Caspase-8 Deficient Osteoblastic Cells Display Alterations in Non-Apoptotic Pathways

. 2022 ; 10 () : 794407. [epub] 20220315

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35372363

Caspase-8 is the key component of the receptor-mediated (extrinsic) apoptotic pathway. Immunological localization of active caspase-8 showed its presence in osteoblasts, including non-apoptotic ones. Further in vivo exploration of caspase-8 functions in the bone is hindered by the fact that the caspase-8 knock-out is lethal prenatally. Examinations were thus performed using individual cell populations in vitro. In this study, caspase-8 was eliminated by the CRISPR/cas9 technology in MC3T3-E1 cells, the most common in vitro model of osteoblastic populations. The aim of the work was to specify the consequences of caspase-8 deficiency on non-apoptotic pathways. The impact on the osteogenic gene expression of the osteoblastic cells along with alterations in proliferation, caspase cascades and rapamycin induced autophagy response were evaluated. Osteogenic differentiation of caspase-8 deficient cells was inhibited as these cells displayed a decreased level of mineralization and lower activity of alkaline phosphatase. Among affected osteogenic genes, based on the PCR Array, major changes were observed for Ctsk, as down-regulated, and Gdf10, as up-regulated. Other significantly down-regulated genes included those coding osteocalcin, bone morphogenetic proteins (-3, -4 and -7), collagens (-1a1, -14a1) or Phex. The formation of autophagosomes was not altered in rapamycin-treated caspase-8 deficient cells, but expression of some autophagy-related genes, including Tnfsf10, Cxcr4, Dapk1 and Igf1, was significantly downregulated. These data provide new insight into the effects of caspase-8 on non-apoptotic osteogenic pathways.

Zobrazit více v PubMed

Addison W. N., Nelea V., Chicatun F., Chien Y.-C., Tran-Khanh N., Buschmann M. D., et al. (2015). Extracellular Matrix Mineralization in Murine MC3T3-E1 Osteoblast Cultures: An Ultrastructural, Compositional and Comparative Analysis with Mouse Bone. Bone 71, 244–256. 10.1016/j.bone.2014.11.003 PubMed DOI PMC

Ansorge H. L., Meng X., Zhang G., Veit G., Sun M., Klement J. F., et al. (2009). Type XIV Collagen Regulates Fibrillogenesis. J. Biol. Chem. 284, 8427–8438. 10.1074/jbc.M805582200 PubMed DOI PMC

Brunetti G., Oranger A., Carbone C., Mori G., Sardone F. R., Mori C., et al. (2013). Osteoblasts Display Different Responsiveness to TRAIL-Induced Apoptosis during Their Differentiation Process. Cell Biochem. Biophys. 67, 1127–1136. 10.1007/s12013-013-9616-6 PubMed DOI

Chang S.-F., Chang T.-K., Peng H.-H., Yeh Y.-T., Lee D.-Y., Yeh C.-R., et al. (2009). BMP-4 Induction of Arrest and Differentiation of Osteoblast-like Cells via p21CIP1and p27KIP1Regulation. Mol. Endocrinol. 23, 1827–1838. 10.1210/me.2009-0143 PubMed DOI PMC

Choi J.-Y., Lee B.-H., Song K.-B., Park R.-W., Kim I.-S., Sohn K.-Y., et al. (1996). Expression Patterns of Bone-Related Proteins during Osteoblastic Differentiation in MC3T3-E1 Cells. J. Cel. Biochem., 61, 609–618. 10.1002/(SICI)1097-4644(19960616)61:4<609::AID-JCB15>3.010.1002/(sici)1097-4644(19960616)61:4<609::aid-jcb15>3.0.co;2-a PubMed DOI

Christidi E., Brunham L. R. (2021). Regulated Cell Death Pathways in Doxorubicin-Induced Cardiotoxicity. Cell Death Dis 12. 10.1038/s41419-021-03614-x PubMed DOI PMC

Chun H. J., Zheng L., Ahmad M., Wang J., Speirs C. K., Siegel R. M., et al. (2002). Pleiotropic Defects in Lymphocyte Activation Caused by Caspase-8 Mutations lead to Human Immunodeficiency. Nature 419, 395–399. 10.1038/nature01063 PubMed DOI

Concordet J.-P., Haeussler M. (2018). CRISPOR: Intuitive Guide Selection for CRISPR/Cas9 Genome Editing Experiments and Screens. Nucleic Acids Res. 46, W242–W245. 10.1093/nar/gky354 PubMed DOI PMC

Drake M. T., Clarke B. L., Oursler M. J., Khosla S. (2017). Cathepsin K Inhibitors for Osteoporosis: Biology, Potential Clinical Utility, and Lessons Learned. Endocr. Rev. 38, 325–350. 10.1210/er.2015-1114 PubMed DOI PMC

Fritsch M., Günther S. D., Schwarzer R., Albert M.-C., Schorn F., Werthenbach J. P., et al. (2019). Caspase-8 Is the Molecular Switch for Apoptosis, Necroptosis and Pyroptosis. Nature 575, 683–687. 10.1038/s41586-019-1770-6 PubMed DOI

Hino J., Kangawa K., Matsuo H., Nohno T., Nishimatsu S. (2004). Bone Morphogenetic Protein-3 Family Members and Their Biological Functions. Front. Biosci. 9, 1520–1529. 10.2741/1355 PubMed DOI

Hiraki Y., Inoue H., Shigeno C., Sanma Y., Bentz H., Rosen D. M., et al. (1991). Bone Morphogenetic Proteins (BMP-2 and BMP-3) Promote Growth and Expression of the Differentiated Phenotype of Rabbit Chondrocytes and Osteoblastic MC3T3-E1 Cells In Vitro . J. Bone Miner Res. 6, 1373–1385. 10.1002/jbmr.5650061215 PubMed DOI

Hughes M. A., Harper N., Butterworth M., Cain K., Cohen G. M., MacFarlane M. (2009). Reconstitution of the Death-Inducing Signaling Complex Reveals a Substrate Switch that Determines CD95-Mediated Death or Survival. Mol. Cel 35, 265–279. 10.1016/j.molcel.2009.06.012 PubMed DOI

Inbal B., Bialik S., Sabanay I., Shani G., Kimchi A. (2002). DAP Kinase and DRP-1 Mediate Membrane Blebbing and the Formation of Autophagic Vesicles during Programmed Cell Death. J. Cel Biol. 157, 455–468. 10.1083/jcb.200109094 PubMed DOI PMC

Julien O., Wells J. A. (2017). Caspases and Their Substrates. Cell Death Differ 24, 1380–1389. 10.1038/cdd.2017.44 PubMed DOI PMC

Jung C. H., Ro S.-H., Cao J., Otto N. M., Kim D.-H. (2010). mTOR Regulation of Autophagy. FEBS Lett. 584, 1287–1295. 10.1016/j.febslet.2010.01.017 PubMed DOI PMC

Kaiser W. J., Upton J. W., Long A. B., Livingston-Rosanoff D., Daley-Bauer L. P., Hakem R., et al. (2011). RIP3 Mediates the Embryonic Lethality of Caspase-8-Deficient Mice. Nature 471, 368–372. 10.1038/nature09857 PubMed DOI PMC

Kang T.-B., Ben-Moshe T., Varfolomeev E. E., Pewzner-Jung Y., Yogev N., Jurewicz A., et al. (2004). Caspase-8 Serves Both Apoptotic and Nonapoptotic Roles. J. Immunol. 173, 2976–2984. 10.4049/jimmunol.173.5.2976 PubMed DOI

Kennedy N. J., Kataoka T., Tschopp J., Budd R. C. (1999). Caspase Activation Is Required for T Cell Proliferation. J. Exp. Med. 190, 1891–1896. 10.1084/jem.190.12.1891 PubMed DOI PMC

Kevorkova O., Martineau C., Martin-Falstrault L., Sanchez-Dardon J., Brissette L., Moreau R. (2013). Low-Bone-Mass Phenotype of Deficient Mice for the Cluster of Differentiation 36 (CD36). PLoS One 8, e77701–11. 10.1371/journal.pone.0077701 PubMed DOI PMC

Killinger M., Veselá B., Procházková M., Matalová E., Klepárník K. (2021). A Single-Cell Analytical Approach to Quantify Activated Caspase-3/7 during Osteoblast Proliferation, Differentiation, and Apoptosis. Anal. Bioanal. Chem. 413, 5085–5093. 10.1007/s00216-021-03471-9 PubMed DOI

Knopfová L., Biglieri E., Volodko N., Masařík M., Hermanová M., Glaus Garzón J. F., et al. (2018). Transcription Factor C-Myb Inhibits Breast Cancer Lung Metastasis by Suppression of Tumor Cell Seeding. Oncogene 37, 1020–1030. 10.1038/onc.2017.392 PubMed DOI PMC

Kokabu S., Rosen V. (2018). BMP3 Expression by Osteoblast Lineage Cells Is Regulated by Canonical Wnt Signaling. FEBS Open Bio 8, 168–176. 10.1002/2211-5463.12347 PubMed DOI PMC

Kostova I., Mandal R., Becker S., Strebhardt K. (2021). The Role of Caspase-8 in the Tumor Microenvironment of Ovarian Cancer. Cancer Metastasis Rev. 40, 303–318. 10.1007/s10555-020-09935-1 PubMed DOI PMC

Kratochvílová A., Veselá B., Ledvina V., Švandová E., Klepárník K., Dadáková K., et al. (2020). Osteogenic Impact of Pro-apoptotic Caspase Inhibitors in MC3T3-E1 Cells. Sci. Rep. 10, 1–8. 10.1038/s41598-020-64294-9 PubMed DOI PMC

Lavery K., Hawley S., Swain P., Rooney R., Falb D., Alaoui-Ismaili M. H. (2009). New Insights into BMP-7 Mediated Osteoblastic Differentiation of Primary Human Mesenchymal Stem Cells. Bone 45, 27–41. 10.1016/j.bone.2009.03.656 PubMed DOI

Ledvina V., Janečková E., Matalová E., Klepárník K. (2017). Parallel Single-Cell Analysis of Active Caspase-3/7 in Apoptotic and Non-apoptotic Cells. Anal. Bioanal. Chem. 409, 269–274. 10.1007/s00216-016-9998-6 PubMed DOI

Li D. Y., Yu J. C., Xiao L., Miao W., Ji K., Wang S. C., et al. (2017). Autophagy Attenuates the Oxidative Stress-Induced Apoptosis of Mc3T3-E1 Osteoblasts. Eur. Rev. Med. Pharmacol. Sci. 21, 5548–5556. 10.26355/eurrev_201712_13991 PubMed DOI

Lotinun S., Ishihara Y., Nagano K., Kiviranta R., Carpentier V. T., Neff L., et al. (2019). Cathepsin K-Deficient Osteocytes Prevent Lactation-Induced Bone Loss and Parathyroid Hormone Suppression. J. Clin. Invest. 129, 3058–3071. 10.1172/JCI122936 PubMed DOI PMC

Mandelin J., Hukkanen M., Li T.-F., Korhonen M., Liljeström M., Sillat T., et al. (2006). Human Osteoblasts Produce Cathepsin K. Bone 38, 769–777. 10.1016/j.bone.2005.10.017 PubMed DOI

Matsumoto Y., Otsuka F., Hino J., Miyoshi T., Takano M., Miyazato M., et al. (2012). Bone Morphogenetic Protein-3b (BMP-3b) Inhibits Osteoblast Differentiation via Smad2/3 Pathway by Counteracting Smad1/5/8 Signaling. Mol. Cell Endocrinol. 350, 78–86. 10.1016/j.mce.2011.11.023 PubMed DOI

Mizushima N., Komatsu M. (2011). Autophagy: Renovation of Cells and Tissues. Cell 147, 728–741. 10.1016/j.cell.2011.10.026 PubMed DOI

Mogi M., Togari A. (2003). Activation of Caspases Is Required for Osteoblastic Differentiation. J. Biol. Chem. 278, 47477–47482. 10.1074/jbc.M307055200 PubMed DOI

Muzio M., Chinnaiyan A. M., Kischkel F. C., O'Rourke K., Shevchenko A., Ni J., et al. (1996). FLICE, A Novel FADD-Homologous ICE/CED-3-like Protease, Is Recruited to the CD95 (Fas/APO-1) Death-Inducing Signaling Complex. Cell 85, 817–827. 10.1016/s0092-8674(00)81266-0 PubMed DOI

Nollet M., Santucci-Darmanin S., Breuil V., Al-Sahlanee R., Cros C., Topi M., et al. (2014). Autophagy in Osteoblasts Is Involved in Mineralization and Bone Homeostasis. Autophagy 10, 1965–1977. 10.4161/auto.36182 PubMed DOI PMC

Pavlatovská B., Machálková M., Brisudová P., Pruška A., Štěpka K., Michálek J., et al. (2020). Lactic Acidosis Interferes with Toxicity of Perifosine to Colorectal Cancer Spheroids: Multimodal Imaging Analysis. Front. Oncol. 10, 581365. 10.3389/fonc.2020.581365 PubMed DOI PMC

Pekarčíková L., Knopfová L., Beneš P., Šmarda J. (2016). c-Myb Regulates NOX1/p38 to Control Survival of Colorectal Carcinoma Cells. Cell Signal. 28, 924–936. 10.1016/j.cellsig.2016.04.007 PubMed DOI

Ray S., Bucur O., Almasan A. (2005). Sensitization of Prostate Carcinoma Cells to Apo2L/TRAIL by a Bcl-2 Family Protein Inhibitor. Apoptosis 10, 1411–1418. 10.1007/s10495-005-2490-y PubMed DOI

Renna M., Bento C. F., Fleming A., Menzies F. M., Siddiqi F. H., Ravikumar B., et al. (2013). IGF-1 Receptor Antagonism Inhibits Autophagy. Hum. Mol. Genet. 22, 4528–4544. 10.1093/hmg/ddt300 PubMed DOI PMC

Salmena L., Hakem R. (2005). Caspase-8 Deficiency in T Cells Leads to a Lethal Lymphoinfiltrative Immune Disorder. J. Exp. Med. 202, 727–732. 10.1084/jem.20050683 PubMed DOI PMC

Sanjana N. E., Shalem O., Zhang F. (2014). Improved Vectors and Genome-wide Libraries for CRISPR Screening. Nat. Methods 11, 783–784. 10.1038/nmeth.3047 PubMed DOI PMC

Shalini S., Dorstyn L., Dawar S., Kumar S. (2015). Old, New and Emerging Functions of Caspases. Cel Death Differ 22, 526–539. 10.1038/cdd.2014.216 PubMed DOI PMC

Sharma A., Almasan A. (2018). Autophagy as a Mechanism of Apo2L/TRAIL Resistance. Cancer Biol. Ther. 19, 755–762. 10.1080/15384047.2018.1472191 PubMed DOI PMC

Shi G., Jia P., Chen H., Bao L., Feng F., Tang H. (2019). Necroptosis Occurs in Osteoblasts during Tumor Necrosis Factor-α Stimulation and Caspase-8 Inhibition. Braz. J. Med. Biol. Res. 52, 1–7. 10.1590/1414-431X20187844 PubMed DOI PMC

Sudo H., Kodama H. A., Amagai Y., Yamamoto S., Kasai S. (1983). In Vitro differentiation and Calcification in a New Clonal Osteogenic Cell Line Derived from Newborn Mouse Calvaria. J. Cel Biol. 96, 191–198. 10.1083/jcb.96.1.191 PubMed DOI PMC

Svandova E., Vesela B., Tucker A. S., Matalova E. (2018). Activation of Pro-apoptotic Caspases in Non-apoptotic Cells during Odontogenesis and Related Osteogenesis. Front. Physiol. 9, 174. 10.3389/fphys.2018.00174 PubMed DOI PMC

Van Opdenbosch N., Lamkanfi M. (2019). Caspases in Cell Death, Inflammation, and Disease. Immunity 50, 1352–1364. 10.1016/j.immuni.2019.05.020.Caspases PubMed DOI PMC

Varfolomeev E. E., Schuchmann M., Luria V., Chiannilkulchai N., Beckmann J. S., Mett I. L., et al. (1998). Targeted Disruption of the Mouse Caspase 8 Gene Ablates Cell Death Induction by the TNF Receptors, Fas/Apo1, and DR3 and Is Lethal Prenatally. Immunity 9, 267–276. 10.1016/s1074-7613(00)80609-3 PubMed DOI

Wilson C. H., Kumar S. (2018). Caspases in Metabolic Disease and Their Therapeutic Potential. Cel Death Differ 25, 1010–1024. 10.1038/s41418-018-0111-x PubMed DOI PMC

Xie H., Tang S.-Y., Li H., Luo X.-H., Yuan L.-Q., Wang D., et al. (2008). L-carnitine Protects against Apoptosis of Murine MC3T3-E1 Osteoblastic Cells. Amino Acids 35, 419–423. 10.1007/s00726-007-0598-9 PubMed DOI

Yu L., Alva A., Su H., Dutt P., Freundt E., Welsh S., et al. (2004). Regulation of an ATG7-Beclin 1 Program of Autophagic Cell Death by Caspase-8. Science 304, 1500–1502. 10.1126/science.1096645 PubMed DOI

Zvackova I., Matalova E., Lesot H. (2017). Regulators of Collagen Fibrillogenesis during Molar Development in the Mouse. Front. Physiol. 8, 554. 10.3389/fphys.2017.00554 PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Caspase-9 Is a Positive Regulator of Osteoblastic Cell Migration Identified by diaPASEF Proteomics

. 2024 Aug 02 ; 23 (8) : 2999-3011. [epub] 20240318

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...