New cryptic species of the 'revolutum' group of Echinostoma (Digenea: Echinostomatidae) revealed by molecular and morphological data
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
23497579
PubMed Central
PMC3605289
DOI
10.1186/1756-3305-6-64
PII: 1756-3305-6-64
Knihovny.cz E-zdroje
- MeSH
- Echinostoma anatomie a histologie klasifikace genetika izolace a purifikace MeSH
- fylogeneze MeSH
- hlemýždi parazitologie MeSH
- jezera parazitologie MeSH
- molekulární sekvence - údaje MeSH
- řeky parazitologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Island MeSH
- Německo MeSH
BACKGROUND: The digenean species of Echinostoma (Echinostomatidae) with 37 collar spines that comprise the so-called 'revolutum' species complex, qualify as cryptic due to the interspecific homogeneity of characters used to differentiate species. Only five species were considered valid in the most recent revision of the group but recent molecular studies have demonstrated a higher diversity within the group. In a study of the digeneans parasitising molluscs in central and northern Europe we found that Radix auricularia, R. peregra and Stagnicola palustris were infected with larval stages of two cryptic species of the 'revolutum' complex, one resembling E. revolutum and one undescribed species, Echinostoma sp. IG. This paper provides morphological and molecular evidence for their delimitation. METHODS: Totals of 2,030 R. auricularia, 357 R. peregra and 577 S. palustris were collected in seven reservoirs of the River Ruhr catchment area in Germany and a total of 573 R. peregra was collected in five lakes in Iceland. Cercariae were examined and identified live and fixed in molecular grade ethanol for DNA isolation and in hot/cold 4% formaldehyde solution for obtaining measurements from fixed materials. Partial fragments of the mitochondrial gene nicotinamide adenine dinucleotide dehydrogenase subunit 1 (nad1) were amplified for 14 isolates. RESULTS: Detailed examination of cercarial morphology allowed us to differentiate the cercariae of the two Echinostoma spp. of the 'revolutum' species complex. A total of 14 partial nad1 sequences was generated and aligned with selected published sequences for eight species of the 'revolutum' species complex. Both NJ and BI analyses resulted in consensus trees with similar topologies in which the isolates from Europe formed strongly supported reciprocally monophyletic lineages. The analyses also provided evidence that North American isolates identified as E. revolutum represent another cryptic species of the 'revolutum' species complex. CONCLUSION: Our findings highlight the need for further analyses of patterns of interspecific variation based on molecular and morphological evidence to enhance the re-evaluation of the species and advance our understanding of the relationships within the 'revolutum' group of Echinostoma.
Zobrazit více v PubMed
Bickford D, Lohman DJ, Sodhi NS, Ng PKL, Meier R, Winker K, Ingram KK, Das I. Cryptic species as a window on diversity and conservation. Trends Ecol Evol. 2007;22:148–155. doi: 10.1016/j.tree.2006.11.004. PubMed DOI
Pérez-Ponce de León G, Nadler SA. Critical Comment: What we don’t recognize can hurt us: A plea for awareness about cryptic species. J Parasitol. 2010;96:453–464. doi: 10.1645/GE-2260.1. PubMed DOI
Kanev I. Life-cycle, delimitation and redescription of Echinostoma revolutum (Frölich, 1802) (Trematoda: Echinostomatidae) Syst Parasitol. 1994;28:125–144. doi: 10.1007/BF00009591. DOI
Kanev I, Dimitrov V, Radev V, Fried B. Redescription of Echinostoma trivolvis (Cort, 1914) with a discussion of its identity. Syst Parasitol. 1995;32:61–70. doi: 10.1007/BF00009468. DOI
Kanev I, Fried B, Dimitrov V, Radev V. Redescription of Echinostoma jurini (Skvortzov, 1924) with a discussion of its identity and characteristics. Ann Naturhist Mus Wien. 1995;97B:37–53.
Kostadinova A, Gibson DI. In: Echinostomes as Experimental Models for Biological Research. Fried B, Graczyk TK, editor. Dordrecht: Kluwer Academic Publishers; 2000. The systematics of the echinostomes; pp. 31–57.
Morgan JAT, Blair D. Mitochondrial ND1 gene sequences used to identify echinostome isolates from Australia and New Zealand. Int J Parasitol. 1998;28:493–502. doi: 10.1016/S0020-7519(97)00204-X. PubMed DOI
Kechemir N, Jourdane J, Mas-Coma S. Life cycle of a new African echinostome species reproducing by parthenogenesis. J Nat Hist. 2002;36:1777–1784. doi: 10.1080/00222930110062633. DOI
Detwiler JT, Zajac AM, Minchella DJ, Belden LK. Revealing cryptic parasite diversity in a definitive host: echinostomes in muskrats. J Parasitol. 2012;98:1148–1155. doi: 10.1645/GE-3117.1. PubMed DOI
Sorensen RE, Curtis J, Minchella DJ. Intraspecific variation in the rDNA its loci of 37-collar-spined echinostomes from North America: implications for sequence-based diagnoses and phylogenetics. J Parasitol. 1998;84:992–997. doi: 10.2307/3284633. PubMed DOI
Detwiler JT, Bos DH, Minchella DJ. Revealing the secret lives of cryptic species: Examining the phylogenetic relationships of echinostome parasites in North America. Mol Phylogenet Evol. 2010;55:611–620. doi: 10.1016/j.ympev.2010.01.004. PubMed DOI
Morgan JAT, Blair D. Nuclear rDNA ITS sequence variation in the trematode genus Echinostoma: an aid to establishing relationships within the 37-collar-spine group. Parasitology. 1995;111:609–615. doi: 10.1017/S003118200007709X. PubMed DOI
Morgan JAT, Blair D. Relative merits of nuclear ribosomal internal transcribed spacers and mitochondrial CO1 and ND1 genes for distinguishing among Echinostoma species (Trematoda) Parasitology. 1998;116:289–297. doi: 10.1017/S0031182097002217. PubMed DOI
Kostadinova A, Herniou EA, Barrett J, Littlewood DTJ. Phylogenetic relationships of Echinostoma Rudolphi, 1809 (Digenea: Echinostomatidae) and related genera re-assessed via DNA and morphological analyses. Syst Parasitol. 2003;54:159–176. doi: 10.1023/A:1022681123340. PubMed DOI
Dietz E. Die Echinostomiden der Vögel. Zool Anz. 1909;34:180–192.
Dietz E. Die Echinostomiden der Vögel. Zool Jahrb. 1910;12:S256–S512.
Iskova NI. Trematoda, Part 4. Echinostomatata. Fauna Ukrainy. Vol. 34. Kiev: Naukova Dumka; 1985. (In Russian)
Našincová V. Contribution to the distribution and the life history of Echinostoma revolutum in Central Europe. Věst Českoslov Společ Zool. 1986;50:70–80.
Našincová V. The life cycle of Echinostoma bolschewense (Kotova, 1939) (Trematoda: Echinostomatidae) Folia Parasitol. 1991;38:143–154. PubMed
Kostadinova A, Gibson DI, Biserkov V, Chipev N. Re-validation of Echinostoma miyagawai Ishii, 1932 (Digenea: Echinostomatidae) on the basis of experimental completion of its life-cycle. Syst Parasitol. 2000;45:81–108. doi: 10.1023/A:1006241610689. PubMed DOI
Kostadinova A, Gibson DI, Biserkov V, Ivanova R. A quantitative approach to the evaluation of the morphological variability of two echinostomes, Echinostoma miyagawai Ishii, 1932 and E. revolutum (Frölich, 1802) from Europe. Syst Parasitol. 2000;45:1–15. doi: 10.1023/A:1006232612469. PubMed DOI
Toledo R, Muñoz-Antolí C, Esteban JG. The life-cycle of Echinostoma friedi n. sp. (Trematoda: Echinostomatidae) in Spain and a discussion on the relationships within the ‘revolutum’ group based on cercarial chaetotaxy. Syst Parasitol. 2000;45:199–217. doi: 10.1023/A:1006385902664. PubMed DOI
Soldánová M, Selbach C, Sures B, Kostadinova A, Pérez-del-Olmo A. Larval trematode communities in Radix auricularia and Lymnaea stagnalis in a reservoir system of the Ruhr River. Parasit Vectors. 2010;3:56. doi: 10.1186/1756-3305-3-56. PubMed DOI PMC
Faltýnková A, Našincová V, Kablásková L. Larval trematodes (Digenea) of the great pond snail, Lymnaea stagnalis (L.), (Gastropoda, Pulmonata) in Central Europe: a survey of species and key to their identification. Parasite. 2007;14:39–51. PubMed
Faltýnková A, Našincová V, Kablásková L. Larval trematodes (Digenea) of planorbid snails (Gastropoda: Pulmonata) in Central Europe: a survey of species and key to their identification. Syst Parasitol. 2008;69:155–178. doi: 10.1007/s11230-007-9127-1. PubMed DOI
Abramoff MD, Magalhaes PJ, Ram SJ. Image processing with ImageJ. Biophotonics Internat. 2004;11:36–42.
Glöer P. Die Süßwassergastropoden Nord- und Mitteleuropas. 2, neubearbeitete Auflage. Hackenheim: ConchBooks; 2002.
Bargues MD, Vigo M, Horák P, Dvořák J, Patzner RA, Pointier JP, Jackiewicz M, Meier–Brook C, Mas-Coma S. European Lymnaeidae (Mollusca: Gastropoda), intermediate hosts of trematodiases, based on nuclear ribosomal DNA ITS2 sequences. Infect Genet Evol. 2001;1:85–107. doi: 10.1016/S1567-1348(01)00019-3. PubMed DOI
Huňová K, Kašný M, Hampl V, Leontovyč R, Kuběna A, Mikeš L, Horák P. Radix spp.: Identification of trematode intermediate hosts in the Czech Republic. Acta Parasitol. 2012;57:273–284. doi: 10.2478/s11686-012-0040-7. PubMed DOI
Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. 2011;28:2731–2739. doi: 10.1093/molbev/msr121. PubMed DOI PMC
Telford MJ, Herniou EA, Russell RB, Littlewood DTJ. Changes in mitochondrial genetic codes as phylogenetic characters: Two examples from the flatworms. Proc Nat Acad Sci USA. 2000;97:11359–11364. doi: 10.1073/pnas.97.21.11359. PubMed DOI PMC
Huelsenbeck JP, Ronquist F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics. 2001;17:754–755. doi: 10.1093/bioinformatics/17.8.754. PubMed DOI
Ronquist F, Huelsenbeck JP. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics. 2003;19:1572–1574. doi: 10.1093/bioinformatics/btg180. PubMed DOI
Posada D. jModelTest: phylogenetic model averaging. Mol Biol Evol. 2008;25:1253–1256. doi: 10.1093/molbev/msn083. PubMed DOI
Rambaut A, Drummond AJ. Tracer v1.4. 2007. Available from http://beast.bio.ed.ac.uk/Tracer.
Huelsenbeck JP, Ronquist F, Nielsen R, Bollback JP. Bayesian inference of phylogeny and its impact on evolutionary biology. Science. 2001;294:2310–2314. doi: 10.1126/science.1065889. PubMed DOI
Golikova MN. An ecological and parasitological study of the biocoenoses of some lakes in the Kaliningrad region. IV. The trematode fauna of invertebrates. Vestn Lenin Univ Biol. 1960;15:80–94. (In Russian)
Žďárská Z. Larvální stádia motolic z vodních plžů na území ČSSR. Českoslov Parasitol. 1963;10:207–262. (In Czech)
Nezvalová J. Příspěvek k poznání cerkarií jižní Moravy. Folia Fac Sci Nat Univ Purkynianae Brunensis Biol. 1970;515:217–252. (In Czech)
Balůsek J, Vojtek J. Příspěvek k poznání našich cerkárií. Folia Fac Sci Nat Univ Purkynianae Brunensis Biol. 1973;40:3–43. (In Czech)
Stenko RP. On the trematode fauna of some Crimean freshwater molluscs and its changes induced by anthropogenic factors. Vestn Zool. 1976;5:90–91. (In Russian)
Stenko RP. On studying fauna of trematoda larvae of fresh-water Crimean mollusks. Vestn Zool. 1976;5:42–46. (In Russian)
Kanev I, Vassilev I, Bayssade-Dufour C, Albaret J-L, Cassone J. Chétotaxie cercarienne d’Echinostoma revolutum (Froelich, 1802) et E. echinatum (Zeder, 1803) (Trematoda, Echinostomatidae) Ann Parasit Hum Comp. 1987;62:222–234. PubMed
Väyrynen T, Siddall R, Valtonen ET, Taskinen J. Patterns of trematode parasitism in lymnaeid snails from northern and central Finland. Ann Zool Fenn. 2000;37:189–199.
Faltýnková A. Larval trematodes (Digenea) in molluscs from small water bodies near České Budějovice, Czech Republic. Acta Parasitol. 2005;50:49–55.
Hennig W. Phylogenetic systematics. Urbana: University of Illinois Press; 1966.
Detwiler JT, Minchella DJ. Intermediate host availability masks the strength of experimentally-derived colonisation patterns in echinostome trematodes. Int J Parasitol. 2009;39:585–590. doi: 10.1016/j.ijpara.2008.10.008. PubMed DOI
Diversity of echinostomes (Digenea: Echinostomatidae) in their snail hosts at high latitudes
Hidden parasite diversity in a European freshwater system