Echinostoma 'revolutum' (Digenea: Echinostomatidae) species complex revisited: species delimitation based on novel molecular and morphological data gathered in Europe
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
25430038
PubMed Central
PMC4258292
DOI
10.1186/s13071-014-0520-8
PII: s13071-014-0520-8
Knihovny.cz E-zdroje
- MeSH
- druhová specificita MeSH
- Echinostoma anatomie a histologie klasifikace genetika MeSH
- fylogeneze MeSH
- haplotypy MeSH
- hlemýždi parazitologie MeSH
- interakce hostitele a parazita MeSH
- sladká voda MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Evropa MeSH
BACKGROUND: The systematics of echinostomes within the so-called 'revolutum' group of the genus Echinostoma, which encompasses the type-species E. revolutum and a number of morphologically similar species, has long been controversial. Recent molecular studies indicate the existence of more species than previously considered valid, thus stressing the need for wider taxon sampling from natural host populations. This is especially true for Europe where morphological evidence indicates higher species diversity than previously thought, but where molecular data are virtually lacking. This gap in our knowledge was addressed in the present study through an integration of morphological and molecular approaches in the investigation of a dataset with larger taxonomic and geographical coverage. METHODS: More than 20,000 freshwater snails belonging to 16 species were collected during 1998-2012 from various localities in eight countries in Europe. Snail screening provided representative larval isolates for five species of the 'revolutum' group, identified by their morphology. Adult isolates for four species recovered from natural and experimental infections were also identified. Partial fragments of the mitochondrial nad1 and 28S rRNA genes were amplified for 74 and 16 isolates, respectively; these were analysed together with the sequences of Echinostoma spp. available on GenBank. RESULTS: Delineation of the European Echinostoma spp. was carried out based on molecular, morphological and ecological data. The large-scale screening revealed infections with five Echinostoma spp., including one new species: E. revolutum (sensu stricto), E. miyagawai, E. paraulum, E. bolschewense and Echinostoma n. sp. The newly-generated nad1 sequences from Europe fall into six distinct, well-supported, reciprocally monophyletic lineages corresponding to the species identifications based on morphology; this was corroborated by the 28S rDNA sequences. The analyses of the total nad1 dataset provided evidence for 12 monophyletic groups and five singletons, which represent seven described/named species and ten cryptic species-level lineages of Echinostoma. CONCLUSION: We conclude that nad1 should be the first choice for large-scale barcode-based identification of the species of the 'revolutum' group. Our study provides a comprehensive reference library for precisely identified isolates of the European species and highlights the importance of an integrative approach for species identification linking molecular, morphological and biological data.
College of Medical Veterinary and Life Sciences University of Glasgow Glasgow G12 8QQ UK
Faculty of Science University of South Bohemia Branišovská 31 370 05 České Budějovice Czech Republic
Komenský Museum Horní nám 7 750 11 Přerov 2 Přerov Czech Republic
Natural History Museum of Geneva P O Box 6134 CH 1211 Geneva Switzerland
Zobrazit více v PubMed
Kostadinova A, Gibson DI, Biserkov V, Chipev N. Re-validation of Echinostoma miyagawai Ishii, 1932 (Digenea: Echinostomatidae) on the basis of experimental completion of its life-cycle. Syst Parasitol. 2000;45:81–108. doi: 10.1023/A:1006241610689. PubMed DOI
Kostadinova A, Gibson DI, Biserkov V, Ivanova R. A quantitative approach to the evaluation of the morphological variability of two echinostomes, Echinostoma miyagawai Ishii, 1932 and E. revolutum (Frölich, 1802) from Europe. Syst Parasitol. 2000;45:1–15. doi: 10.1023/A:1006232612469. PubMed DOI
Kostadinova A, Gibson DI. The Systematics of the Echinostomes. In: Fried B, Graczyk TK, editors. Echinostomes as Experimental Models for Biological Research. Dordrecht: Kluwer Academic Publishers; 2000. pp. 31–57.
Beaver PC. Experimental studies on Echinostoma revolutum (Frölich) a fluke from birds and mammals. Ill Biol Monogr. 1937;15:7–96.
Kanev I. Life-cycle, delimitation and redescription of Echinostoma revolutum (Frölich, 1802) (Trematoda: Echinostomatidae) Syst Parasitol. 1994;28:125–144. doi: 10.1007/BF00009591. DOI
Kanev I, Dimitrov V, Radev V, Fried B. Redescription of Echinostoma trivolvis (Cort, 1914) with a discussion of its identity. Syst Parasitol. 1995;32:61–70. doi: 10.1007/BF00009468. DOI
Kanev I, Fried B, Dimitrov V, Radev V. Redescription of Echinostoma jurini (Skvortzov, 1924) with a discussion of its identity and characteristics. Ann Naturhist Mus Wien. 1995;97B:37–53.
Kosupko GA. [The morphological peculiarities of Echinostoma revolutum and E. miyagawai cercariae.] Trudy VIGIS. 1969;15:159–165.
Kosupko GA. New data on the bioecology and morphology of Echinostoma revolutum and E. miyagawai (Trematoda: Echinostomatidae) Byull VIGIS. 1971;5:43–49.
Kosupko GA: [Criteria of the speciesEchinostoma revolutum, demonstrated on experimental material.]. In Sbornik rabot po gel’mintologii posvyashchen 90-letiyu so dnya rozhdeniya akademika K.I. Skryabina. Moscow: ‘Kolos’; 1971:167–175. In Russian.
Kosupko GA: [Morphology and Biology of Echinostoma revolutum Frölich, 1802 and Echinostoma miyagawai Ishii, 1932 (Trematoda: Echinostomatidae) Studied on Experimental Material.], PhD Thesis. Moscow: VIGIS; 1972. In Russian.
Našincová V. Contribution to the distribution and the life history of Echinostoma revolutum in Central Europe. Věst Českoslov Společ Zool. 1986;50:70–80.
Kostadinova A. Echinostoma echinatum (Zeder, 1803) sensu Kanev (Digenea: Echinostomatidae): a note of caution. Syst Parasitol. 1995;32:23–26. doi: 10.1007/BF00009464. DOI
Morgan JAT, Blair D. Mitochondrial ND1 gene sequences used to identify echinostome isolates from Australia and New Zealand. Int J Parasitol. 1998;28:493–502. doi: 10.1016/S0020-7519(97)00204-X. PubMed DOI
Sorensen RE, Kanev I, Fried B, Minchella DJ. The occurrence and identification of Echinostoma revolutum from North American Lymnaea elodes snails. J Parasitol. 1997;83:169–170. doi: 10.2307/3284342. PubMed DOI
Detwiler JT, Bos DH, Minchella DJ. Revealing the secret lives of cryptic species: examining the phylogenetic relationships of echinostome parasites in North America. Mol Phylogenet Evol. 2010;55:611–620. doi: 10.1016/j.ympev.2010.01.004. PubMed DOI
Detwiler JT, Zajac AM, Minchella DJ, Belden LK. Revealing cryptic parasite diversity in a definitive host: echinostomes in muskrats. J Parasitol. 2012;98:1148–1155. doi: 10.1645/GE-3117.1. PubMed DOI
Maldonado A, Jr, Locker ES, Morgan JAT, Rey L, Lanfredi RM. Description of the adult worms of a new Brazilian isolate of Echinostoma paraensei (Platyhelminthes: Digenea) from its natural vertebrate host Nectomys squamipes by light and scanning electron microscopy and molecular analysis. Parasitol Res. 2001;87:840–848. doi: 10.1007/s004360100451. PubMed DOI
Georgieva S, Selbach C, Faltýnková A, Soldánová M, Sures B, Skírnisson K, Kostadinova A. New cryptic species of the 'revolutum' group of Echinostoma (Digenea: Echinostomatidae) revealed by molecular and morphological data. Parasit Vectors. 2013;6:64. doi: 10.1186/1756-3305-6-64. PubMed DOI PMC
Našincová V. [Trematode developmental stages in Czech aquatic snails and life-cycles of selected species of the family Omphalometridae and Echinostomatidae] České Budějovice: Institute of Parasitology, Czechoslovak Academy of Sciences; 1992.
Našincová V. The life cycle of Echinostoma bolschewense (Kotova, 1939) (Trematoda: Echinostomatidae) Folia Parasitol. 1991;38:143–154. PubMed
Toledo R, Muñoz-Antolí C, Esteban JG. The life-cycle of Echinostoma friedi n. sp. (Trematoda: Echinostomatidae) in Spain and a discussion on the relationships within the ‘revolutum’ group based on cercarial chaetotaxy. Syst Parasitol. 2000;45:199–217. doi: 10.1023/A:1006385902664. PubMed DOI
Kechemir N, Jourdane J, Mas-Coma S. Life cycle of a new African echinostome species reproducing by parthenogenesis. J Nat Hist. 2002;36:1777–1784. doi: 10.1080/00222930110062633. DOI
Maldonado A, Jr, Vieira GO, Lanfredi RM. Echinostoma luisreyi n. sp. (Platyhelminthes: Digenea) by light and scanning electron microscopy. J Parasitol. 2003;89:800–808. doi: 10.1645/GE-3095. PubMed DOI
Morgan JAT, Blair D. Nuclear rDNA ITS sequence variation in the trematode genus Echinostoma: an aid to establishing relationships within the 37-collar-spine group. Parasitology. 1995;111:609–615. doi: 10.1017/S003118200007709X. PubMed DOI
Morgan JAT, Blair D. Relative merits of nuclear ribosomal internal transcribed spacers and mitochondrial CO1 and ND1 genes for distinguishing among Echinostoma species (Trematoda) Parasitology. 1998;116:289–297. doi: 10.1017/S0031182097002217. PubMed DOI
Sorensen RE, Curtis J, Minchella DJ. Intraspecific variation in the rDNA ITS loci of 37-collar-spined echinostomes from North America: implications for sequence-based diagnoses and phylogenetics. J Parasitol. 1998;84:992–997. doi: 10.2307/3284633. PubMed DOI
Kostadinova A, Herniou EA, Barrett J, Littlewood DTJ. Phylogenetic relationships of Echinostoma Rudolphi, 1809 (Digenea: Echinostomatidae) and related genera re-assessed via DNA and morphological analyses. Syst Parasitol. 2003;54:159–176. doi: 10.1023/A:1022681123340. PubMed DOI
Blouin MS. Molecular prospecting for cryptic species of nematodes: mitochondrial DNA versus internal transcribed spacer. Int J Parasitol. 2002;32:527–531. doi: 10.1016/S0020-7519(01)00357-5. PubMed DOI
Faltýnková A, Našincová V, Kablásková L. Larval trematodes (Digenea) of the great pond snail, Lymnaea stagnalis (L.) (Gastropoda, Pulmonata), in Central Europe: a survey of species and key to their identification. Parasite. 2007;14:39–51. doi: 10.1051/parasite/2007141039. PubMed DOI
Faltýnková A, Našincová V, Kablásková L. Larval trematodes (Digenea) of planorbid snails (Gastropoda: Pulmonata) in Central Europe: a survey of species and key to their identification. Syst Parasitol. 2008;69:155–178. doi: 10.1007/s11230-007-9127-1. PubMed DOI
Tkach V, Pawlowski J. A new method of DNA extraction from the ethanol-fixed parasitic worms. Acta Parasitol. 1999;44:147–148.
Lockyer AE, Olson PD, Littlewood DTJ. Utility of complete large and small subunit rRNA genes in resolving the phylogeny of the Neodermata (Platyhelminthes): implications and a review of the cercomer theory. Biol J Linn Soc Lond. 2003;78:155–171. doi: 10.1046/j.1095-8312.2003.00141.x. DOI
Bray RA, Waeschenbach A, Cribb TH, Weedall GD, Dyal P, Littlewood DTJ. The phylogeny of the Lepocreadioidea (Platyhelminthes, Digenea) inferred from nuclear and mitochondrial genes: Implications for their systematics and evolution. Acta Parasitol. 2009;54:310–329. doi: 10.2478/s11686-009-0045-z. DOI
Tkach VV, Littlewood DTJ, Olson PD, Kinsella JM, Swiderski Z. Molecular phylogenetic analysis of the Microphalloidea Ward, 1901 (Trematoda: Digenea) Syst Parasitol. 2003;56:1–15. doi: 10.1023/A:1025546001611. PubMed DOI
Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013;30:2725–2729. doi: 10.1093/molbev/mst197. PubMed DOI PMC
Telford MJ, Herniou EA, Russell RB, Littlewood DTJ. Changes in mitochondrial genetic codes as phylogenetic characters: two examples from the flatworms. Proc Natl Acad Sci U S A. 2000;97:11359–11364. doi: 10.1073/pnas.97.21.11359. PubMed DOI PMC
Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Hohna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol. 2012;61:539–542. doi: 10.1093/sysbio/sys029. PubMed DOI PMC
Guindon S, Gascuel O. A simple, fast and accurate method to estimate large phylogenies by maximum-likelihood. Syst Biol. 2003;52:696–704. doi: 10.1080/10635150390235520. PubMed DOI
Darriba D, Taboada GL, Doallo R, Posada D. jModelTest 2: more models, new heuristics and parallel computing. Nat Methods. 2012;9:772. doi: 10.1038/nmeth.2109. PubMed DOI PMC
Rambaut A, Drummond AJ: Tracer v1.4.; 2007. Available from http://beast.bio.ed.ac.uk/Tracer.
Huelsenbeck JP, Ronquist F, Nielsen R, Bollback JP. Bayesian inference of phylogeny and its impact on evolutionary biology. Science. 2001;294:2310–2314. doi: 10.1126/science.1065889. PubMed DOI
Clarke KR, Gorley RN. PRIMER v6: User Manual/Tutorial. Plymouth, Devon, UK: PRIMER-E Ltd; 2006.
Meier RK, Shiyang G, Vaidya PKLN. DNA barcoding and taxonomy in diptera: a tale of high intraspecific variability and low identification success. Syst Biol. 2006;55:715–728. doi: 10.1080/10635150600969864. PubMed DOI
Clement M, Posada D, Crandall KA. TCS: a computer program to estimate gene genealogies. Mol Ecol. 2000;9:1657–1660. doi: 10.1046/j.1365-294x.2000.01020.x. PubMed DOI
Faltýnková A, Georgieva S, Soldánová M, Kostadinova A. A re-assessment of species diversity within the ‘revolutum’ group of Echinostoma Rudolphi, 1809 (Digenea: Echinostomatidae) in Europe. Syst Parasitol. 2015;1:1–25. PubMed
Olson PD, Cribb TH, Tkach VV, Bray RA, Littlewood DTJ. Phylogeny and classification of the Digenea (Platyhelminthes: Trematoda) Int J Parasitol. 2003;33:733–755. doi: 10.1016/S0020-7519(03)00049-3. PubMed DOI
Hebert PDN, Stoeckle MY, Zelmak TS, Francis CM. Identification of birds through DNA barcodes. PLoS Biol. 2004;2:1657–1663. doi: 10.1371/journal.pbio.0020312. PubMed DOI PMC
Lotfy WM, Brant SV, DeJong RJ, Le TH, Demiaszkiewicz A, Rajapakse RP, Perera VB, Laursen JR, Loker ES. Evolutionary origins, diversification, and biogeography of liver flukes (Digenea, Fasciolidae) Am J Trop Med Hyg. 2008;79:248–255. PubMed PMC
Mollaret I, Jamieson BG, Adlard RD, Hugall A, Lecointre G, Chombard C, Justine J-L. Phylogenetic analysis of the Monogenea and their relationships with Digenea and Eucestoda inferred from 28S rDNA sequences. Mol Biochem Parasitol. 1997;90:433–438. doi: 10.1016/S0166-6851(97)00176-X. PubMed DOI
Miller TL, Cribb TH. Two new cryptogonimid genera (Digenea, Cryptogonimidae) from Lutjanus bohar (Perciformes, Lutjanidae): analyses of ribosomal DNA reveals wide geographic distribution and presence of cryptic species. Acta Parasitol. 2007;52:104–113. doi: 10.2478/s11686-007-0019-y. DOI
Miller TL, Cribb TH. Coevolution of Retrovarium n. gen. (Digenea: Cryptogonimidae) in Lutjanidae and Haemulidae (Perciformes) in the Indo-West Pacific. Int J Parasitol. 2007;37:1023–1045. doi: 10.1016/j.ijpara.2007.01.006. PubMed DOI
Barker F. Parasites of the American muscrat (Fiber zibethicus) J Parasitol. 1915;1:184–197. doi: 10.2307/3270807. DOI
Cort WW. Larval trematodes from North American freshwater snails (Preliminary report) J Parasitol. 1914;1:65–84. doi: 10.2307/3271183. DOI
Lutz A. Estudos sobre a evoluacão dos endotrematodes brazileiros. Mem Inst Oswaldo Cruz. 1924;17:55–93.
Lie KJ, Basch PF. Life history of Echinostoma barbosai sp. n. (Trematoda: Echinostomatidae) J Parasitol. 1966;52:1052–1057. doi: 10.2307/3276346. PubMed DOI
Lie KJ, Basch PF. The life history of Echinostoma paraensei sp. n. (Trematoda: Echinostomatidae) J Parasitol. 1967;53:1192–1199. doi: 10.2307/3276679. PubMed DOI
Hsu KC, Lie KJ, Basch PF. The life history of Echinostoma rodriguesi sp. n. (Trematoda: Echinostomatidae) J Parasitol. 1968;54:333–339. doi: 10.2307/3276946. PubMed DOI
Kohn A, Fernandes BMM. Sobre as especies do genero Echinostoma Rudolphi, 1809 decritas por Adolpho Lutz em 1924. Mem Inst Oswaldo Cruz. 1975;73:77–89. doi: 10.1590/S0074-02761975000100006. DOI
Fried B, Mueller TJ, Frazer BA. Observations on Echinostoma revolutum and Echinostoma trivolvis in single and concurrent infections in domestic chicks. Int J Parasitol. 1997;27:1319–1322. doi: 10.1016/S0020-7519(97)00100-8. PubMed DOI
Humphries JE, Reddy A, Fried B. Infectivity and growth of Echinostosma revolutum (Frölich, 1802) in the domestic chick. Int J Parasitol. 1997;27:129–130. doi: 10.1016/S0020-7519(96)00163-4. PubMed DOI
Saijuntha W, Sithithaworn P, Duenngai K, Kiatsopit N, Andrews RH, Petney TN. Genetic variation and relationships of four species of medically important echinostomes (Trematoda: Echinostomatidae) in South-East Asia. Infect Genet Evol. 2011;11:375–381. doi: 10.1016/j.meegid.2010.11.009. PubMed DOI
Saijuntha W, Tantrawatpan C, Sithithaworn P, Andrews RH, Petney TN. Genetic characterization of Echinostoma revolutum and Echinoparyphium recurvatum (Trematoda: Echinostomatidae) in Thailand and phylogenetic relationships with other isolates inferred by ITS1 sequence. Parasitol Res. 2011;108:751–755. doi: 10.1007/s00436-010-2180-8. PubMed DOI
Saijuntha W, Tantrawatpan C, Sithithaworn P, Andrews RH, Petney TN. Spatial and temporal genetic variation of Echinostoma revolutum (Trematoda: Echinostomatidae) from Thailand and the Lao PDR. Acta Trop. 2011;118:105–109. doi: 10.1016/j.actatropica.2011.02.014. PubMed DOI
Noikong W, Wongsawad C, Chai J-Y, Saenphet S, Trudgett A. Molecular analysis of echinostome metacercariae from their second intermediate host found in a localised geographic region reveals genetic heterogeneity and possible cryptic speciation. PLoS Negl Trop Dis. 2014;8(4):e2778. doi: 10.1371/journal.pntd.0002778. PubMed DOI PMC
Kostadinova A, Gibson DI. Isthmiophora Lühe, 1909 and Euparyphium Dietz, 1909 (Digenea: Echinostomatidae) re-defined, with comments on their nominal species. Syst Parasitol. 2002;52:205–217. doi: 10.1023/A:1015789703396. PubMed DOI
Kostadinova A. Family Echinostomatidae. In: Jones A, Bray RA, Gibson DI, editors. Keys to the Trematoda. London, UK: CAB International, Wallingford & The Natural History Museum; 2005. pp. 9–64.
Skrjabin KI, Bashkirova EY. Family echinostomatidae. Osnovy Trematodologii. 1956;12:53–930.
Diversity of echinostomes (Digenea: Echinostomatidae) in their snail hosts at high latitudes