Osteogenic and Angiogenic Profiles of Mandibular Bone-Forming Cells

. 2019 ; 10 () : 124. [epub] 20190219

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30837894

The mandible is a tooth-bearing structure involving one of the most prominent bones of the facial region. Mesenchymal cell condensation is the first morphological sign of osteogenesis, and several studies have focused on this stage also in the mandible. Little information is available about the early post-condensation period, during which avascular soft condensation turns into vascularized bone, and all three major bone cell types, osteoblasts, osteocytes, and osteoclasts, differentiate. In the mouse first lower molar region, the post-condensation period corresponds to the prenatal days 13-15. If during this critical period, when osteogenesis reaches the point of major bone cell differentiation, vascularization already has to play a critical role, one should be able to show molecular changes which support both types of cellular events. The aim of the present report was to follow in organ context the expression of major osteogenic and angiogenic markers and identify those that are up- or downregulated during this period. To this end, PCR Array was applied covering molecules involved in osteoblastic cell proliferation, commitment or differentiation, extracellular matrix (ECM) deposition, mineralisation, osteocyte maturation, angiogenesis, osteoclastic differentiation, and initial bone remodeling. From 161 analyzed osteogenic and angiogenic factors, the expression of 37 was altered when comparing the condensation stage with the bone stage. The results presented here provide a molecular survey of the early post-condensation stage of mandibular/alveolar bone development which has not yet been investigated in vivo.

Zobrazit více v PubMed

Alfaqeeh S. A., Gaete M., Tucker A. S. (2013). Interactions of the tooth and bone during development. J. Dent. Res. 92 1129–1135. 10.1177/0022034513510321 PubMed DOI

Berendsen A. D., Olsen B. R. (2015). Bone development. Bone 80 14–18. 10.1016/j.bone.2015.04.035 PubMed DOI PMC

Berendsen A. D., Pinnow E. L., Maeda A., Brown A. C., McCartney-Francis N., Kram V., et al. (2014). Biglycan modulates angiogenesis and bone formation during fracture healing. Matrix Biol. 35 223–231. 10.1016/j.matbio.2013.12.004 PubMed DOI PMC

Bruderer M., Richards R. G., Alini M., Stoddart M. J. (2014). Role and regulation of RUNX2 in osteogenesis. Eur. Cell. Mater. 28 269–286. 10.22203/eCM.v028a19 PubMed DOI

Bruni-Cardoso A., Johnson L. C., Vessella R. L., Peterson T. E., Lynch C. C. (2010). Osteoclast-derived matrix metalloproteinase-9 directly affects angiogenesis in the prostate tumor-bone microenvironment. Mol. Cancer Res. 8 459–470. 10.1158/1541-7786.MCR-09-0445 PubMed DOI PMC

Burbridge M. F., Cogé F., Galizzi J. P., Boutin J. A., West D. C., Tucker G. C. ( (2002). The role of the matrix metalloproteinases during in vitro vessel formation. Angiogenesis 5 215–226. 10.1023/A:1023889805133 PubMed DOI

Buser D., Chappuis V., Belser U. C., Chen S. (2017). Implant placement post extraction in esthetic single tooth sites: when immediate, when early, when late? Periodontol. 2000 73 84–102. 10.1111/prd.12170 PubMed DOI

Chen G., Deng C., Li Y. P. (2012). TGF-β and BMP signaling in osteoblast differentiation and bone formation. Int. J. Biol. Sci. 8 272–288. 10.7150/ijbs.2929 PubMed DOI PMC

Elgali I., Omar O., Dahlin C., Thomsen P. (2017). Guided bone regeneration: materials and biological mechanisms revisited. Eur. J. Oral. Sci. 125 315–337. 10.1111/eos.12364 PubMed DOI PMC

Feng J. Q., Clinkenbeard E. L., Yuan B., White K. E., Drezner M. K. (2013). Osteocyte regulation of phosphate homeostasis and bone mineralization underlies the pathophysiology of the heritable disorders of rickets and osteomalacia. Bone 54 213–221. 10.1016/j.bone.2013.01.046 PubMed DOI PMC

Fishero B. A., Kohli N., Das A., Christophel J. J., Cui Q. (2015). Current concepts of bone tissue engineering for craniofacial bone defect repair. Craniomaxillofac. Trauma. Reconstr. 8 23–30. 10.1055/s-0034-1393724 PubMed DOI PMC

Francis-West P. H., Tatla T., Brickell P. M. (1994). Expression patterns of the bone morphogenetic protein genes Bmp-4 and Bmp-2 in the developing chick face suggest a role in outgrowth of the primordia. Dev. Dyn. 201 168–178. 10.1002/aja.1002010207 PubMed DOI

Grosso A., Burger M. G., Lunger A., Schaefer D. J., Banfi A., Di Maggio N. (2017). It takes two to tango: coupling of angiogenesis and osteogenesis for bone regeneration. Front. Bioeng. Biotechnol. 5:68. 10.3389/fbioe.2017.00068 PubMed DOI PMC

Haugh M. G., Vaughan T. J., McNamara L. M. (2015). The role of integrin α(V)β(3) in osteocyte mechanotransduction. J. Mech. Behav. Biomed. Mater. 42 67–75. 10.1016/j.jmbbm.2014.11.001 PubMed DOI

Jabalee J., Hillier S., Franz-Odendaal T. A. (2013). An investigation of cellular dynamics during the development of intramembranous bones: the scleral ossicles. J. Anat. 223 311–320. 10.1111/joa.12095 PubMed DOI PMC

Kaul H., Hall B. K., Newby C., Ventikos Y. (2015). Synergistic activity of polarised osteoblasts inside condensations cause their differentiation. Sci. Rep. 5:11838. 10.1038/srep11838 PubMed DOI PMC

Kevorkova O., Martineau C., Martin-Falstrault L., Sanchez-Dardon J., Brissette L., Moreau R. (2013). Low-bone-mass phenotype of deficient mice for the cluster of differentiation 36 (CD36). PLoS One 8:e77701. 10.1371/journal.pone.0077701 PubMed DOI PMC

Krishnan V., Dhurjati R., Vogler E. A., Mastro A. M. (2010). Osteogenesis in vitro: from pre-osteoblasts to osteocytes: a contribution from the Osteobiology Research Group, The Pennsylvania State University. In Vitro Cell. Dev. Biol. Anim. 46 28–35. 10.1007/s11626-009-9238-x PubMed DOI

Matsuura T., Tokutomi K., Sasaki M., Katafuchi M., Mizumachi E., Sato H. (2014). Distinct characteristics of mandibular bone collagen relative to long bone collagen: relevance to clinical dentistry. Biomed. Res. Int. 2014:769414. 10.1155/2014/769414 PubMed DOI PMC

Minarikova M., Oralova V., Vesela B., Radlanski R. J., Matalova E. (2015). Osteogenic profile of mesenchymal cell populations contributing to alveolar bone formation. Cells Tissues Organs. 200 339–348. 10.1159/000439165 PubMed DOI

Morbidelli L., Orlando C., Maggi C. A., Ledda F., Ziche M. (1995). Proliferation and migration of endothelial cells is promoted by endothelins via activation of ETB receptors. Am. J. Physiol. 269 H686–H695. 10.1152/ajpheart.1995.269.2.H686 PubMed DOI

Nakamura I., Pilkington M. F., Lakkakorpi P. T., Lipfert L., Sims S. M., Dixon S. J., et al. (1999). Role of alpha(v)beta(3) integrin in osteoclast migration and formation of the sealing zone. J. Cell. Sci. 112 3985–3993. PubMed

Nesbitt S., Nesbit A., Helfrich M., Horton M. (1993). Biochemical characterization of human osteoclast integrins. Osteoclasts express alpha v beta 3, alpha 2 beta 1, and alpha v beta 1 integrins. J. Biol. Chem. 268 16737–16745. PubMed

Nie X., Luukko K., Kvinnsland I. H., Kettunen P. (2005). Developmentally regulated expression of Shh and Ihh in the developing mouse cranial base: comparison with Sox9 expression. Anat. Rec. A Discov. Mol. Cell. Evol. Biol. 286 891–898. 10.1002/ar.a.20231 PubMed DOI

Oka K., Oka S., Sasaki T., Ito Y., Bringas P., Jr., Nonaka K., et al. (2007). The role of TGF-beta signaling in regulating chondrogenesis and osteogenesis during mandibular development. Dev. Biol. 303 391–404. 10.1016/j.ydbio.2006.11.025 PubMed DOI PMC

Ornitz D. M., Marie P. J. (2015). Fibroblast growth factor signaling in skeletal development and disease. Genes. Dev. 29 1463–1486. 10.1101/gad.266551.115 PubMed DOI PMC

Pederson L., Ruan M., Westendorf J. J., Khosla S., Oursler M. J. (2008). Regulation of bone formation by osteoclasts involves Wnt/BMP signaling and the chemokine sphingosine-1-phosphate. Proc. Natl. Acad. Sci. U.S.A. 105 20764–20769. 10.1073/pnas.0805133106 PubMed DOI PMC

Radlanski R. J., Renz H., Zimmermann C. A., Mey R., Matalova E. (2015). Morphogenesis of the compartmentalizing bone around the molar primordia in the mouse mandible during dental developmental stages between lamina, bell-stage, and root formation (E13-P20). Ann. Anat. 200 1–14. 10.1016/j.aanat.2015.01.003 PubMed DOI

Rhodes J. M., Simons M. (2007). The extracellular matrix and blood vessel formation: not just a scaffold. J. Cell. Mol. Med. 11 176–205. 10.1111/j.1582-4934.2007.00031.x PubMed DOI PMC

Salo J., Lehenkari P., Mulari M., Metsikko K., Vaananen H. K. (1997). Removal of osteoclast bone resorption products by transcytosis. Science 276 270–273. 10.1126/science.276.5310.270 PubMed DOI

Simantov R., Silverstein R. L. (2003). CD36: a critical anti-angiogenic receptor. Front. Biosci. 8:s874-82. 10.2741/1168 PubMed DOI

Spiegel S., Milstien S. (2003). Exogenous and intracellularly generated sphingosine 1-phosphate can regulate cellular processes by divergent pathways. Biochem. Soc. Trans. 31 1216–1219. 10.1042/bst0311216 PubMed DOI

Takeshita S., Kaji K., Kudo A. (2000). Identification and characterization of the new osteoclast progenitor with macrophage phenotypes being able to differentiate into mature osteoclasts. J. Bone Miner. Res. 15 1477–1488. 10.1359/jbmr.2000.15.8.1477 PubMed DOI

Tian T., Zhang T., Lin Y., Cai X. (2018). Vascularization in craniofacial bone tissue engineering. J. Dent. Res. 97 969–976. 10.1177/0022034518767120 PubMed DOI

Ulsamer A., Ortuño M. J., Ruiz S., Susperregui A. R., Osses N., Rosa J. L., et al. (2008). BMP-2 induces osterix expression through up-regulation of Dlx5 and its phosphorylation by p38. J. Biol. Chem. 283 3816–3826. 10.1074/jbc.M704724200 PubMed DOI

Ward B. B., Brown S. E., Krebsbach P. H. (2010). Bioengineering strategies for regeneration of craniofacial bone: a review of emerging technologies. Oral Dis. 16 709–716. 10.1111/j.1601-0825.2010.01682.x PubMed DOI

Xue L., Greisler H. P. (2002). Angiogenic effect of fibroblast growth factor-1 and vascular endothelial growth factor and their synergism in a novel in vitro quantitative fibrin-based 3-dimensional angiogenesis system. Surgery 132 259–267. 10.1067/msy.2002.125720 PubMed DOI

Yang G., Chen X., Yan Z., Zhu Q., Yang C. (2017). CD11b promotes the differentiation of osteoclasts induced by RANKL through the spleen tyrosine kinase signalling pathway. J. Cell. Mol. Med. 21 3445–3452. 10.1111/jcmm.13254 PubMed DOI PMC

Zelzer E., McLean W., Ng Y. S., Fukai N., Reginato A. M., Lovejoy S., et al. (2002). Skeletal defects in VEGF (120/120) mice reveal multiple roles for VEGF in skeletogenesis. Development 129 1893–1904. PubMed

Zohar R., Cheifetz S., McCulloch C. A., Sodek J. (1998). Analysis of intracellular osteopontin as a marker of osteoblastic cell differentiation and mesenchymal cell migration. Eur. J. Oral. Sci. 106 401–407. 10.1111/j.1600-0722.1998.tb02206.x PubMed DOI

Zvackova I., Matalova E., Lesot H. (2017). Regulators of collagen fibrillogenesis during molar development in the mouse. Front. Physiol. 8:554. 10.3389/fphys.2017.00554 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...