Specification of Sprouty2 functions in osteogenesis in in vivo context
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
31480885
PubMed Central
PMC6804697
DOI
10.1080/15476278.2019.1656995
Knihovny.cz E-zdroje
- Klíčová slova
- Endochondral bone development, SPROUTY2, growth plate, mouse, ossification,
- MeSH
- buněčná diferenciace MeSH
- cytoplazma metabolismus MeSH
- faktor 1 indukovatelný hypoxií - podjednotka alfa metabolismus MeSH
- ligand RANK metabolismus MeSH
- membránové proteiny genetika fyziologie MeSH
- myši inbrední ICR MeSH
- myši knockoutované MeSH
- myši MeSH
- osteoblasty cytologie metabolismus MeSH
- osteocyty cytologie metabolismus MeSH
- osteogeneze * MeSH
- osteoklasty cytologie metabolismus MeSH
- osteoprotegerin metabolismus MeSH
- proliferace buněk MeSH
- protein-serin-threoninkinasy genetika fyziologie MeSH
- vývoj kostí MeSH
- vývojová regulace genové exprese * MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- faktor 1 indukovatelný hypoxií - podjednotka alfa MeSH
- Hif1a protein, mouse MeSH Prohlížeč
- ligand RANK MeSH
- membránové proteiny MeSH
- osteoprotegerin MeSH
- protein-serin-threoninkinasy MeSH
- Spry2 protein, mouse MeSH Prohlížeč
- Tnfrsf11b protein, mouse MeSH Prohlížeč
- Tnfsf11 protein, mouse MeSH Prohlížeč
Sprouty proteins are modulators of the MAPK/ERK pathway. Amongst these, Sprouty2 (SPRY2) has been investigated as a possible factor that takes part in the initial phases of osteogenesis. However, the in vivo context has not yet been investigated and the underlying mechanisms taking place in vitro remain unknown. Therefore, in this study, the impact of Spry2 deficiency was examined in the developing tibias of Spry2 deficient (-/-) mouse. The investigation was performed when the osteogenic zone became clearly visible and when all three basic bone cells types were present. The main markers of osteoblasts, osteocytes and osteoclasts were evaluated by immunohistochemistry and RT-PCR. RT-PCR showed that the expression of Sost was 3.5 times higher in Spry2-/- than in the wild-type bone, which pointed to a still unknown mechanism of action of SPRY2 on the differentiation of osteocytes. The up-regulation of Sost was independent of Hif-1α expression and could not be related to its positive regulator, Runx2, since none of these factors showed an increased expression in the bone of Spry2-/- mice. Regarding the RANK/RANKL/OPG pathway, the Spry2-/- showed an increased expression of Rank, but no significant change in the expression of Rankl and Opg. Thanks to these results, the impact of Spry2 deletion is shown for the first time in the developing bone as a complex organ including, particularly, an effect on osteoblasts (Runx2) and osteocytes (Sost). This might explain the previously reported decrease in bone formation in postnatal Spry2-/- mice.
Zobrazit více v PubMed
Cabrita MA, Christofori G.. Sprouty proteins, masterminds of receptor tyrosine kinase signaling. Angiogenesis. 2008;11:53–62. doi:10.1007/s10456-008-9089-1. PubMed DOI
Neben CL, Lo M, Jura N, Klein OD. Feedback regulation of RTK signaling in development. Dev Biol. 2017;447:71–89. doi:10.1016/j.ydbio.2017.10.017. PubMed DOI PMC
Bundschu K, Knobeloch KP, Ullrich M, Schinke T, Amling M, Engelhardt CM, Renné T, Walter U, Schuh K. Gene disruption of Spred-2 causes dwarfism. J Biol Chem. 2005;280:28572–80. doi:10.1074/jbc.M503640200. PubMed DOI
Taniguchi K, Ayada T, Ichiyama K, Kohno R, Yonemitsu Y, Minami Y, Kikuchi A, Maehara Y, Yoshimura A. Sprouty2 and Sprouty4 are essential for embryonic morphogenesis and regulation of FGF signaling. Biochem Biophys Res Commun. 2007;352:896–902. doi:10.1016/j.bbrc.2006.11.107. PubMed DOI
Joo A, Long R, Cheng Z, Alexander C, Chang W, Klein OD. Sprouty2 regulates endochondral bone formation by modulation of RTK and BMP signaling. Bone. 2016;88:170–79. doi:10.1016/j.bone.2016.04.023. PubMed DOI PMC
Brighton CT. Structure and function of the growth plate. Clin Orthop. 1978;136:22–32. PubMed
Taketomi T, Onimura T, Yoshiga D, Muratsu D, Sanui T, Fukuda T, Kusukawa J, Nakamura S. Sprouty2 is involved in the control of osteoblast proliferation and differentiation through the FGF and BMP signaling pathways. Cell Biol Int. 2017. doi:10.1002/cbin.10876. PubMed DOI
Shim K, Minowada G, Coling D, Martin G. Sprouty2, a mouse deafness gene, regulates cell fate decisions in the auditory sensory epithelium by antagonizing FGF signaling. Dev Cell. 2005;8:553–64. doi:10.1016/j.devcel.2005.02.009. PubMed DOI
Klein OD, Lyons DB, Balooch G, Marshall GW, Basson MA, Peterka M, Boran T, Peterkova R, Martin GR. An FGF signaling loop sustains the generation of differentiated progeny from stem cells in mouse incisors. Development. 2008;135:377–85. doi:10.1242/dev.015081. PubMed DOI PMC
Peterka M, Lesot H, Peterkova R. Body weight in mouse embryos specifies staging of tooth development. Connect Tissue Res. 2002;43:186–90. doi:10.1080/03008200290000673. PubMed DOI
Vesela B, Svandova E, Bobek J, Lesot H, Matalova E. Osteogenic and angiogenic profiles of mandibular bone-forming cells. Front Physiol. 2019;10:124. doi:10.3389/fphys.2019.00124. PubMed DOI PMC
Olsen BR, Reginato AM, Wang W. Bone development. Annu Rev Cell Dev Biol. 2000;6:191–220. doi:10.1146/annurev.cellbio.16.1.191. PubMed DOI
Yang X, Webster JB, Kovalenko D, Nadeau RJ, Zubanova O, Chen PY, Friesel R. Sprouty genes are expressed in osteoblasts and inhibit fibroblast growth factor-mediated osteoblast responses. Calcif Tissue Int. 2006;78:233–40. doi:10.1007/s00223-005-0231-4. PubMed DOI
Schneider AK, Cama G, Ghuman M, Hughes FJ, Gharibi B. Sprouty 2, an early response gene regulator of FosB and mesenchymal stem cell proliferation during mechanical loading and osteogenic differentiation. J Cell Biochem. 2017;118:2606–14. doi:10.1002/jcb.26035. PubMed DOI
Komori T. Runx2, an inducer of osteoblast and chondrocyte differentiation. Histochem Cell Biol. 2018;149:313–23. doi:10.1007/s00418-018-1640-6. PubMed DOI
Pietrzyk B, Smertka M, Chudek J. Sclerostin: Intracellular mechanisms of action and its role in the pathogenesis of skeletal and vascular disorders. Adv Clin Exp Med. 2017;26:1283–91. doi:10.17219/acem/68739. PubMed DOI
Delgado-Calle J, Sato AY, Bellido T. Role and mechanism of action of sclerostin in bone. Bone. 2017;96:29–37. doi:10.1016/j.bone.2016.10.007. PubMed DOI PMC
Genetos DC, Toupadakis CA, Raheja LF, Wong A, Papanicolaou SE, Fyhrie DP, Loots GG, Yellowley CE. Hypoxia decreases sclerostin expression and increases Wnt signaling in osteoblasts. J Cell Biochem. 2010;110:457–67. doi:10.1002/jcb.22559. PubMed DOI PMC
Chen D, Li Y, Zhou Z, Wu C, Xing Y, Zou X, Tian W, Zhang C. HIF-1α inhibits Wnt signaling pathway by activating Sost expression in osteoblasts. PLoS One. 2013;8:e65940. doi:10.1371/journal.pone.0065940. PubMed DOI PMC
Stegen S, Stockmans I, Moermans K, Thienpont B, Maxwell PH, Carmeliet P, Carmeliet G. Osteocytic oxygen sensing controls bone mass through epigenetic regulation of sclerostin. Nat Commun. 2018;9:2557. doi:10.1038/s41467-018-04679-7. PubMed DOI PMC
Hicks KC, Patel TB. Sprouty2 protein regulates hypoxia-inducible factor-α (HIFα) protein levels and transcription of HIFα-responsive genes. J Biol Chem. 2016;291:16787–801. doi:10.1074/jbc.M116.714139. PubMed DOI PMC
Arail F, Miyamoto T, Ohneda O, Inada T, Sudo T, Brasel K, Miyata T, Anderson DM, Suda T. Commitment and differentiation of osteoclast precursor cells by the sequential expression of c-Fms and receptor activator of nuclear factor kappaB (RANK) receptors. J Exp Med. 1999;190:1741–54. doi:10.1084/jem.190.12.1741. PubMed DOI PMC
Park JH, Lee NK, Lee SY. Current understanding of RANK signaling in osteoclast differentiation and maturation. Mol Cells. 2017;40:706–13. doi:10.14348/molcells.2017.0225. PubMed DOI PMC
Komori T, Yagi H, Nomura S, Yamaguchi A, Sasaki K, Deguchi K, Shimizu Y, Bronson RT, Gao YH, Inada M, et al. Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell. 1997;89:755–64. doi:10.1016/s0092-8674(00)80258-5. PubMed DOI
Compton JT, Lee FY. A review of osteocyte function and the emerging importance of sclerostin. J Bone Joint Surg Am. 2014;96:1659–68. doi:10.2106/JBJS.M.01096. PubMed DOI PMC
Winkler DG, Sutherland MK, Geoghegan JC, Yu C, Hayes T, Skonier JE, Shpektor D, Jonas M, Kovacevich BR, Staehling-Hampton K, et al. Osteocyte control of bone formation via sclerostin, a novel BMP antagonist. Embo J. 2003;22:6267–76. doi:10.1093/emboj/cdg599. PubMed DOI PMC