Expression dynamics of metalloproteinases during mandibular bone formation: association with Myb transcription factor
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
37701782
PubMed Central
PMC10493412
DOI
10.3389/fcell.2023.1168866
PII: 1168866
Knihovny.cz E-zdroje
- Klíčová slova
- MYB transcription factor, development and remodelling, mandibular alveolar bone, metalloproteinases, osteogenesis,
- Publikační typ
- časopisecké články MeSH
As the dentition forms and becomes functional, the alveolar bone is remodelled. Metalloproteinases are known to contribute to this process, but new regulators are emerging and their contextualization is challenging. This applies to Myb, a transcription factor recently reported to be involved in bone development and regeneration. The regulatory effect of Myb on Mmps expression has mostly been investigated in tumorigenesis, where Myb impacted the expression of Mmp1, Mmp2, Mmp7, and Mmp9. The aim of this investigation was to evaluate the regulatory influence of the Myb on Mmps gene expression, impacting osteogenesis and mandibular bone formation. For that purpose, knock-out mouse model was used. Gene expression of bone-related Mmps and the key osteoblastic transcription factors Runx2 and Sp7 was analysed in Myb knock-out mice mandibles at the survival limit. Out of the metalloproteinases under study, Mmp13 was significantly downregulated. The impact of Myb on the expression of Mmp13 was confirmed by the overexpression of Myb in calvarial-derived cells causing upregulation of Mmp13. Expression of Mmp13 in the context of other Mmps during mandibular/alveolar bone development was followed in vivo along with Myb, Sp7 and Runx2. The most significant changes were observed in the expression of Mmp9 and Mmp13. These MMPs and MYB were further localized in situ by immunohistochemistry and were identified in pre/osteoblastic cells as well as in pre/osteocytes. In conclusion, these results provide a comprehensive insight into the expression dynamics of bone related Mmps during mandibular/alveolar bone formation and point to Myb as another potential regulator of Mmp13.
Department of Experimental Biology Faculty of Science Masaryk University Brno Czechia
Department of Physiology University of Veterinary Sciences Brno Czechia
Institute of Cancer and Genomic Sciences University of Birmingham Birmingham United Kingdom
International Clinical Research Center St Anne's University Hospital Brno Czechia
Zobrazit více v PubMed
Alfaqeeh S. A., Gaete M., Tucker A. S. (2013). Interactions of the tooth and bone during development. J. Dent. Res. 92 (12), 1129–1135. 10.1177/0022034513510321 PubMed DOI
Behonick D. J., Xing Z., Lieu S., Buckley J. M., Lotz J. C., Marcucio R. S., et al. (2007). Role of matrix metalloproteinase 13 in both endochondral and intramembranous ossification during skeletal regeneration.2 (11), e1150. 10.1371/journal.pone.0001150 PubMed DOI PMC
Berridge B. R. (2021). Animal Study Translation: the Other Reproducibility Challenge. J 62, 1–6. 10.1093/ilar/ilac005 DOI
Bhattarai G., Lee Y. H., Lee M. H., Yi H. K. (2013). Gene delivery of c-myb increases bone formation surrounding oral implants. J. Dent. Res. 92 (9), 840–845. 10.1177/0022034513497753 PubMed DOI
Bhattarai G., Lee Y. H., Lee N. H., Yun J. S., Hwang P. H., Yi H. K. (2011). c-myb mediates inflammatory reaction against oxidative stress in human breast cancer cell line, MCF-7. iochem. Funct. 29, 686–693. 10.1002/cbf.1808 PubMed DOI
Bruderer M., Richards R. G., Alini M., Stoddart M. J. (2014). Role and regulation of runx2 in osteogenesis. Eur. 23 (28), 269–286. 10.22203/ecm.v028a19 PubMed DOI
Cabral-Pacheco G. A., Garza-Veloz I., Castruita-De la Rosa C., Ramirez-Acuna J. M., Perez-Romero B. A., Guerrero-Rodriguez J. F., et al. (2020). The roles of matrix metalloproteinases and their inhibitors in human diseases. Int. J. Mol. Sci. 21 (24), 9739. 10.3390/ijms21249739 PubMed DOI PMC
Cackowski F. C., Anderson J. L., Patrene K. D., Choksi R. J., Shapiro S. D., Windle J. J., et al. (2010). Osteoclasts are important for bone angiogenesis. Blood 115 (1), 140–149. 10.1182/blood-2009-08-237628 PubMed DOI PMC
Checchi V., Maravic T., Bellini P., Generali L., Consolo U., Breschi L., et al. (2020). The role of matrix metalloproteinases in periodontal disease. Int. J. Environ. Res. Public Health. 17 (14), 4923. 10.3390/ijerph17144923 PubMed DOI PMC
Cicirò Y., Sala A. (2021). MYB oncoproteins: emerging players and potential therapeutic targets in human cancer. Oncogenesis 10 (2), 19. 10.1038/s41389-021-00309-y PubMed DOI PMC
de Wildt B. W. M., Ansari S., Sommerdijk N. A. J. M., Ito K., Akiva A., Hofmann S. (2019). From bone regeneration to three-dimensional in vitro models: issue engineering of organized bone extracellular matrix. Curr Opin Biomed Eng 10, 107–115. 10.1016/j.cobme.2019.05.005 DOI
Delgado-Calle J., Hancock B., Likine E. F., Sato A. Y., McAndrews K., Sanudo C., et al. (2018). MMP14 is a novel target of PTH signaling in osteocytes that controls resorption by regulating soluble RANKL production. FASEB J 32 (5), 2878–2890. 10.1096/fj.201700919RRR PubMed DOI PMC
Ehnert S., Rinderknecht H., Aspera-Werz R. H., Haussling V., Nussler A. K. (2020). Use of in vitro bone modls to screen for altered bone metabolism, osteopathies, and fracture healing: hallenges of complex models. Arch. Toxicol. 94 (12), 3937–3958. 10.1007/s00204-020-02906-z PubMed DOI PMC
Elefteriou F., Yang X. (2011). Genetic mouse models for bone studies – strengths and limitations. Bone 49 (6), 1242–1254. 10.1016/j.bone.2011.08.021 PubMed DOI PMC
Ess K. C., Witte D. P., Bascomb C. P., Aronow B. J. (1999). Diverse developing mouse lineages exhibit high-level c-Myb expression in immature cells and loss of expression upon differentiation. Oncogene 18 (4), 1103–1111. 10.1038/sj.onc.1202387 PubMed DOI
Fatima S., Thakur S. C. (2020). New insights into the role of matrix metalloproteinases. A M B 18 (7), 1448. 10.3390/ijms18071448 DOI
Fernandez-Patron C., Kassiri Z., Leung D. (2011). Modulation of Systemic Metabolism by MMP-2: from MMP-2 Deficiency in Mice to MMP-2 Deficiency in Patients. Compr. Physiol. 6 (4), 1935–1949. 10.1002/cphy.c160010 PubMed DOI
Gaffney J., Solomonov I., Zehorai E., Sagi I. (2015). Multilevel regulation of matrix metalloproteinases in tissue homeostasis indicates their molecular specifity in vivo . Matrix Biol 44-46, 191–199. 10.1016/j.matbio.2015.01.012 PubMed DOI
Garcia T., Roman-roman S., Jackson A., Theilhaber J., Connolly T., Spinella-jaegle S., et al. (2002). Behavior of osteoblast, adipocyte, and myoblast markers in genome-wide expression analysis of mouse calvaria primery osteoblasts in vitro . Bone 31 (1), 205–211. 10.1016/s8756-3282(02)00781-0 PubMed DOI
Haeusler G., Walter I., Helmreich M., Egerbacher M. (2005). Localization of matrix metalloproteinases, (MMPs) their tissue inhibitors, and vascular endothelial growth factor (VEGF) in growth plates of children and adolescents indicates a role for MMPs in human postnatal growth and skeletal maturation. Calcif. Tissue. Int. 76 (5), 326–335. 10.1007/s00223-004-0161-6 PubMed DOI
Howe K. M., Watson R. J. (1991). Nucleotide preferences in sequence-specific recognition of DNA by c-myb protein. Nucl. Acids. Res. 19 (14), 3913–3919. 10.1093/nar/19.14.3913 PubMed DOI PMC
Hu Q., Ecker M. (2021). Overview of MMP-13 as a promising target for the treatment of osteoarthritis. Int J Mol Sci 22 (4), 1742. 10.3390/ijms22041742 PubMed DOI PMC
Inoue K., Mikuni-Takagaki Y., Oikawa K., Itoh T., Inada M., Noguchi T., et al. (2006). A crucial role for matrix metalloproteinase 2 in osteocytic canalicular formation and bone metabolism. J. Biol. Chem. 281 (44), 33814–33824. 10.1074/jbc.M607290200 PubMed DOI
Jinnin M. (2010). Mechanisms of skin fibrosis in systemic sclerosis. J 37 (1), 11–25. 10.1111/j.1346-8138.2009.00738.x PubMed DOI
Khoswanto Ch. (2023). Role of matrix metalloproteinases in bone regeneration: narrative review. J. Biol. Res. 13 (5), 539–543. 10.1016/j.jobcr.2023.06.002 PubMed DOI PMC
Klein T., Bischoff R. (2010). Physiology and pathophysiology of matrix metalloproteases. Acids 41 (2), 271–290. 10.1007/s00726-010-0689-x PubMed DOI PMC
Knopfova L., Benes P., Pekarcikova L., Hermanova M., Masarik M., Pernicova Z., et al. (2012). c-Myb regulates matrix metalloproteinases 1/9, and cathepsin D: implications for matrix-dependent breast cancer cell invasion and metastasis. Mol. Cancer. 11 (1), 15–15. 10.1186/1476-4598-11-15 PubMed DOI PMC
Kodric K., Zupan J., Kranjc T., Komadina R., Mlakar V., Marc J., et al. (2019). Sex-determining region Y (SRY) attributes to gender differences in RANKL expression and incidence of osteoporosis. Exp. Mol. Med. 51 (8), 1–16. 10.1038/s12276-019-0294-3 PubMed DOI PMC
Komori T. (2018). Runx2, an inducer of osteoblast and chondrocyte differentiation. Histochem Biol 149 (4), 313–323. 10.1007/s00418-018-1640-6 PubMed DOI
Kou L., Jiang Y., Lin X., Huang H., Wang J., Yao Q., et al. (2021). Matrix Metalloproteinase Inspired Therapeutic Strategies for Bone Diseases. Curr. Pharm. Biotechnol. 22 (4), 451–467. 10.2174/1389201021666200630140735 PubMed DOI
Kwon M. J. (2023). Matrix metalloproteinases as therapeutic targets in breast cancer. Front Oncol 19 (12), 1108695. 10.3389/fonc.2022.1108695 PubMed DOI PMC
Laronha H., Caldeira J. (2020). Structure and function of human matrix metalloproteinases. Cells 26 (5), 1076. 10.3390/cells9051076 PubMed DOI PMC
Lee M., Partridge N. C. (2010). Parathyroid hormone activation of matrix metalloproteinase-13 transcription requires the histone acetyltransferase activity of p300 and PCAF and p300-dependent acetylation of PCAF. J Biol Chem 285 (49), 38014–38022. 10.1074/jbc.M110.142141 PubMed DOI PMC
Liang H. P. H., Xu J., Xue M., Jackson C. J. (2016). Matrix metalloproteinases in bone development and pathology: current knowledge and potential clinical utility. Med 3, 93–102. 10.2147/MNM.S92187 DOI
Liu Q., Li M., Wang S., Xiao Z., Xiong Y., Wang G. (2020). Recent advances of osterix transcription factor in osteoblast differentiation and bone formation. Front. Dev. Biol. 8, 601224. 10.3389/fcell.2020.601224 PubMed DOI PMC
Luchian I., Goriuc A., Sandu D., Covasa M. (2022). The role of matrix metalloproteinases (MMP-8, MMP-9, MMP-13) in periodontal and peri-implant pathological processes. Int J Mol Sci 23 (3), 1806. 10.3390/ijms23031806 PubMed DOI PMC
Lungova V., Buchtova M., Janeckova E., Tucker A. S. S., Smarda J., Matalova E., et al. (2012). Localization of c-Myb in differentiated cells during postnatal molar and alveolar bone development. Eur. J. Sci. 120, 495–504. 10.1111/j.1600-0722.2012.01004.x PubMed DOI
Matalova E., Buchtova M., Tucker A. S., Bender T. P., Janeckova E., Lungova V., et al. (2011). Expression and characterization of c-Myb in prenatal odontogenesis. Dev. Growth Differ. 53 (6), 793–803. 10.1111/j.1440-169X.2011.01287.x PubMed DOI
Mucenski M. L., McLain K., Kier A. B., Swerdlow S. H., Schreiner C. M., Miller T. A., et al. (1991). A functional c-myb gene is required for normal murine fetal hepatic hematopoiesis. Cell. 65(4):677–689. 10.1016/0092-8674(91)90099-K PubMed DOI
Nakatani T., Partridge N. C. (2017). MEF2C interacts with c-FOS in PTH-Stimulated Mmp13 gene expression in osteoblastic cells. Endocrinology 158 (11), 3778–3791. 10.1210/en.2017-00159 PubMed DOI PMC
Nishimura R., Wakabayashi M., Hata K., Matsubara T., Honma S., Wakisaka S., et al. (2012). Osterix regulates calcification and degradation of chondrogenic matrices through matrix metalloproteinase 13 (MMP13) expression in association with transcription factor Runx2 during endochondral ossification. J. Biol. Chem. 287 (40), 33179–33190. 10.1074/jbc.M111.337063 PubMed DOI PMC
Omi M., Mishina Y. (2022). Roles of osteoclasts in alveolar bone remodeling. Genesis 60 (8-9), e23490. 10.1002/dvg.23490 PubMed DOI PMC
Oralova V., Matalova E., Janeckova E., Krejci E. D., Knopfova L., Snajdr P., et al. (2015). Role of c-Myb in chondrogenesis. Bone 76, 97–106. 10.1016/j.bone.2015.02.031 PubMed DOI
Oralova V., Matalova E., Killinger M., Knopfova L., Smarda J., Buchtová M. (2017). Osteogenic Potential of the Transcription Factor c-MYB. Tissue Inter 100 (3), 311–322. 10.1007/s00223-016-0219-2 PubMed DOI
Owen R., Reilly G. C. (2018). In vitro Models of Bone Remodelling and Associated Disorders. Front Bioeng Biotechnol 11 (6), 134. 10.3389/fbioe.2018.00134 PubMed DOI PMC
Page-McCaw A., Ewald A. J., Werb Z. (2007). Matrix metalloproteinases and the regulation of tissue remodelling. Nat. Rev. Mol. Biol. 8 (3), 221–233. 10.1038/nrm2125 PubMed DOI PMC
Paiva K. B., Granjeiro J. M. (2017). Matrix metalloproteinases in bone resorption, remodeling, and repair. Prog. Mol. Biol. Transl. Sci. 148, 203–303. 10.1016/bs.pmbts.2017.05.001 PubMed DOI
Reddy S. G., Rani S. H. (2017). Matrix Metalloproteases: potential Role in Type 2 Diabetic Nephropathy. Pathophysiol, 605–616. 10.1007/978-981-10-6141-7_25 DOI
Reponen P., Sahlberg C., Munaut C., Thesleff I., Tryggvason K. (1994). High expression of 92-kD type IV collagenase (gelatinase B) in the osteoclast lineage during mouse development. J. Biol. 124 (6), 1091–1102. 10.1083/jcb.124.6.1091 PubMed DOI PMC
Robinson N. B., Krieger K., Khan F. M., Huffman W., Chang M., Naik A., et al. (2019). The current state of animal models in research: A review. Int. J. Surg. 72, 9–13. 10.1016/j.ijsu.2019.10.015 PubMed DOI
Stickens D., Behonick D. J., Ortega N., Heyer B., Hartenstein B., Yu Y., et al. (2004). Altered endochondral bone development in matrix metalloproteinase 13-deficient mice. Development 131 (23), 5883–5895. 10.1242/dev.01461 PubMed DOI PMC
Sandberg M. L., Sutton S. E., Pletcher M. T., Wilshire T., Tarantino L. M., Hogenesch J. B., et al. (2005). C-Myb and p300 regulate hematopoietic stem cell proliferation and differentiation. Dev. 8 (2), 153–166. 10.1016/j.devcel.2004.12.015 PubMed DOI
Sasano Y., Zhu J. X., Tsubota M., Takahashi I., Onodera K., Mizoguchi I., et al. (2002). Gene expression of MMP8 and MMP13 during embryonic development of bone and cartilage in the rat mandible and hind limb. J. Histochem Cytochem. 50 (3), 325–332. 10.1177/002215540205000304 PubMed DOI
Shi J., Son M. Y., Yamada S., Szabova L., Kahan S., Chrysovergis K., et al. (2008). Membrane-type MMPs enable extracellular matrix permissiveness and mesenchymal cell proliferation during embryogenesis. Dev. Biol. 313 (1), 196–209. 10.1016/j.ydbio.2007.10.017 PubMed DOI PMC
Soza-Ried C., Hess I., Netuschil N., Boehm T. (2010). Essential role of c-myb in definitive hematopoiesis is evolutionarily conserved. PNAS 107 (40), 17304–17308. 10.1073/pnas.1004640107 PubMed DOI PMC
Svandova E., Peterkova R., Matalova E., Lesot H. (2020). Formation and developmental specification of the odontogenic and osteogenic mesenchymes. Front. Dev. Biol. 8, 640. 10.3389/fcell.2020.00640 PubMed DOI PMC
Takaishi H., Kimura T., Dala S., Okada Y., D´Armiento J. (2008). Joint diseases and matrix metalloproteinases: A role for MMP-13. Curr Pharm Biotechnol 9 (1), 47–54. 10.2174/138920108783497659 PubMed DOI
Takanche J. S., Kim J. E., Kim J. S., Lee M. H., Jeon J. G., Park I. S., et al. (2018). Chitosan-gold nanoparticles mediated gene delivery of c-myb facilitates osseointegration of dental implants in ovariectomized rat. Artif. Cells. Biotechnol 46 (3), S807–S817. 10.1080/21691401.2018.1513940 PubMed DOI
Tang S. Y., Herber R. P., Ho S. P., Alliston T. (2012). Matrix metalloproteinase–13 is required for osteocytic perilacunar remodeling and maintains bone fracture resistance. J. Bone Min. Res. 27 (9), 1936–1950. 10.1002/jbmr.1646 PubMed DOI PMC
Vesela B., Svandova E., Bobek J., Lesot H., Matalová E. (2019). Osteogenic and angiogenic profiles of mandibular bone-forming cells. Front. Phys. 10, 124. 10.3389/fphys.2019.00124 PubMed DOI PMC
Vincent-Chong V. K., Salahshourifar I., Karen-Ng L. P., Siow Y. M., Kallarakkal T. G., Ramanathan A., et al. (2014). Overexpression of MMP13 is associated with clinical outcomes and poor prognosis in oral squamous cell carcinoma. Sci World J 2014, 897523. 10.1155/2014/897523 PubMed DOI PMC
Visse R., Nagase H. (2003). Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. 92 (8), 827–839. 10.1161/01.RES.0000070112.80711.3D PubMed DOI
Vu J. L., Werb Z. (2000). Matrix metalloproteinases: effectors of development and normal physiology. Dev 14 (17), 2123–2133. 10.1101/gad.815400 PubMed DOI
Ward E. (2022). A Review of Tissue Engineering for Periodontal Tissue Regeneration. J Vet Dent 39 (1), 49–62. 10.1177/08987564211065137 PubMed DOI
Xu L. H., Zhao F., Yang W. W., Chen C. W., Du Z. H., Fu M., et al. (2019). Myb promotes the growth and metastasis of salivary adenoid cystic carcinoma. Int J Oncol 54 (5), 1579–1590. 10.3892/ijo.2019.4754 PubMed DOI PMC
Young D. A., Barter M. J., Wilkinson D. J. (2019). Recent advances in understanding the regulation of metalloproteinases. eCollection 18 (8), F1000 Faculty Rev-195. 10.12688/f1000research.17471.1 PubMed DOI PMC
Zhang C., Tang W., Li Y. (2012). Matrix metalloproteinase 13 (MMP13) is a direct target of osteoblast-specific transcription factor osterix (Osx) in osteoblasts.7 (11), e50525. 10.1371/journal.pone.0050525 PubMed DOI PMC