Expression dynamics of metalloproteinases during mandibular bone formation: association with Myb transcription factor

. 2023 ; 11 () : 1168866. [epub] 20230828

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37701782

As the dentition forms and becomes functional, the alveolar bone is remodelled. Metalloproteinases are known to contribute to this process, but new regulators are emerging and their contextualization is challenging. This applies to Myb, a transcription factor recently reported to be involved in bone development and regeneration. The regulatory effect of Myb on Mmps expression has mostly been investigated in tumorigenesis, where Myb impacted the expression of Mmp1, Mmp2, Mmp7, and Mmp9. The aim of this investigation was to evaluate the regulatory influence of the Myb on Mmps gene expression, impacting osteogenesis and mandibular bone formation. For that purpose, knock-out mouse model was used. Gene expression of bone-related Mmps and the key osteoblastic transcription factors Runx2 and Sp7 was analysed in Myb knock-out mice mandibles at the survival limit. Out of the metalloproteinases under study, Mmp13 was significantly downregulated. The impact of Myb on the expression of Mmp13 was confirmed by the overexpression of Myb in calvarial-derived cells causing upregulation of Mmp13. Expression of Mmp13 in the context of other Mmps during mandibular/alveolar bone development was followed in vivo along with Myb, Sp7 and Runx2. The most significant changes were observed in the expression of Mmp9 and Mmp13. These MMPs and MYB were further localized in situ by immunohistochemistry and were identified in pre/osteoblastic cells as well as in pre/osteocytes. In conclusion, these results provide a comprehensive insight into the expression dynamics of bone related Mmps during mandibular/alveolar bone formation and point to Myb as another potential regulator of Mmp13.

Zobrazit více v PubMed

Alfaqeeh S. A., Gaete M., Tucker A. S. (2013). Interactions of the tooth and bone during development. J. Dent. Res. 92 (12), 1129–1135. 10.1177/0022034513510321 PubMed DOI

Behonick D. J., Xing Z., Lieu S., Buckley J. M., Lotz J. C., Marcucio R. S., et al. (2007). Role of matrix metalloproteinase 13 in both endochondral and intramembranous ossification during skeletal regeneration.2 (11), e1150. 10.1371/journal.pone.0001150 PubMed DOI PMC

Berridge B. R. (2021). Animal Study Translation: the Other Reproducibility Challenge. J 62, 1–6. 10.1093/ilar/ilac005 DOI

Bhattarai G., Lee Y. H., Lee M. H., Yi H. K. (2013). Gene delivery of c-myb increases bone formation surrounding oral implants. J. Dent. Res. 92 (9), 840–845. 10.1177/0022034513497753 PubMed DOI

Bhattarai G., Lee Y. H., Lee N. H., Yun J. S., Hwang P. H., Yi H. K. (2011). c-myb mediates inflammatory reaction against oxidative stress in human breast cancer cell line, MCF-7. iochem. Funct. 29, 686–693. 10.1002/cbf.1808 PubMed DOI

Bruderer M., Richards R. G., Alini M., Stoddart M. J. (2014). Role and regulation of runx2 in osteogenesis. Eur. 23 (28), 269–286. 10.22203/ecm.v028a19 PubMed DOI

Cabral-Pacheco G. A., Garza-Veloz I., Castruita-De la Rosa C., Ramirez-Acuna J. M., Perez-Romero B. A., Guerrero-Rodriguez J. F., et al. (2020). The roles of matrix metalloproteinases and their inhibitors in human diseases. Int. J. Mol. Sci. 21 (24), 9739. 10.3390/ijms21249739 PubMed DOI PMC

Cackowski F. C., Anderson J. L., Patrene K. D., Choksi R. J., Shapiro S. D., Windle J. J., et al. (2010). Osteoclasts are important for bone angiogenesis. Blood 115 (1), 140–149. 10.1182/blood-2009-08-237628 PubMed DOI PMC

Checchi V., Maravic T., Bellini P., Generali L., Consolo U., Breschi L., et al. (2020). The role of matrix metalloproteinases in periodontal disease. Int. J. Environ. Res. Public Health. 17 (14), 4923. 10.3390/ijerph17144923 PubMed DOI PMC

Cicirò Y., Sala A. (2021). MYB oncoproteins: emerging players and potential therapeutic targets in human cancer. Oncogenesis 10 (2), 19. 10.1038/s41389-021-00309-y PubMed DOI PMC

de Wildt B. W. M., Ansari S., Sommerdijk N. A. J. M., Ito K., Akiva A., Hofmann S. (2019). From bone regeneration to three-dimensional in vitro models: issue engineering of organized bone extracellular matrix. Curr Opin Biomed Eng 10, 107–115. 10.1016/j.cobme.2019.05.005 DOI

Delgado-Calle J., Hancock B., Likine E. F., Sato A. Y., McAndrews K., Sanudo C., et al. (2018). MMP14 is a novel target of PTH signaling in osteocytes that controls resorption by regulating soluble RANKL production. FASEB J 32 (5), 2878–2890. 10.1096/fj.201700919RRR PubMed DOI PMC

Ehnert S., Rinderknecht H., Aspera-Werz R. H., Haussling V., Nussler A. K. (2020). Use of in vitro bone modls to screen for altered bone metabolism, osteopathies, and fracture healing: hallenges of complex models. Arch. Toxicol. 94 (12), 3937–3958. 10.1007/s00204-020-02906-z PubMed DOI PMC

Elefteriou F., Yang X. (2011). Genetic mouse models for bone studies – strengths and limitations. Bone 49 (6), 1242–1254. 10.1016/j.bone.2011.08.021 PubMed DOI PMC

Ess K. C., Witte D. P., Bascomb C. P., Aronow B. J. (1999). Diverse developing mouse lineages exhibit high-level c-Myb expression in immature cells and loss of expression upon differentiation. Oncogene 18 (4), 1103–1111. 10.1038/sj.onc.1202387 PubMed DOI

Fatima S., Thakur S. C. (2020). New insights into the role of matrix metalloproteinases. A M B 18 (7), 1448. 10.3390/ijms18071448 DOI

Fernandez-Patron C., Kassiri Z., Leung D. (2011). Modulation of Systemic Metabolism by MMP-2: from MMP-2 Deficiency in Mice to MMP-2 Deficiency in Patients. Compr. Physiol. 6 (4), 1935–1949. 10.1002/cphy.c160010 PubMed DOI

Gaffney J., Solomonov I., Zehorai E., Sagi I. (2015). Multilevel regulation of matrix metalloproteinases in tissue homeostasis indicates their molecular specifity in vivo . Matrix Biol 44-46, 191–199. 10.1016/j.matbio.2015.01.012 PubMed DOI

Garcia T., Roman-roman S., Jackson A., Theilhaber J., Connolly T., Spinella-jaegle S., et al. (2002). Behavior of osteoblast, adipocyte, and myoblast markers in genome-wide expression analysis of mouse calvaria primery osteoblasts in vitro . Bone 31 (1), 205–211. 10.1016/s8756-3282(02)00781-0 PubMed DOI

Haeusler G., Walter I., Helmreich M., Egerbacher M. (2005). Localization of matrix metalloproteinases, (MMPs) their tissue inhibitors, and vascular endothelial growth factor (VEGF) in growth plates of children and adolescents indicates a role for MMPs in human postnatal growth and skeletal maturation. Calcif. Tissue. Int. 76 (5), 326–335. 10.1007/s00223-004-0161-6 PubMed DOI

Howe K. M., Watson R. J. (1991). Nucleotide preferences in sequence-specific recognition of DNA by c-myb protein. Nucl. Acids. Res. 19 (14), 3913–3919. 10.1093/nar/19.14.3913 PubMed DOI PMC

Hu Q., Ecker M. (2021). Overview of MMP-13 as a promising target for the treatment of osteoarthritis. Int J Mol Sci 22 (4), 1742. 10.3390/ijms22041742 PubMed DOI PMC

Inoue K., Mikuni-Takagaki Y., Oikawa K., Itoh T., Inada M., Noguchi T., et al. (2006). A crucial role for matrix metalloproteinase 2 in osteocytic canalicular formation and bone metabolism. J. Biol. Chem. 281 (44), 33814–33824. 10.1074/jbc.M607290200 PubMed DOI

Jinnin M. (2010). Mechanisms of skin fibrosis in systemic sclerosis. J 37 (1), 11–25. 10.1111/j.1346-8138.2009.00738.x PubMed DOI

Khoswanto Ch. (2023). Role of matrix metalloproteinases in bone regeneration: narrative review. J. Biol. Res. 13 (5), 539–543. 10.1016/j.jobcr.2023.06.002 PubMed DOI PMC

Klein T., Bischoff R. (2010). Physiology and pathophysiology of matrix metalloproteases. Acids 41 (2), 271–290. 10.1007/s00726-010-0689-x PubMed DOI PMC

Knopfova L., Benes P., Pekarcikova L., Hermanova M., Masarik M., Pernicova Z., et al. (2012). c-Myb regulates matrix metalloproteinases 1/9, and cathepsin D: implications for matrix-dependent breast cancer cell invasion and metastasis. Mol. Cancer. 11 (1), 15–15. 10.1186/1476-4598-11-15 PubMed DOI PMC

Kodric K., Zupan J., Kranjc T., Komadina R., Mlakar V., Marc J., et al. (2019). Sex-determining region Y (SRY) attributes to gender differences in RANKL expression and incidence of osteoporosis. Exp. Mol. Med. 51 (8), 1–16. 10.1038/s12276-019-0294-3 PubMed DOI PMC

Komori T. (2018). Runx2, an inducer of osteoblast and chondrocyte differentiation. Histochem Biol 149 (4), 313–323. 10.1007/s00418-018-1640-6 PubMed DOI

Kou L., Jiang Y., Lin X., Huang H., Wang J., Yao Q., et al. (2021). Matrix Metalloproteinase Inspired Therapeutic Strategies for Bone Diseases. Curr. Pharm. Biotechnol. 22 (4), 451–467. 10.2174/1389201021666200630140735 PubMed DOI

Kwon M. J. (2023). Matrix metalloproteinases as therapeutic targets in breast cancer. Front Oncol 19 (12), 1108695. 10.3389/fonc.2022.1108695 PubMed DOI PMC

Laronha H., Caldeira J. (2020). Structure and function of human matrix metalloproteinases. Cells 26 (5), 1076. 10.3390/cells9051076 PubMed DOI PMC

Lee M., Partridge N. C. (2010). Parathyroid hormone activation of matrix metalloproteinase-13 transcription requires the histone acetyltransferase activity of p300 and PCAF and p300-dependent acetylation of PCAF. J Biol Chem 285 (49), 38014–38022. 10.1074/jbc.M110.142141 PubMed DOI PMC

Liang H. P. H., Xu J., Xue M., Jackson C. J. (2016). Matrix metalloproteinases in bone development and pathology: current knowledge and potential clinical utility. Med 3, 93–102. 10.2147/MNM.S92187 DOI

Liu Q., Li M., Wang S., Xiao Z., Xiong Y., Wang G. (2020). Recent advances of osterix transcription factor in osteoblast differentiation and bone formation. Front. Dev. Biol. 8, 601224. 10.3389/fcell.2020.601224 PubMed DOI PMC

Luchian I., Goriuc A., Sandu D., Covasa M. (2022). The role of matrix metalloproteinases (MMP-8, MMP-9, MMP-13) in periodontal and peri-implant pathological processes. Int J Mol Sci 23 (3), 1806. 10.3390/ijms23031806 PubMed DOI PMC

Lungova V., Buchtova M., Janeckova E., Tucker A. S. S., Smarda J., Matalova E., et al. (2012). Localization of c-Myb in differentiated cells during postnatal molar and alveolar bone development. Eur. J. Sci. 120, 495–504. 10.1111/j.1600-0722.2012.01004.x PubMed DOI

Matalova E., Buchtova M., Tucker A. S., Bender T. P., Janeckova E., Lungova V., et al. (2011). Expression and characterization of c-Myb in prenatal odontogenesis. Dev. Growth Differ. 53 (6), 793–803. 10.1111/j.1440-169X.2011.01287.x PubMed DOI

Mucenski M. L., McLain K., Kier A. B., Swerdlow S. H., Schreiner C. M., Miller T. A., et al. (1991). A functional c-myb gene is required for normal murine fetal hepatic hematopoiesis. Cell. 65(4):677–689. 10.1016/0092-8674(91)90099-K PubMed DOI

Nakatani T., Partridge N. C. (2017). MEF2C interacts with c-FOS in PTH-Stimulated Mmp13 gene expression in osteoblastic cells. Endocrinology 158 (11), 3778–3791. 10.1210/en.2017-00159 PubMed DOI PMC

Nishimura R., Wakabayashi M., Hata K., Matsubara T., Honma S., Wakisaka S., et al. (2012). Osterix regulates calcification and degradation of chondrogenic matrices through matrix metalloproteinase 13 (MMP13) expression in association with transcription factor Runx2 during endochondral ossification. J. Biol. Chem. 287 (40), 33179–33190. 10.1074/jbc.M111.337063 PubMed DOI PMC

Omi M., Mishina Y. (2022). Roles of osteoclasts in alveolar bone remodeling. Genesis 60 (8-9), e23490. 10.1002/dvg.23490 PubMed DOI PMC

Oralova V., Matalova E., Janeckova E., Krejci E. D., Knopfova L., Snajdr P., et al. (2015). Role of c-Myb in chondrogenesis. Bone 76, 97–106. 10.1016/j.bone.2015.02.031 PubMed DOI

Oralova V., Matalova E., Killinger M., Knopfova L., Smarda J., Buchtová M. (2017). Osteogenic Potential of the Transcription Factor c-MYB. Tissue Inter 100 (3), 311–322. 10.1007/s00223-016-0219-2 PubMed DOI

Owen R., Reilly G. C. (2018). In vitro Models of Bone Remodelling and Associated Disorders. Front Bioeng Biotechnol 11 (6), 134. 10.3389/fbioe.2018.00134 PubMed DOI PMC

Page-McCaw A., Ewald A. J., Werb Z. (2007). Matrix metalloproteinases and the regulation of tissue remodelling. Nat. Rev. Mol. Biol. 8 (3), 221–233. 10.1038/nrm2125 PubMed DOI PMC

Paiva K. B., Granjeiro J. M. (2017). Matrix metalloproteinases in bone resorption, remodeling, and repair. Prog. Mol. Biol. Transl. Sci. 148, 203–303. 10.1016/bs.pmbts.2017.05.001 PubMed DOI

Reddy S. G., Rani S. H. (2017). Matrix Metalloproteases: potential Role in Type 2 Diabetic Nephropathy. Pathophysiol, 605–616. 10.1007/978-981-10-6141-7_25 DOI

Reponen P., Sahlberg C., Munaut C., Thesleff I., Tryggvason K. (1994). High expression of 92-kD type IV collagenase (gelatinase B) in the osteoclast lineage during mouse development. J. Biol. 124 (6), 1091–1102. 10.1083/jcb.124.6.1091 PubMed DOI PMC

Robinson N. B., Krieger K., Khan F. M., Huffman W., Chang M., Naik A., et al. (2019). The current state of animal models in research: A review. Int. J. Surg. 72, 9–13. 10.1016/j.ijsu.2019.10.015 PubMed DOI

Stickens D., Behonick D. J., Ortega N., Heyer B., Hartenstein B., Yu Y., et al. (2004). Altered endochondral bone development in matrix metalloproteinase 13-deficient mice. Development 131 (23), 5883–5895. 10.1242/dev.01461 PubMed DOI PMC

Sandberg M. L., Sutton S. E., Pletcher M. T., Wilshire T., Tarantino L. M., Hogenesch J. B., et al. (2005). C-Myb and p300 regulate hematopoietic stem cell proliferation and differentiation. Dev. 8 (2), 153–166. 10.1016/j.devcel.2004.12.015 PubMed DOI

Sasano Y., Zhu J. X., Tsubota M., Takahashi I., Onodera K., Mizoguchi I., et al. (2002). Gene expression of MMP8 and MMP13 during embryonic development of bone and cartilage in the rat mandible and hind limb. J. Histochem Cytochem. 50 (3), 325–332. 10.1177/002215540205000304 PubMed DOI

Shi J., Son M. Y., Yamada S., Szabova L., Kahan S., Chrysovergis K., et al. (2008). Membrane-type MMPs enable extracellular matrix permissiveness and mesenchymal cell proliferation during embryogenesis. Dev. Biol. 313 (1), 196–209. 10.1016/j.ydbio.2007.10.017 PubMed DOI PMC

Soza-Ried C., Hess I., Netuschil N., Boehm T. (2010). Essential role of c-myb in definitive hematopoiesis is evolutionarily conserved. PNAS 107 (40), 17304–17308. 10.1073/pnas.1004640107 PubMed DOI PMC

Svandova E., Peterkova R., Matalova E., Lesot H. (2020). Formation and developmental specification of the odontogenic and osteogenic mesenchymes. Front. Dev. Biol. 8, 640. 10.3389/fcell.2020.00640 PubMed DOI PMC

Takaishi H., Kimura T., Dala S., Okada Y., D´Armiento J. (2008). Joint diseases and matrix metalloproteinases: A role for MMP-13. Curr Pharm Biotechnol 9 (1), 47–54. 10.2174/138920108783497659 PubMed DOI

Takanche J. S., Kim J. E., Kim J. S., Lee M. H., Jeon J. G., Park I. S., et al. (2018). Chitosan-gold nanoparticles mediated gene delivery of c-myb facilitates osseointegration of dental implants in ovariectomized rat. Artif. Cells. Biotechnol 46 (3), S807–S817. 10.1080/21691401.2018.1513940 PubMed DOI

Tang S. Y., Herber R. P., Ho S. P., Alliston T. (2012). Matrix metalloproteinase–13 is required for osteocytic perilacunar remodeling and maintains bone fracture resistance. J. Bone Min. Res. 27 (9), 1936–1950. 10.1002/jbmr.1646 PubMed DOI PMC

Vesela B., Svandova E., Bobek J., Lesot H., Matalová E. (2019). Osteogenic and angiogenic profiles of mandibular bone-forming cells. Front. Phys. 10, 124. 10.3389/fphys.2019.00124 PubMed DOI PMC

Vincent-Chong V. K., Salahshourifar I., Karen-Ng L. P., Siow Y. M., Kallarakkal T. G., Ramanathan A., et al. (2014). Overexpression of MMP13 is associated with clinical outcomes and poor prognosis in oral squamous cell carcinoma. Sci World J 2014, 897523. 10.1155/2014/897523 PubMed DOI PMC

Visse R., Nagase H. (2003). Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. 92 (8), 827–839. 10.1161/01.RES.0000070112.80711.3D PubMed DOI

Vu J. L., Werb Z. (2000). Matrix metalloproteinases: effectors of development and normal physiology. Dev 14 (17), 2123–2133. 10.1101/gad.815400 PubMed DOI

Ward E. (2022). A Review of Tissue Engineering for Periodontal Tissue Regeneration. J Vet Dent 39 (1), 49–62. 10.1177/08987564211065137 PubMed DOI

Xu L. H., Zhao F., Yang W. W., Chen C. W., Du Z. H., Fu M., et al. (2019). Myb promotes the growth and metastasis of salivary adenoid cystic carcinoma. Int J Oncol 54 (5), 1579–1590. 10.3892/ijo.2019.4754 PubMed DOI PMC

Young D. A., Barter M. J., Wilkinson D. J. (2019). Recent advances in understanding the regulation of metalloproteinases. eCollection 18 (8), F1000 Faculty Rev-195. 10.12688/f1000research.17471.1 PubMed DOI PMC

Zhang C., Tang W., Li Y. (2012). Matrix metalloproteinase 13 (MMP13) is a direct target of osteoblast-specific transcription factor osterix (Osx) in osteoblasts.7 (11), e50525. 10.1371/journal.pone.0050525 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace