals, and the use of human sera and antiviral compounds, to reveal the virological features of the newly emerging EG.5.1 variant. Our phylogenetic analysis and epidemic dynamics modeling suggested that two hallmark substitutions of EG.5.1, S:F456L and ORF9b:I5T are critical to its increased viral fitness. Experimental investigations on the growth kinetics, sensitivity to clinically available antivirals, fusogenicity, and pathogenicity of EG.5.1 suggested that the virological features of EG.5.1 are comparable to those of XBB.1.5. However, cryo-electron microscopy revealed structural differences between the spike proteins of EG.5.1 and XBB.1.5. We further assessed the impact of ORF9b:I5T on viral features, but it was almost negligible in our experimental setup. Our multiscale investigations provide knowledge for understanding the evolutionary traits of newly emerging pathogenic viruses, including EG.5.1, in the human population.

1st Medical Faculty at Biocev Charles University Vestec Prague Czechia

AMED CREST Japan Agency for Medical Research and Development Tokyo Japan

Center for iPS Cell Research and Application Kyoto University Kyoto Japan

Collaboration Unit for Infection Joint Research Center for Human Retrovirus Infection Kumamoto University Kumamoto Japan

CREST Japan Science and Technology Agency Kawaguchi Japan

Departamento de Farmacia Facultad de Ciencias de la Salud Universidad Cardenal Herrera CEU CEU Universities Valencia Spain

Department of Biomedicine School of Life Sciences Indonesia International Institute for Life Sciences Jakarta Indonesia

Department of Cancer Pathology Faculty of Medicine Hokkaido University Sapporo Japan

Department of Clinical Laboratory Medicine Graduate School of Medicine Kyoto University Kyoto Japan

Department of Clinical Pathology Faculty of Medicine Suez Canal University Ismailia Egypt

Department of Life Sciences Faculty of Natural Science Imperial College London London UK

Department of Medicinal Sciences Graduate School of Pharmaceutical Sciences Kyushu University Fukuoka Japan

Department of Microbiology and Immunology Faculty of Medicine Hokkaido University Sapporo Japan

Division of International Research Promotion International Institute for Zoonosis Control Hokkaido University Sapporo Japan

Division of Molecular Virology and Genetics Joint Research Center for Human Retrovirus Infection Kumamoto University Kumamoto Japan

Division of Pathogen Structure International Institute for Zoonosis Control Hokkaido University Sapporo Japan

Division of Risk Analysis and Management International Institute for Zoonosis Control Hokkaido University Sapporo Japan

Division of Systems Virology Department of Microbiology and Immunology The Institute of Medical Science The University of Tokyo Tokyo Japan

Faculty of Pharmaceutical Sciences Kyushu University Fukuoka Japan

Global Station for Biosurfaces and Drug Discovery Hokkaido University Sapporo Japan

Graduate School of Biomedical and Health Sciences Hiroshima University Hiroshima Japan

Graduate School of Frontier Sciences The University of Tokyo Kashiwa Japan

Graduate School of Medicine The University of Tokyo Tokyo Japan

HiLung Inc Kyoto Japan

Institute for Chemical Reaction Design and Discovery Hokkaido University Sapporo Japan

Institute for Genetic Medicine Hokkaido University Sapporo Japan

Institute for Vaccine Research and Development Hokkaido University Sapporo Japan

International Collaboration Unit International Institute for Zoonosis Control Hokkaido University Sapporo Japan

International Research Center for Infectious Diseases The Institute of Medical Science The University of Tokyo Tokyo Japan

International Vaccine Design Center The Institute of Medical Science The University of Tokyo Tokyo Japan

Laboratory of Biomolecular Science and Center for Research and Education on Drug Discovery Faculty of Pharmaceutical Sciences Hokkaido University Sapporo Japan

Laboratory of Medical Virology Institute for Life and Medical Sciences Kyoto University Kyoto Japan

Laboratory of Virus Control Research Institute for Microbial Diseases Osaka University Suita Japan

One Health Research Center Hokkaido University Sapporo Japan

Tokyo Metropolitan Institute of Public Health Tokyo Japan

Zobrazit více v PubMed

Tamura T, Ito J, Uriu K, Zahradnik J, Kida I, Anraku Y, et al. Virological characteristics of the SARS‐CoV‐2 XBB variant derived from recombination of two Omicron subvariants. Nat Commun. 2023;14(1):2800.

Uriu K, Ito J, Zahradnik J, Fujita S, Kosugi Y, Schreiber G, Sato K. Enhanced transmissibility, infectivity, and immune resistance of the SARS‐CoV‐2 omicron XBB.1.5 variant. Lancet Infect Dis. 2023;23(3):280–281.

WHO. “Tracking SARS‐CoV‐2 variants (August 17, 2023)” https://www.who.int/en/activities/tracking-SARS-CoV-2-variants

Kaku Y, Kosugi Y, Uriu K, Ito J, Hinay Jr, AA, Kuramochi J, et al. Antiviral efficacy of the SARS‐CoV‐2 XBB breakthrough infection sera against omicron subvariants including EG.5. Lancet Infect Dis. 2023;23(10):e395–e396.

Ito J, Suzuki R, Uriu K, Itakura Y, Zahradnik J, Kimura KT, et al. Convergent evolution of SARS‐CoV‐2 Omicron subvariants leading to the emergence of BQ.1.1 variant. Nat Commun. 2023;14(1):2671.

Bloom JD, Neher RA. Fitness effects of mutations to SARS‐CoV‐2 proteins. Virus Evol. 2023;9(2):vead055.

Kosugi Y, Plianchaisuk A, Putri O, Uriu K, Kaku Y, Hinay Jr, AA, et al. Characteristics of the SARS‐CoV‐2 omicron HK.3 variant harbouring the FLip substitution. Lancet Microbe. 2024;5:e313.

Thorne LG, Bouhaddou M, Reuschl AK, Zuliani‐Alvarez L, Polacco B, Pelin A, et al. Evolution of enhanced innate immune evasion by SARS‐CoV‐2. Nature. 2022;602(7897):487–495.

Han L, Zhuang MW, Deng J, Zheng Y, Zhang J, Nan M‐L, et al. SARS‐CoV‐2 ORF9b antagonizes type I and III interferons by targeting multiple components of the RIG‐I/MDA‐5‐MAVS, TLR3‐TRIF, and cGAS‐STING signaling pathways. J Med Virol. 2021;93(9):5376–5389.

Wu J, Shi Y, Pan X, Wu S, Hou R, Zhang Y, et al. SARS‐CoV‐2 ORF9b inhibits RIG‐I‐MAVS antiviral signaling by interrupting K63‐linked ubiquitination of NEMO. Cell Reports. 2021;34(7):108761.

Jiang H, Zhang H, Meng Q, Xie J, Li Y, Chen H, et al. SARS‐CoV‐2 Orf9b suppresses type I interferon responses by targeting TOM70. Cell Mol Immunol. 2020;17(9):998–1000.

Wang Q, Guo Y, Zhang RM, Ho J, Mohri H, Valdez R, et al. Antibody neutralisation of emerging SARS‐CoV‐2 subvariants: EG.5.1 and XBC.1.6. Lancet Infect Dis. 2023;23(10):e397–e398.

Zhang L, Kempf A, Nehlmeier I, Cossmann A, Dopfer‐Jablonka A, Stankov MV, et al. Neutralisation sensitivity of SARS‐CoV‐2 lineages EG.5.1 and XBB.2.3. Lancet Infect Dis. 2023;23(10):e391–e392.

Ozono S, Zhang Y, Ode H, Sano K, Tan TS, Imai K, et al. SARS‐CoV‐2 D614G spike mutation increases entry efficiency with enhanced ACE2‐binding affinity. Nat Commun. 2021;12(1):848.

Ferreira IATM, Kemp SA, Datir R, Saito A, Meng B, Rakshit P, et al. SARS‐CoV‐2 B.1.617 mutations L452R and E484Q are not synergistic for antibody evasion. J Infect Dis. 2021;224(6):989–994.

Motozono C, Toyoda M, Zahradnik J, Saito A, Nasser H, Tan TS, et al. SARS‐CoV‐2 spike L452R variant evades cellular immunity and increases infectivity. Cell Host Microbe. 2021;29(7):1124–1136.e11.

Matsuyama S, Nao N, Shirato K, Kawase M, Saito S, Takayama I, et al. Enhanced isolation of SARS‐CoV‐2 by TMPRSS2‐expressing cells. Proc Natl Acad Sci USA. 2020;117(13):7001–7003.

Fujita S, Kosugi Y, Kimura I, Yamasoba D, Sato K. Structural Insight into the Resistance of the SARS‐CoV‐2 Omicron BA.4 and BA.5 Variants to Cilgavimab. Viruses. 2022;14(12):2677.

Kimura I, Yamasoba D, Tamura T, Nao N, Suzuki T, Oda Y, et al. Virological characteristics of the SARS‐CoV‐2 Omicron BA.2 subvariants, including BA.4 and BA.5. Cell. 2022;185(21):3992‐4007.e16.

Chen S, Zhou Y, Chen Y, Gu J. fastp: an ultra‐fast all‐in‐one FASTQ preprocessor. Bioinformatics. 2018;34(17):i884–i890.

Li H, Durbin R. Fast and accurate short read alignment with Burrows‐Wheeler transform. Bioinformatics. 2009;25(14):1754–1760.

Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25(16):2078–2079.

Cingolani P, Platts A, Wang LL, Coon M, Nguyen T, Wang L, et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso‐2; iso‐3. Fly. 2012;6(2):80–92.

Khare S, Gurry C, Freitas L, Schultz MB, Bach G, Diallo A, et al. GISAID's role in pandemic response. China CDC Weekly. 2021;3(49):1049–1051.

Aksamentov I, Roemer C, Hodcroft E, Neher R. Nextclade: clade assignment, mutation calling and quality control for viral genomes. J Open Source Softw. 2021;6(67):3773.

Gu Z, Eils R, Schlesner M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics. 2016;32(18):2847–2849.

Moshiri N. ViralMSA: massively scalable reference‐guided multiple sequence alignment of viral genomes. Bioinformatics. 2021;37(5):714–716.

Capella‐Gutiérrez S, Silla‐Martínez JM, Gabaldón T. trimAl: a tool for automated alignment trimming in large‐scale phylogenetic analyses. Bioinformatics. 2009;25(15):1972–1973.

Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, von Haeseler A, et al. IQ‐TREE 2: New models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol. 2020;37(5):1530–1534.

Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods. 2017;14(6):587–589.

Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Vinh LS. UFBoot2: Improving the Ultrafast Bootstrap Approximation. Mol Biol Evol. 2018;35(2):518–522.

Paradis E, Schliep K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics. 2019;35(3):526–528.

Yu G. Using ggtree to visualize data on tree‐like structures. Curr Protoc Bioinformatics. 2020;69(1):e96.

R Core Team. “R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.” https://www.R-project.org/. 2023.

Hoffman MD, Gelman A. The No‐U‐Turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo. J Mach Learn Res. 2014;15:1593–1623.

Vehtari A, Gelman A, Simpson D, Carpenter B, Bürkner P‐C. Rank‐normalization, folding, and localization: an improved Rˆ for assessing convergence of MCMC (with Discussion). Bayesian Analysis. 2021;16(2):667–718.

Saito A, Irie T, Suzuki R, Maemura T, Nasser H, Uriu K, et al. Enhanced fusogenicity and pathogenicity of SARS‐CoV‐2 Delta P681R mutation. Nature. 2022;602(7896):300–306.

Yamasoba D, Kimura I, Nasser H, Morioka Y, Nao N, Ito J, et al. Virological characteristics of the SARS‐CoV‐2 Omicron BA.2 spike. Cell. 2022;185(12):2103‐15.e19.

Zahradník J, Kolářová L, Peleg Y, Kolenko P, Svidenská S, Charnavets T, et al. Flexible regions govern promiscuous binding of IL‐24 to receptors IL‐20R1 and IL‐22R1. FEBS J. 2019;286(19):3858–3873.

Dejnirattisai W, Huo J, Zhou D, Zahradník J, Supasa P, Liu C, et al. SARS‐CoV‐2 Omicron‐B.1.1.529 leads to widespread escape from neutralizing antibody responses. Cell. 2022;185(3):467‐84.e15.

Saito A, Tamura T, Zahradnik J, Deguchi S, Tabata K, Anraku Y, et al. Virological characteristics of the SARS‐CoV‐2 Omicron BA.2.75 variant. Cell Host & Microbe. 2022;30(11):1540–55.e15.

Gordon DE, Jang GM, Bouhaddou M, Xu J, Obernier K, White KM, et al. A SARS‐CoV‐2 protein interaction map reveals targets for drug repurposing. Nature. 2020;583(7816):459–468.

Torii S, Ono C, Suzuki R, Morioka Y, Anzai I, Fauzyah Y, et al. Establishment of a reverse genetics system for SARS‐CoV‐2 using circular polymerase extension reaction. Cell Rep. 2021;35(3):109014.

Kimura I, Yamasoba D, Nasser H, Zahradnik J, Kosugi Y, Wu J, et al. The SARS‐CoV‐2 spike S375F mutation characterizes the Omicron BA.1 variant. iScience. 2022;25(12):105720.

Tamura T, Irie T, Deguchi S, Yajima H, Tsuda M, Nasser H, et al. Virological characteristics of the SARS‐CoV‐2 Omicron XBB.1.5 variant. Nat Commun. 2024;15(1):1176.

Suzuki R, Yamasoba D, Kimura I, Wang L, Kishimoto M, Ito J, et al. Attenuated fusogenicity and pathogenicity of SARS‐CoV‐2 Omicron variant. Nature. 2022;603(7902):700–705.

Tamura T, Yamasoba D, Oda Y, Ito J, Kamasaki T, Nao N, et al. Comparative pathogenicity of SARS‐CoV‐2 Omicron subvariants including BA.1, BA.2, and BA.5. Commun. Biol. 2023;6(1):772.

Reed LJ, Muench H. A simple method of estimating fifty percent endpoints. Am J Hygiene. 1938;27:493–497.

Zahradník J, Marciano S, Shemesh M, Zoler E, Harari D, Chiaravalli J, et al. SARS‐CoV‐2 variant prediction and antiviral drug design are enabled by RBD in vitro evolution. Nat Microbiol. 2021;6(9):1188–1198.

Nasser H, Shimizu R, Ito J, Saito A, Sato K, Ikeda T. Monitoring fusion kinetics of viral and target cell membranes in living cells using a SARS‐CoV‐2 spike‐protein‐mediated membrane fusion assay. STAR Protoc. 2022;3(4):101773.

Begum MM, Ichihara K, Takahashi O, et al. Virological characteristics correlating with SARS‐CoV‐2 spike protein fusogenicity. Front Virol. 2024;4:1353661. https://doi.org/10.3389/fviro.2024.1353661

Kondo N, Miyauchi K, Matsuda Z. Monitoring viral‐mediated membrane fusion using fluorescent reporter methods. Curr Protoc Cell Biol. 2011;Chapter 26:Unit 26 9.

Sano E, Suzuki T, Hashimoto R, Itoh Y, Sakamoto A, Sakai Y, et al. Cell response analysis in SARS‐CoV‐2 infected bronchial organoids. Commun Biol. 2022;5(1):516.

Meng B, Abdullahi A, Ferreira IATM, Goonawardane N, Saito A, Kimura I, et al. Altered TMPRSS2 usage by SARS‐CoV‐2 Omicron impacts infectivity and fusogenicity. Nature. 2022;603(7902):706–714.

Hashimoto R, Takahashi J, Shirakura K, Funatsu R, Kosugi K, Deguchi S, et al. SARS‐CoV‐2 disrupts respiratory vascular barriers by suppressing Claudin‐5 expression. Sci Adv. 2022;8(38):eabo6783.

Deguchi S, Tsuda M, Kosugi K, Sakamoto A, Mimura N, Negoro R, et al. Usability of polydimethylsiloxane‐based microfluidic devices in pharmaceutical research using human hepatocytes. ACS Biomater Sci Eng. 2021;7(8):3648–3657.

Hashiguchi T, Ose T, Kubota M, Maita N, Kamishikiryo J, Maenaka K, et al. Structure of the measles virus hemagglutinin bound to its cellular receptor SLAM. Nat Struct Mol Biol. 2011;18(2):135–141.

Hsieh CL, Goldsmith JA, Schaub JM, DiVenere AM, Kuo H‐C, Javanmardi K, et al. Structure‐based design of prefusion‐stabilized SARS‐CoV‐2 spikes. Science. 2020;369(6510):1501–1505.

Punjani A, Rubinstein JL, Fleet DJ, Brubaker MA. cryoSPARC: algorithms for rapid unsupervised cryo‐EM structure determination. Nat Methods. 2017;14(3):290–296.

Cardone G, Heymann JB, Steven AC. One number does not fit all: mapping local variations in resolution in cryo‐EM reconstructions. J Struct Biol. 2013;184(2):226–236.

Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, et al. UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem. 2004;25(13):1605–1612.

Goddard TD, Huang CC, Meng EC, Pettersen EF, Couch GC, Morris JH, et al. UCSF ChimeraX: Meeting modern challenges in visualization and analysis. Protein Sci. 2018;27(1):14–25.

Emsley P, Lohkamp B, Scott WG, Cowtan K. Features and development of Coot. Acta Crystallogr D Biol Crystallogr. 2010;66(Pt 4):486–501.

Liebschner D, Afonine PV, Baker ML, Bunkóczi G, Chen VB, Croll TI, et al. Macromolecular structure determination using X‐rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr D Struct Biol. 2019;75(Pt 10):861–877.

Williams CJ, Headd JJ, Moriarty NW, Prisant MG, Videau LL, Deis LN, et al. MolProbity: More and better reference data for improved all‐atom structure validation. Protein Sci. 2018;27(1):293–315.

Fujita T, Nolan GP, Liou HC, Scott ML, Baltimore D. The candidate proto‐oncogene bcl‐3 encodes a transcriptional coactivator that activates through NF‐kappa B p50 homodimers. Genes Dev. 1993;7(7B):1354–1363.

Yoshida A, Kawabata R, Honda T, Sakai K, Ami Y, Sakaguchi T, et al. A single amino acid substitution within the paramyxovirus Sendai virus nucleoprotein is a critical determinant for production of interferon‐beta‐inducing copyback‐type defective interfering genomes. J Virol. 2018;92(5):e02094.

Konno Y, Kimura I, Uriu K, Fukushi M, Irie T, Koyanagi Y, et al. SARS‐CoV‐2 ORF3b is a potent interferon antagonist whose activity is increased by a naturally occurring elongation variant. Cell Rep. 2020;32(12):108185.

Kimura I, Konno Y, Uriu K, Hopfensperger K, Sauter D, Nakagawa S, et al. Sarbecovirus ORF6 proteins hamper induction of interferon signaling. Cell Rep. 2021;34(13):108916.

Yamasoba D, Uriu K, Plianchaisuk A, Kosugi Y, Pan L, Zahradnik J, et al. Virological characteristics of the SARS‐CoV‐2 omicron XBB.1.16 variant. Lancet Infect Dis. 2023;23(6):655–656.

Cao Y, Song W, Wang L, Liu P, Yue C, Jian F, et al. Characterization of the enhanced infectivity and antibody evasion of Omicron BA.2.75. Cell Host Microbe. 2022;30(11):1527‐39.e5.

Zhao Z, Zhou J, Tian M, Huang M, Liu S, Xie Y, et al. Omicron SARS‐CoV‐2 mutations stabilize spike up‐RBD conformation and lead to a non‐RBM‐binding monoclonal antibody escape. Nat Commun. 2022;13(1):4958.

Xu C, Wang Y, Liu C, Zhang C, Han W, Hong X, et al. Conformational dynamics of SARS‐CoV‐2 trimeric spike glycoprotein in complex with receptor ACE2 revealed by cryo‐EM. Sci Adv. 2021;7(1):eabe5575.

Yamasoba D, Kosugi Y, Kimura I, Fujita S, Uriu K, Ito J, et al. Neutralisation sensitivity of SARS‐CoV‐2 omicron subvariants to therapeutic monoclonal antibodies. Lancet Infect Dis. 2022;22(7):942–943.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...