Regulators of Collagen Fibrillogenesis during Molar Development in the Mouse
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
28824450
PubMed Central
PMC5539247
DOI
10.3389/fphys.2017.00554
Knihovny.cz E-zdroje
- Klíčová slova
- FACITs, SLRPs, alveolar bone, collagen, odontogenesis,
- Publikační typ
- časopisecké články MeSH
Development of mammalian teeth and surrounding tissues includes time-space changes in the extracellular matrix composition and organization. This requires complex control mechanisms to regulate its synthesis and remodeling. Fibril-associated collagens with interrupted triple helices (FACITs) and a group of small leucine-rich proteoglycans (SLRPs) are involved in the regulation of collagen fibrillogenesis. Recently, collagen type XII and collagen type XIV, members of the FACITs family, were found in the peridental mesenchyme contributing to alveolar bone formation. This study was designed to follow temporospatial expression of collagen types XIIa and XIVa in mouse first molar and adjacent tissues from embryonic day 13, when the alveolar bone becomes morphologically apparent around the molar tooth bud, until postnatal day 22, as the posteruption stage. The patterns of decorin, biglycan, and fibromodulin, all members of the SLRPs family and interacting with collagens XIIa and XIVa, were investigated simultaneously. The situation in the tooth was related to what happens in the alveolar bone, and both were compared to the periodontal ligament. The investigation provided a complex localization of the five antigens in soft tissues, the dental pulp, and periodontal ligaments; in the mineralized tissues, predentin/dentin and alveolar bone; and junction between soft and hard tissues. The results illustrated developmentally regulated and tissue-specific changes in the balance of the two FACITs and three SLRPs.
Biology Department Ghent UniversityGhent Belgium
Department of Physiology University of Veterinary and Pharmaceutical SciencesBrno Czechia
Institute of Animal Physiology and Genetics Academy of Sciences of the Czech RepublicBrno Czechia
Zobrazit více v PubMed
Alves R. D. A. M., Eijken M., Bezstarosti K., Demmers J. A. A., van Leeuwen J. P. T. M. (2013). Activin a suppresses osteoblast mineralization capacity by altering extracellular matrix (ECM) composition and impairing matrix vesicle (MV) production. Mol. Cell. Proteomics MCP 12, 2890–2900. 10.1074/mcp.M112.024927 PubMed DOI PMC
Ansorge H. L., Meng X., Zhang G., Veit G., Sun M., Klement J. F., et al. . (2009). Type XIV Collagen regulates fibrillogenesis: premature collagen fibril growth and tissue dysfunction in null mice. J. Biol. Chem. 284, 8427–8438. 10.1074/jbc.M805582200 PubMed DOI PMC
Canty E. G., Kadler K. E. (2005). Procollagen trafficking, processing and fibrillogenesis. J. Cell Sci. 118, 1341–1353. 10.1242/jcs.01731 PubMed DOI
Chen S., Birk D. E. (2013). The regulatory roles of small leucine-rich proteoglycans in extracellular matrix assembly. FEBS J. 280, 2120–2137. 10.1111/febs.12136 PubMed DOI PMC
Chen S., Mienaltowski M. J., Birk D. E. (2015). Regulation of corneal stroma extracellular matrix assembly. Exp. Eye Res. 133, 69–80. 10.1016/j.exer.2014.08.001 PubMed DOI PMC
Chen X.-D., Fisher L. W., Robey P. G., Young M. F. (2004). The small leucine-rich proteoglycan biglycan modulates BMP-4-induced osteoblast differentiation. FASEB J. 18, 948–958. 10.1096/fj.03-0899com PubMed DOI
Chiquet M., Birk D. E., Bönnemann C. G., Koch M. (2014). Collagen XII: protecting bone and muscle integrity by organizing collagen fibrils. Int. J. Biochem. Cell Biol. 53, 51–54. 10.1016/j.biocel.2014.04.020 PubMed DOI PMC
Chlastakova I., Lungova V., Wells K., Tucker A. S., Radlanski R. J., Misek I., et al. . (2011). Morphogenesis and bone integration of the mouse mandibular third molar. Eur. J. Oral Sci. 119, 265–274. 10.1111/j.1600-0722.2011.00838.x PubMed DOI
Corsi A., Xu T., Chen X. D., Boyde A., Liang J., Mankani M., et al. . (2002). Phenotypic effects of biglycan deficiency are linked to collagen fibril abnormalities, are synergized by decorin deficiency, and mimic Ehlers-Danlos-like changes in bone and other connective tissues. J. Bone Miner. Res. 17, 1180–1189. 10.1359/jbmr.2002.17.7.1180 PubMed DOI
Douglas T., Heinemann S., Bierbaum S., Scharnweber D., Worch H. (2006). Fibrillogenesis of collagen types I, II, and III with small leucine-rich proteoglycans decorin and biglycan. Biomacromolecules 7, 2388–2393. 10.1021/bm0603746 PubMed DOI
Ehnis T., Dieterich W., Bauer M., Kresse H., Schuppan D. (1997). Localization of a binding site for the proteoglycan decorin on collagen XIV (undulin). J. Biol. Chem. 272, 20414–20419. 10.1074/jbc.272.33.20414 PubMed DOI
Font B., Aubert-Foucher E., Goldschmidt D., Eichenberger D., van der Rest M. (1993). Binding of collagen XIV with the dermatan sulfate side chain of decorin. J. Biol. Chem. 268, 25015–25018. PubMed
Font B., Eichenberger D., Goldschmidt D., Boutillon M. M., Hulmes D. J. (1998). Structural requirements for fibromodulin binding to collagen and the control of type I collagen fibrillogenesis–critical roles for disulphide bonding and the C-terminal region. Eur. J. Biochem. 254, 580–587. 10.1046/j.1432-1327.1998.2540580.x PubMed DOI
Fukumoto S., Yamada Y. (2005). Review: extracellular matrix regulates tooth morphogenesis. Connect. Tissue Res. 46, 220–226. 10.1080/03008200500344017 PubMed DOI
Gama A., Navet B., Vargas J. W., Castaneda B., Lezot F. (2015). Bone resorption: an actor of dental and periodontal development? Front. Physiol. 6:319. 10.3389/fphys.2015.00319 PubMed DOI PMC
Geng Y., McQuillan D., Roughley P. J. (2006). SLRP interaction can protect collagen fibrils from cleavage by collagenases. Matrix Biol. J. Int. Soc. Matrix Biol. 25, 484–491. 10.1016/j.matbio.2006.08.259 PubMed DOI
Goldberg M., Septier D., Oldberg A., Young M. F., Ameye L. G. (2006). Fibromodulin-deficient mice display impaired collagen fibrillogenesis in predentin as well as altered dentin mineralization and enamel formation. J. Histochem. Cytochem. 54, 525–537. 10.1369/jhc.5A6650.2005 PubMed DOI
Gubbiotti M. A., Vallet S. D., Ricard-Blum S., Iozzo R. V. (2016). Decorin interacting network: a comprehensive analysis of decorin-binding partners and their versatile functions. Matrix Biol. J. Int. Soc. Matrix Biol. 55, 7–21. 10.1016/j.matbio.2016.09.009 PubMed DOI PMC
Häkkinen L., Strassburger S., Kähäri V. M., Scott P. G., Eichstetter I., Lozzo R. V., et al. . (2000). A role for decorin in the structural organization of periodontal ligament. Lab. Investig. J. Tech. Methods Pathol. 80, 1869–1880. 10.1038/labinvest.3780197 PubMed DOI
Haruyama N., Sreenath T. L., Suzuki S., Yao X., Wang Z., Wang Y., et al. . (2009). Genetic evidence for key roles of decorin and biglycan in dentin mineralization. Matrix Biol. J. Int. Soc. Matrix Biol. 28, 129–136. 10.1016/j.matbio.2009.01.005 PubMed DOI PMC
Henninger H. B., Maas S. A., Underwood C. J., Whitaker R. T., Weiss J. A. (2007). Spatial distribution and orientation of dermatan sulfate in human medial collateral ligament. J. Struct. Biol. 158, 33–45. 10.1016/j.jsb.2006.10.008 PubMed DOI PMC
Ho S. P., Marshall S. J., Ryder M. I., Marshall G. W. (2007). The tooth attachment mechanism defined by structure, chemical composition and mechanical properties of collagen fibers in the periodontium. Biomaterials 28, 5238–5245. 10.1016/j.biomaterials.2007.08.031 PubMed DOI PMC
Iozzo R. V., Schaefer L. (2015). Proteoglycan form and function: a comprehensive nomenclature of proteoglycans. Matrix Biol. 42, 11–55. 10.1016/j.matbio.2015.02.003 PubMed DOI PMC
Izu Y., Sun M., Zwolanek D., Veit G., Williams V., Cha B., et al. . (2011). Type XII collagen regulates osteoblast polarity and communication during bone formation. J. Cell Biol. 193, 1115–1130. 10.1083/jcb.201010010 PubMed DOI PMC
Jussila M., Thesleff I. (2012). Signaling networks regulating tooth organogenesis and regeneration, and the specification of dental mesenchymal and epithelial cell lineages. Cold Spring Harb. Perspect. Biol. 4:a008425. 10.1101/cshperspect.a008425 PubMed DOI PMC
Kaku M., Yamauchi M. (2014). Mechano-regulation of collagen biosynthesis in periodontal ligament. J. Prosthodont. Res. 58, 193–207. 10.1016/j.jpor.2014.08.003 PubMed DOI PMC
Kalamajski S., Oldberg A. (2010). The role of small leucine-rich proteoglycans in collagen fibrillogenesis. Matrix Biol. J. Int. Soc. Matrix Biol. 29, 248–253. 10.1016/j.matbio.2010.01.001 PubMed DOI
Kamiya N., Shigemasa K., Takagi M. (2001). Gene expression and immunohistochemical localization of decorin and biglycan in association with early bone formation in the developing mandible. J. Oral Sci. 43, 179–188. 10.2334/josnusd.43.179 PubMed DOI
Kania A. M., Reichenberger E., Baur S. T., Karimbux N. Y., Taylor R. W., Olsen B. R., et al. . (1999). Structural variation of type XII Collagen at its Carboxyl-terminal NC1 domain generated by tissue-specific alternative splicing. J. Biol. Chem. 274, 22053–22059. 10.1074/jbc.274.31.22053 PubMed DOI
Karimbux N. Y., Rosenblum N. D., Nishimura I. (1992). Site-specific expression of collagen I and XII mRNAs in the rat periodontal ligament at two developmental stages. J. Dent. Res. 71, 1355–1362. 10.1177/00220345920710070201 PubMed DOI
Keene D. R., Sakai L. Y., Burgeson R. E. (1991). Human bone contains type III collagen, type VI collagen, and fibrillin: type III collagen is present on specific fibers that may mediate attachment of tendons, ligaments, and periosteum to calcified bone cortex. J. Histochem. Cytochem. 39, 59–69. 10.1177/39.1.1983874 PubMed DOI
Kleinman H. K., Philp D., Hoffman M. P. (2003). Role of the extracellular matrix in morphogenesis. Curr. Opin. Biotechnol. 14, 526–532. 10.1016/j.copbio.2003.08.002 PubMed DOI
Leong N. L., Hurng J. M., Djomehri S. I., Gansky S. A., Ryder M. I., Ho S. P. (2012). Age-related adaptation of bone-PDL-tooth complex: Rattus-Norvegicus as a model system. PLoS ONE 7:e35980. 10.1371/journal.pone.0035980 PubMed DOI PMC
Lesot H., Osman M., Ruch J. V. (1981). Immunofluorescent localization of collagens, fibronectin, and laminin during terminal differentiation of odontoblasts. Dev. Biol. 82, 371–381. 10.1016/0012-1606(81)90460-7 PubMed DOI
Lewis P. N., Pinali C., Young R. D., Meek K. M., Quantock A. J., Knupp C. (2010). Structural interactions between collagen and proteoglycans are elucidated by three-dimensional electron tomography of bovine cornea. Struct. Lond. Engl. 18, 239–245. 10.1016/j.str.2009.11.013 PubMed DOI
Lungova V., Radlanski R. J., Tucker A. S., Renz H., Misek I., Matalova E. (2011). Tooth-bone morphogenesis during postnatal stages of mouse first molar development. J. Anat. 218, 699–716. 10.1111/j.1469-7580.2011.01367.x PubMed DOI PMC
MacDonald M. E., Hall B. K. (2001). Altered timing of the extracellular-matrix-mediated epithelial-mesenchymal interaction that initiates mandibular skeletogenesis in three inbred strains of mice: development, heterochrony, and evolutionary change in morphology. J. Exp. Zool. 291, 258–273. 10.1002/jez.1102 PubMed DOI
MacNeil R. L., Berry J. E., Strayhorn C. L., Shigeyama Y., Somerman M. J. (1998). Expression of type I and XII collagen during development of the periodontal ligament in the mouse. Arch. Oral Biol. 43, 779–787. 10.1016/S0003-9969(98)00054-5 PubMed DOI
Matheson S., Larjava H., Häkkinen L. (2005). Distinctive localization and function for lumican, fibromodulin and decorin to regulate collagen fibril organization in periodontal tissues. J. Periodont. Res. 40, 312–324. 10.1111/j.1600-0765.2005.00800.x PubMed DOI
Matias M. A., Li H., Young W. G., Bartold P. M. (2003). Immunohistochemical localization of fibromodulin in the periodontium during cementogenesis and root formation in the rat molar. J. Periodont. Res. 38, 502–507. 10.1034/j.1600-0765.2003.00682.x PubMed DOI
McKee M. D., Hoac B., Addison W. N., Barros N. M. T., Millan J. L., Chaussain C. (2013). Extracellular matrix mineralization in periodontal tissues: noncollagenous matrix proteins, enzymes, and relationship to hypophosphatasia and X-linked hypophosphatemia. Periodontol. 2000 63, 102–122. 10.1111/prd.12029 PubMed DOI PMC
Miletich I., Yu W.-Y., Zhang R., Yang K., de Andrade S. C., do A. Pereira S. F., et al. . (2011). Developmental stalling and organ-autonomous regulation of morphogenesis. Proc. Natl. Acad. Sci. U.S.A. 108, 19270–19275. 10.1073/pnas.1112801108 PubMed DOI PMC
Minarikova M., Oralova V., Vesela B., Radlanski R. J., Matalova E. (2015). Osteogenic profile of mesenchymal cell populations contributing to alveolar bone formation. Cells Tissues Organs 200, 339–348. 10.1159/000439165 PubMed DOI
Nakamura S., Terashima T., Yoshida T., Iseki S., Takano Y., Ishikawa I., et al. . (2005). Identification of genes preferentially expressed in periodontal ligament: specific expression of a novel secreted protein, FDC-SP. Biochem. Biophys. Res. Commun. 338, 1197–1203. 10.1016/j.bbrc.2005.10.076 PubMed DOI
Nurminskaya M. V., Birk D. E. (1998). Differential expression of genes associated with collagen fibril growth in the chicken tendon: identification of structural and regulatory genes by subtractive hybridization. Arch. Biochem. Biophys. 350, 1–9. 10.1006/abbi.1997.0498 PubMed DOI
Peterkova R., Peterka M., Viriot L., Lesot H. (2000). Dentition development and budding morphogenesis. J. Craniofac. Genet. Dev. Biol. 20, 158–172. PubMed
Peters H., Balling R. (1999). Teeth. where and how to make them. Trends Genet. 15, 59–65. 10.1016/S0168-9525(98)01662-X PubMed DOI
Quan B. D., Sone E. D. (2015). Structural changes in collagen fibrils across a mineralized interface revealed by cryo-TEM. Bone 77, 42–49. 10.1016/j.bone.2015.04.020 PubMed DOI
Rada J. A., Cornuet P. K., Hassell J. R. (1993). Regulation of corneal collagen fibrillogenesis in vitro by corneal proteoglycan (lumican and decorin core proteins. Exp. Eye Res. 56, 635–648. 10.1006/exer.1993.1081 PubMed DOI
Reichenberger E., Baur S., Sukotjo C., Olsen B. R., Karimbux N. Y., Nishimura I. (2000). Collagen XII mutation disrupts matrix structure of periodontal ligament and skin. J. Dent. Res. 79, 1962–1968. 10.1177/00220345000790120701 PubMed DOI
Ricard-Blum S. (2011). The collagen family. Cold Spring Harb. Perspect. Biol. 3:a004978. 10.1101/cshperspect.a004978 PubMed DOI PMC
Rodriguez D., Morrison C. J., Overall C. M. (2010). Matrix metalloproteinases: what do they not do? New substrates and biological roles identified by murine models and proteomics. Biochim. Biophys. Acta 1803, 39–54. 10.1016/j.bbamcr.2009.09.015 PubMed DOI
Salmon C. R., Giorgetti A. P. O., Paes Leme A. F., Domingues R. R., Sallum E. A., Alves M. C., et al. . (2016). Global proteome profiling of dental cementum under experimentally-induced apposition. J. Proteomics 141, 12–23. 10.1016/j.jprot.2016.03.036 PubMed DOI PMC
Schaefer L., Iozzo R. V. (2008). Biological functions of the small leucine-rich proteoglycans: from genetics to signal transduction. J. Biol. Chem. 283, 21305–21309. 10.1074/jbc.R800020200 PubMed DOI PMC
Schaefer L., Schaefer R. M. (2010). Proteoglycans: from structural compounds to signaling molecules. Cell Tissue Res. 339, 237–246. 10.1007/s00441-009-0821-y PubMed DOI
Shaw L. M., Olsen B. R. (1991). FACIT collagens: diverse molecular bridges in extracellular matrices. Trends Biochem. Sci. 16, 191–194. 10.1016/0968-0004(91)90074-6 PubMed DOI
Smith A. J., Lesot H. (2001). Induction and regulation of crown dentinogenesis: embryonic events as a template for dental tissue repair? Crit. Rev. Oral Biol. Med. 12, 425–437. 10.1177/10454411010120050501 PubMed DOI
Takimoto A., Kawatsu M., Yoshimoto Y., Kawamoto T., Seiryu M., Takano-Yamamoto T., et al. . (2015). Scleraxis and osterix antagonistically regulate tensile force-responsive remodeling of the periodontal ligament and alveolar bone. Dev. Camb. Engl. 142, 787–796. 10.1242/dev.116228 PubMed DOI
Trombetta J. M., Bradshaw A. D. (2010). SPARC/osteonectin functions to maintain homeostasis of the collagenous extracellular matrix in the periodontal ligament. J. Histochem. Cytochem. 58, 871–879. 10.1369/jhc.2010.956144 PubMed DOI PMC
Tsuzuki T., Kajiya H., T-Goto K., Tsutsumi T., Nemoto T., Okabe K., et al. . (2016). Hyperocclusion stimulates the expression of collagen type XII in periodontal ligament. Arch. Oral Biol. 66, 86–91. 10.1016/j.archoralbio.2016.02.009 PubMed DOI
Wang L., Foster B. L., Kram V., Nociti F. H., Zerfas P. M., Tran A. B., et al. . (2014). Fibromodulin and biglycan modulate periodontium through TGFβ/BMP Signaling. J. Dent. Res. 93, 780–787. 10.1177/0022034514541126 PubMed DOI PMC
Xu H., Snider T. N., Wimer H. F., Yamada S. S., Yang T., Holmbeck K., et al. (2016). Multiple essential MT1-MMP functions in tooth root formation, dentinogenesis, and tooth eruption. Matrix Biol. 52–54, 266–283. 10.1016/j.matbio.2016.01.002 PubMed DOI PMC
Young B. B., Gordon M. K., Birk D. E. (2000). Expression of type XIV collagen in developing chicken tendons: association with assembly and growth of collagen fibrils. Dev. Dyn. 217, 430–439. 10.1002/(sici)1097-0177(200004)217:4<430::aid-dvdy10>3.0.co;2-5 PubMed DOI
Young M. F. (2016). Skeletal biology: where matrix meets mineral. Matrix Biol. 52–54, 1–6. 10.1016/j.matbio.2016.04.003 PubMed DOI PMC
Young M. F., Bi Y., Ameye L., Chen X.-D. (2002). Biglycan knockout mice: new models for musculoskeletal diseases. Glycoconj. J. 19, 257–262. 10.1023/A:1025336114352 PubMed DOI
Zhang X., Schuppan D., Becker J., Reichart P., Gelderblom H. R. (1993). Distribution of undulin, tenascin, and fibronectin in the human periodontal ligament and cementum: comparative immunoelectron microscopy with ultra-thin cryosections. J. Histochem. Cytochem. 41, 245–251. 10.1177/41.2.7678270 PubMed DOI
Caspase-8 Deficient Osteoblastic Cells Display Alterations in Non-Apoptotic Pathways
Formation and Developmental Specification of the Odontogenic and Osteogenic Mesenchymes
Osteogenic and Angiogenic Profiles of Mandibular Bone-Forming Cells