Lactic Acidosis Interferes With Toxicity of Perifosine to Colorectal Cancer Spheroids: Multimodal Imaging Analysis
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
33344237
PubMed Central
PMC7746961
DOI
10.3389/fonc.2020.581365
Knihovny.cz E-zdroje
- Klíčová slova
- Akt kinase, alkalization, colorectal cancer, lactic acidosis, mass spectrometry imaging, perifosine, signal co-registration, tumor environment,
- Publikační typ
- časopisecké články MeSH
Colorectal cancer (CRC) is a disease with constantly increasing incidence and high mortality. The treatment efficacy could be curtailed by drug resistance resulting from poor drug penetration into tumor tissue and the tumor-specific microenvironment, such as hypoxia and acidosis. Furthermore, CRC tumors can be exposed to different pH depending on the position in the intestinal tract. CRC tumors often share upregulation of the Akt signaling pathway. In this study, we investigated the role of external pH in control of cytotoxicity of perifosine, the Akt signaling pathway inhibitor, to CRC cells using 2D and 3D tumor models. In 3D settings, we employed an innovative strategy for simultaneous detection of spatial drug distribution and biological markers of proliferation/apoptosis using a combination of mass spectrometry imaging and immunohistochemistry. In 3D conditions, low and heterogeneous penetration of perifosine into the inner parts of the spheroids was observed. The depth of penetration depended on the treatment duration but not on the external pH. However, pH alteration in the tumor microenvironment affected the distribution of proliferation- and apoptosis-specific markers in the perifosine-treated spheroid. Accurate co-registration of perifosine distribution and biological response in the same spheroid section revealed dynamic changes in apoptotic and proliferative markers occurring not only in the perifosine-exposed cells, but also in the perifosine-free regions. Cytotoxicity of perifosine to both 2D and 3D cultures decreased in an acidic environment below pH 6.7. External pH affects cytotoxicity of the other Akt inhibitor, MK-2206, in a similar way. Our innovative approach for accurate determination of drug efficiency in 3D tumor tissue revealed that cytotoxicity of Akt inhibitors to CRC cells is strongly dependent on pH of the tumor microenvironment. Therefore, the effect of pH should be considered during the design and pre-clinical/clinical testing of the Akt-targeted cancer therapy.
Centre for Biomedical Image Analysis Faculty of Informatics Masaryk University Brno Czechia
Department of Chemistry and Applied Biosciences ETH Zurich Zurich Switzerland
Department of Chemistry Faculty of Science Masaryk University Brno Czechia
Department of Experimental Biology Faculty of Science Masaryk University Brno Czechia
Zobrazit více v PubMed
Pandurangan AK. Potential Targets for Prevention of Colorectal Cancer: A Focus on PI3K/Akt/mTOR and Wnt Pathways. Asian Pac J Cancer Prev (2013) 14:2201–5. 10.7314/apjcp.2013.14.4.2201 PubMed DOI
Mármol I, Sánchez-de-Diego C, Dieste AP, Cerrada E, Yoldi MJR. Colorectal carcinoma: A general overview and future perspectives in colorectal cancer. Int J Mol Sci (2017) 18(1):197. 10.3390/ijms18010197 PubMed DOI PMC
World Cancer Research Fund International Colorectal cancer statistics (2018). Available at: http://www.wcrf.org/cancer_statistics/data_specific_cancers/colorectal_cancer_statistic s.php (Accessed July 7, 2020).
Foley TM, Payne SN, Pasch, Cheri A, Foley TM, Payne SN, et al. Dual PI3K/mTOR Inhibition in Colorectal Cancers with APC and PIK3CA Mutations. Mol Cancer Res MCR 2017; (2017) 15:317–27. 10.1158/1541-7786.MCR-16-0256 PubMed DOI PMC
Haydon AM, Jass JR. Emerging pathways in colorectal-cancer development. Lancet Oncol (2002) 3:83–8. 10.1016/S1470-2045(02)00649-6 PubMed DOI
Li D, Wang G, Jin G, Yao K, Zhao Z, Bie L, et al. Resveratrol suppresses colon cancer growth by targeting the AKT/STAT3 signaling pathway. Int J Mol Med (2019) 43(1):630–40. 10.3892/ijmm.2018.3969 PubMed DOI
Suman S, Kurisetty V, Das TP, Vadodkar A, Ramos G, Lakshmanaswamy R, et al. Activation of AKT signaling promotes epithelial- mesenchymal transition and tumor growth in colorectal cancer cells. Mol Carcinog (2013) Suppl 1:E151–60. 10.1002/mc.22076 PubMed DOI
Coant N, García-Barros M, Zhang Q, Obeid LM, Hannun YA. AKT as a key target for growth promoting functions of neutral ceramidase in colon cancer cells. Oncogene (2018) 37(28):3852–63. 10.1002/mc.22076 PubMed DOI PMC
Muñoz-Martínez F, Torres C, Castanys S, Gamarro F. The anti-tumor alkylphospholipid perifosine is internalized by an ATP-dependent translocase activity across the plasma membrane of human KB carcinoma cells. Biochim Biophys Acta - Biomembr (2008) 1778(2):530–40. 10.1016/j.bbamem.2007.10.017 PubMed DOI
Richardson PG, Eng C, Kolesar J, Hideshima T, Anderson KC. Perifosine, an oral, anti-cancer agent and inhibitor of the Akt pathway: mechanistic actions, pharmacodynamics, pharmacokinetics, and clinical activity. Expert Opin Drug Metab Toxicol (2012) 8(5):623–33. 10.1517/17425255.2012.681376 PubMed DOI PMC
Kaley TJ, Panageas KS, Mellinghoff IK, Nolan C, Gavrilovic IT, DeAngelis LM, et al. Phase II trial of an AKT inhibitor (perifosine) for recurrent glioblastoma. J Neurooncol (2019) 144(2):403–7. 10.1007/s11060-019-03243-7 PubMed DOI PMC
Ebrahimi S, Hosseini M, Shahidsales S, Maftouh GA, Ferns S, Ghayour-Mobarhan M, et al. Targeting the Akt/PI3K signaling pathway as a potential therapeutic strategy for the treatment of pancreatic cancer. Curr Med Chem (2017) 24(13):1321–31. 10.2174/0929867324666170206142658 PubMed DOI
Gills JJ, Dennis PA. Perifosine: Update on a novel Akt inhibitor. Curr Oncol Rep (2009) 11(2):102–10. 10.1007/s11912-009-0016-4 PubMed DOI PMC
Becher OJ, Gilheeney SW, Khakoo Y, Lyden DC, Haque S, De Braganca KC, et al. A phase I study of perifosine with temsirolimus for recurrent pediatric solid tumors. Pediatr Blood Cancer (2017) 64(7):e26409. 10.1002/pbc.26409 PubMed DOI
Shen JS, Xu L, Zhao Q. Perifosine and ABT-737 synergistically inhibit lung cancer cells in vitro and in vivo. Biochem Biophys Res Commun (2016) 473(4):1170–6. 10.1016/j.bbrc.2016.04.035 PubMed DOI
Kapałczyńska M, Kolenda T, Przybyła W, Zajączkowska M, Teresiak A, Filas V, et al. 2D and 3D cell cultures – a comparison of different types of cancer cell cultures. Arch Med Sci (2018) 14(4):910–9. 10.5114/aoms.2016.63743 PubMed DOI PMC
Zhang X, Lin Y, Gillies RJ. Tumor pH and Its Measurement. J Nucl Med (2010) 51(8):1167–70. 10.2967/jnumed.109.068981 PubMed DOI PMC
Mehta G, Hsiao AY, Ingram M, Luker GD, Takayama S. Opportunities and challenges for use of tumor spheroids as models to test drug delivery and efficacy. J Control Release (2012) 164(2):192–204. 10.1016/j.jconrel.2012.04.045 PubMed DOI PMC
Wojtkowiak JW, Verduzco D, Schramm KJ, Gillies RJ. Drug resistance and cellular adaptation to tumor acidic pH microenvironment. Mol Pharm (2011) 8(6):2032–8. 10.1021/mp200292c655 PubMed DOI PMC
Swietach P, Hulikova A, Patiar S, Vaughan-Jones RD, Harris AL. Importance of intracellular pH in determining the uptake and efficacy of the weakly basic chemotherapeutic drug, doxorubicin. PLoS One (2012) 7(4):1–9. 10.1371/journal.pone.0035949 PubMed DOI PMC
Saggar JK, Yu M, Tan Q, Tannock IF. The tumor microenvironment and strategies to improve drug distribution. Front Oncol (2013) 3:154:154. 10.3389/fonc.2013.00154 PubMed DOI PMC
Nunes AS, Barros AS, Costa EC, Moreira AF, Correia IJ. 3D tumor spheroids as in vitro models to mimic in vivo human solid tumors resistance to therapeutic drugs. Biotechnol Bioeng (2019) 116(1):206–26. 10.1002/bit.26845 PubMed DOI
Edmondson R, Broglie JJ, Adcock AF, Yang L. Three-Dimensional Cell Culture Systems and Their Applications in Drug Discovery and Cell-Based Biosensors. Assay Drug Dev Technol (2014) 12(4):207–18. 10.1089/adt.2014 PubMed DOI PMC
Huh D, Hamilton GA, Ingber DE. From 3D cell culture to organs-on-chips. Trends Cell Biol (2011) 21(12):745–54. 10.1016/j.tcb.2011.09.005 PubMed DOI PMC
Tibbitt MW, Anseth KS. Hydrogels as extracellular matrix mimics for 3D cell culture. Biotechnol Bioeng (2009) 103(4):655–63. 10.1002/bit.22361 PubMed DOI PMC
Senavirathna LK, Fernando R, Maples D, Zheng Y, Polf JC, Ranjan A. Tumor spheroids as an in vitro model for determining the therapeutic response to proton beam radiotherapy and thermally sensitive nanocarriers. Theranostics (2013) 3(9):687–91. 10.7150/thno PubMed DOI PMC
Niero EL, Rocha-Sales B, Lauand C, Cortez BA, De Souza MM, Rezende-Teixeira P, et al. The multiple facets of drug resistance: One history, different approaches. J Exp Clin Cancer Res (2014) 33(1):1–14. 10.1186/1756-9966-33-37 PubMed DOI PMC
Souza AG, Silva IBB, Campos-Fernandez E, Barcelos LS, Souza JB, Marangoni K, et al. Comparative Assay of 2D and 3D Cell Culture Models: Proliferation, Gene Expression and Anticancer Drug Response. Curr Pharm Des (2018) 24(15):1689–94. 10.2174/1381612824666180404152304 PubMed DOI
Alessandra L. Manipulating pH in Cancer Treatment : Alkalizing Drugs and Alkaline Diet. J Complement Med Alt Healthcare (2017) 2(1):1–5. 10.19080/JCMAH.2017.02.555580 DOI
Barnes EME, Xu Y, Benito A, Herendi L, Siskos AP, Aboagye EO, et al. Lactic acidosis induces resistance to the pan-Akt inhibitor uprosertib in colon cancer cells. Br J Cancer (2020) (March):1–11. 10.1038/s41416-020-0777-y PubMed DOI PMC
Ibrahim-Hashim A, Estrella V. Acidosis and cancer: from mechanism to neutralization. Cancer Metastasis Rev (2019) 2019:38.1–2: 149-155. 10.1007/s10555-019-09787-4 PubMed DOI PMC
Roma-Rodrigues C, Mendes R, Baptista PV, Fernandes AR. Targeting tumor microenvironment for cancer therapy. Int J Mol Sci (2019) 20(4):840. 10.3390/ijms20040840 PubMed DOI PMC
Pellegrini P, Serviss JT, Lundbäck T, Bancaro N, Mazurkiewicz M, Kolosenko I, et al. A drug screening assay on cancer cells chronically adapted to acidosis. Cancer Cell Int (2018) 18(1):1–15. 10.1186/s12935-018-0645-5 PubMed DOI PMC
De Milito A, Fais S. Tumor acidity, chemoresistance and proton pump inhibitors. Future Oncol (2005) 1(6):779–86. 10.2217/14796694.1.6.779 PubMed DOI
Neugent ML, Goodwin J, Sankaranarayanan I, Yetkin CE, Hsieh MH, Kim JW. A new perspective on the heterogeneity of cancer glycolysis. Biomol Ther (2018) 26(1):10–8. 10.4062/biomolther.2017.210 PubMed DOI PMC
Lin J, Xia L, Liang J, Han Y, Wang H, Oyang L, et al. The roles of glucose metabolic reprogramming in chemo- and radio-resistance. J Exp Clin Cancer Res (2019) 38(1):1–13. 10.1186/s13046-019-1214-z PubMed DOI PMC
Holma R, Osterlund P, Sairanen U, Blom M, Rautio M, Korpela R. Colonic methanogenesis in vivo and in vitro and fecal pH after resection of colorectal cancer and in healthy intact colon. Int J Colorectal Dis (2012) 27(2):171–8. 10.1007/s00384-011-1323-4 PubMed DOI
McDougall CJ, Wong R, Scudera P, Lesser M, DeCosse JJ. Colonic mucosal pH in humans. Dig Dis Sci (1993) 38(3):542–5. 10.1007/BF01316512 PubMed DOI
Rose C, Parker A, Jefferson B, Cartmell E. The characterization of feces and urine: A review of the literature to inform advanced treatment technology. Crit Rev Environ Sci Technol (2015) 45(17):1827–79. 10.1080/10643389.2014.1000761 PubMed DOI PMC
Tian L, Bae YH. Cancer nanomedicines targeting tumor extracellular pH. Colloids Surfaces B Biointerf (2012) 99:116–26. 10.1016/j.colsurfb.2011.10.039. PubMed DOI PMC
Zhou ZH, Song JW, Li W, Liu X, Cao L, Wan LM, et al. The acid-sensing ion channel, ASIC2, promotes invasion and metastasis of colorectal cancer under acidosis by activating the calcineurin/NFAT1 axis. J Exp Clin Cancer Res (2017) 36(1):1–12. 10.1186/s13046-017-0599-9 PubMed DOI PMC
Walch A, Rauser S, Deininger SO, Höfler H. MALDI imaging mass spectrometry for direct tissue analysis: A new frontier for molecular histology. Histochem Cell Biol (2008) 130(3):421–34. 10.1007/s00418-008-0469-9 PubMed DOI PMC
Buck A, Halbritter S, Späth C, Feuchtinger A, Aichler M, Zitzelsberger H, et al. Distribution and quantification of irinotecan and its active metabolite SN-38 in colon cancer murine model systems using MALDI MSI. Anal Bioanal Chem (2015) 407(8):2107–16. 10.1007/s00216-014-8237-2 PubMed DOI
Giordano S, Zucchetti M, Decio A, Cesca M, Fuso Nerini I, Maiezza M, et al. Heterogeneity of paclitaxel distribution in different tumor models assessed by MALDI mass spectrometry imaging. Sci Rep (2016) 6:1–12. 10.1038/srep39284 PubMed DOI PMC
Liu X, Flinders C, Mumenthaler SM, Hummon AB. MALDI Mass Spectrometry Imaging for Evaluation of Therapeutics in Colorectal Tumor Organoids. J Am Soc Mass Spectrom (2018) 29(3):516–26. 10.1007/s13361-017-1851-4 PubMed DOI PMC
Penault-Llorca F, Radosevic-Robin N. Ki67 assessment in breast cancer: an update. Pathology (2017) 49(2):166–71. 10.1016/j.pathol.2016.11.006 PubMed DOI
Natalino RJM, Antoneli CBG, Ribeiro K de CB, Campos AHJFM, Soares FA. Immunohistochemistry of apoptosis-related proteins in retinoblastoma. Pathol Res Pract (2016) 212(12):1144–50. 10.1016/j.prp.2016.09.010 PubMed DOI
Mardhian DF, Vrynas A, Storm G, Bansal R, Prakash J. FGF2 engineered SPIONs attenuate tumor stroma and potentiate the effect of chemotherapy in 3D heterospheroidal model of pancreatic tumor. Nanotheranostics (2020) 4(1):26–39. 10.7150/ntno.38092 PubMed DOI PMC
Wang Z, Li W, Jing H, Ding M, Fu G, Yuan T, et al. Generation of hepatic spheroids using human hepatocyte-derived liver progenitor-like cells for hepatotoxicity screening. Theranostics (2019) 9(22):6690–705. 10.7150/thno.34520 PubMed DOI PMC
Michálek J, Štěpka K, Kozubek M, Navrátilová J, Pavlatovská B, Machálková M, et al. Quantitative Assessment of Anti-Cancer Drug Efficacy from Coregistered Mass Spectrometry and Fluorescence Microscopy Images of Multicellular Tumor Spheroids. Microsc Microanal (2019) 25(6):1311–22. 10.1017/S1431927619014983 PubMed DOI
Machálková M, Pavlatovská B, Michálek J, Pruška A, Štěpka K, Nečasová T, et al. Drug Penetration Analysis in 3D Cell Cultures Using Fiducial-Based Semiautomatic Coregistration of MALDI MSI and Immunofluorescence Images. Anal Chem (2019) 91(21):13475–84. 10.1021/acs.analchem.9b02462 PubMed DOI
Michl J, Park KC, Swietach P. Evidence-based guidelines for controlling pH in mammalian live-cell culture systems. Commun Biol (2019) 2(1):1–12. 10.1038/s42003-019-0393-7 PubMed DOI PMC
Navrátilová J, Karasová M, Kohutková Lánová M, Jiráková L, Budková Z, Pacherník J, et al. Selective elimination of neuroblastoma cells by synergistic effect of Akt kinase inhibitor and tetrathiomolybdate. J Cell Mol Med (2017) 21(9):1859–69. 10.1111/jcmm.13106 PubMed DOI PMC
Navrátilová J, Hankeová T, Beneš P, šmarda J. Low-glucose conditions of tumor microenvironment enhance cytotoxicity of tetrathiomolybdate to neuroblastoma cells. Nutr Cancer (2013) 65(5):702–10. 10.1080/01635581.2013.789118 PubMed DOI
Navrátilová J, Hankeová T, Beneš P, šmarda J. Acidic pH of tumor microenvironment enhances cytotoxicity of the disulfiram/Cu2+ complex to breast and colon cancer cells. Chemotherapy (2013) 59(2):112–20. 10.1159/000353915. PubMed DOI
Jabaji Z, Sears CM, Brinkley GJ, Lei NY, Joshi VS, Wang J, et al. Use of collagen gel as an alternative extracellular matrix for the in vitro and in vivo growth of murine small intestinal epithelium. Tissue Eng - Part C Methods (2013) 19(12):961–9. 10.1089/ten.TEC.2012.0710 PubMed DOI PMC
Bansode S, Bashtanova U, Li R, Clark J, Müller KH, Puszkarska A, et al. Glycation changes molecular organization and charge distribution in type I collagen fibrils. Sci Rep (2020) 10(1):1–13. 10.1038/s41598-020-60250-9 PubMed DOI PMC
Schröter D, Höhn A. Role of Advanced Glycation End Products in Carcinogenesis and their Therapeutic Implications. Curr Pharm Des (2019) 24(44):5245–51. 10.2174/1381612825666190130145549 PubMed DOI PMC
Vicens-Zygmunt V, Estany S, Colom A, Montes-Worboys A, Machahua C, Sanabria AJ, et al. Fibroblast viability and phenotypic changes within glycated stiffened three-dimensional collagen matrices. Respir Res (2015) 16(1):1–15. 10.1186/s12931-015-0237-z PubMed DOI PMC
Floryk D, Thompson TC. Perifosine induces differentiation and cell death in prostate cancer cells. Cancer Lett (2008) 266(2):216–26. 10.1016/j.canlet.2008.02.060. PubMed DOI PMC
Crul M, Rosing H, de Klerk G, Dubbelman R, Traiser M, Reichert S, et al. and pharmacological study of daily oral administration of perifosine (D-21266) in patients with advanced solid tumours. Eur J Cancer (2002) 38(12):1615–21. 10.1016/s0959-8049(02)00127-2 PubMed DOI
Torok S, Rezeli M, Kelemen O, Vegvari A, Watanabe K, Sugihara Y, et al. Limited tumor tissue drug penetration contributes to primary resistance against angiogenesis inhibitors. Theranostics (2017) 7(2):400–12. 10.7150/thno.16767 PubMed DOI PMC
Dheda K, Lenders L, Magombedze G, Srivastava S, Raj P, Arning E, et al. Drug-penetration gradients associated with acquired drug resistance in patients with tuberculosis. Am J Respir Crit Care Med (2018) 198(9):1208–19. 10.1164/rccm.201711-2333OC PubMed DOI PMC
Jang SH, Wientjes MG, Lu D, Au JLS. Drug delivery and transport to solid tumors. Pharm Res (2003) 20(9):1337–50. 10.1023/a:1025785505977 PubMed DOI
Moreno-Gamez S, Hilla AL, Rosenbloom DIS, Petrov DA, Nowak MA, Pennings PS. Imperfect drug penetration leads to spatial monotherapy and rapid evolution of multidrug resistance. Proc Natl Acad Sci U S A (2015) 112(22):E2874–83. 10.1073/pnas.1424184112 PubMed DOI PMC
Lazzari G, Couvreur P, Mura S. Multicellular tumor spheroids: A relevant 3D model for the: In vitro preclinical investigation of polymer nanomedicines. Polym Chem (2017) 8(34):4947–69. 10.1039/C7PY00559H DOI
Tannock IF, Lee CM, Tunggal JK, Cowan DSM, Egorin MJ. Limited Penetration of Anticancer Drugs Through Tumor Tissue. Clin Cancer Res (2002) 8:878–84. PubMed
Folarin AA, Konerding MA, Timonen J, Nagl S, Pedley RB. Three-dimensional analysis of tumour vascular corrosion casts using stereoimaging and micro-computed tomography. Microvasc Res (2010) 80(1):89–98. 10.1016/j.mvr.2010.03.007 PubMed DOI PMC
Zhang Y, Lukacova V, Reindl K, Balaz S. Quantitative characterization of binding of small molecules to extracellular matrix. J Biochem Biophys Methods (2006) 67(2–3):107–22. 10.1016/j.jbbm.2006.01.007 PubMed DOI PMC
Di X, Bright AT, Bellott R, Gaskins E, Robert J, Holt S, et al. A chemotherapy-associated senescence bystander effect in breast cancer cells. Cancer Biol Ther (2008) 7(6):682–90. 10.4161/cbt.7.6.5861 PubMed DOI
Wang R, Zhou T, Liu W, Zuo L. Molecular mechanism of bystander effects and related abscopal/ cohort effects in cancer therapy. Oncotarget (2018) 9(26):18637–47. 10.18632/oncotarget.24746 PubMed DOI PMC
Jin C, Wu S, Lu X, Liu Q, Qi M, Lu S, et al. Induction of the bystander effect in Chinese hamster V79 cells by actinomycin D. Toxicol Lett (2011) 202(3):178–85. 10.1016/j.toxlet.2011.02.002 PubMed DOI
Rugo RE, Almeida KH, Hendricks CA, Jonnalagadda VS, Engelward BP. A single acute exposure to a chemotherapeutic agent induces hyper-recombination in distantly descendant cells and in their neighbors. Oncogene (2005) 24(32):5016–25. 10.1038/sj.onc.1208690 PubMed DOI
Kadhim M, Salomaa S, Wright E, Hildebrandt G, Belyakov OV, Prise KM, et al. Non-targeted effects of ionising radiation-Implications for low dose risk. Mutat Res - Rev Mutat Res (2013) 752(2):84–98. 10.1016/j.mrrev.2012.12.001 PubMed DOI PMC
Mukherjee D, Coates PJ, Lorimore SA, Wright EG. Responses to ionizing radiation mediated by inflammatory mechanisms. J Pathol (2014) 232(3):289–99. 10.1002/path.4299 PubMed DOI
Xiong DD, Lin XG, He RQ, Pan DH, Luo YH, Dang YW, et al. Ki67/MIB-1 predicts better prognoses in colorectal cancer patients received both surgery and adjuvant radio-chemotherapy: A meta-analysis of 30 studies. Int J Clin Exp Med (2017) 10(2):1788–804.
Melling N, Kowitz CM, Simon R, Bokemeyer C, Terracciano L, Sauter G, et al. High Ki67 expression is an independent good prognostic marker in colorectal cancer. J Clin Pathol (2016) 69(3):209–14. 10.1136/jclinpath-2015-202985 PubMed DOI
Saggar JK, Tannock IF. Chemotherapy rescues hypoxic tumor cells and induces their reoxygenation and repopulation - An effect that is inhibited by the hypoxia-activated prodrug TH-302. Clin Cancer Res (2015) 21(9):2107–14. 10.1158/1078-0432.CCR-14-2298 PubMed DOI
Rasbridge SA, Gillett CE, Seymour AM, Patel K, Richards MA, Rubens RD, et al. The effects of chemotherapy on morphology, cellular proliferation, apoptosis and oncoprotein expression in primary breast carcinoma. Br J Cancer (1994) 70(2):335–41. 10.1038/bjc.1994.303 PubMed DOI PMC
Hultman I, Haeggblom L, Rognmo I, Edqvist JJ, Blomberg E, Ali R, et al. Doxorubicin-provoked increase of mitotic activity and concomitant drain of G0-pool in therapy-resistant BE(2)-C neuroblastoma. PLoS One (2018) 13(1):1–16. 10.1371/journal.pone.0190970. PubMed DOI PMC
Erlanson M, Daniel-Szolgay E, Carlsson J. Relations between the penetration, binding and average concentration of cytostatic drugs in human tumour spheroids. Cancer Chemother Pharmacol (1992) 29(5):343–53. 10.1007/BF00686002 PubMed DOI
Van Der Luit AH, Vink SR, Klarenbeek JB, Perrissoud D, Solary E, Verheij M, et al. A new class of anticancer alkylphospholipids uses lipid rafts as membrane gateways to induce apoptosis in lymphoma cells. Mol Cancer Ther (2007) 6(8):2337–45. 10.1158/1535-7163 PubMed DOI
Durand RE. Slow penetration of anthracyclines into spheroids and tumors: a therapeutic advantage? Cancer Chemother Pharmacol (1990) 26(3):198–204. 10.1007/BF02897199 PubMed DOI
Slack MD, Martinez ED, Wu LF, Altschuler SJ. Characterizing heterogeneous cellular responses to perturbations. Proc Natl Acad Sci U S A (2008) 105(49):19306–11. 10.1073/pnas.0807038105 PubMed DOI PMC
Singh DK, Ku CJ, Wichaidit C, Steininger RJ, Wu LF, Altschuler SJ. Patterns of basal signaling heterogeneity can distinguish cellular populations with different drug sensitivities. Mol Syst Biol (2010) 6(369):1–10. 10.1038/msb.2010.22 PubMed DOI PMC
Jeppesen M, Hagel G, Vainer B, Harling H, Thastrup O, Jorgensen LN, et al. Spheroid culture of primary colorectal cancer cells from liver metastases as an in vitro model of patient tumors [abstract]. In: Proceedings of the 105th Annual Meeting of the American Association for Cancer Research; 2014 Apr 5-9; San Diego, CA. Philadelphia (PA): AACR; Cancer Res (2014) 74(19 Suppl). 10.1158/1538-7445.AM2014-2020 Abstract nr 2020. DOI
árnadóttir SS, Jeppesen M, Lamy P, Bramsen JB, Nordentoft I, Knudsen M, et al. Characterization of genetic intratumor heterogeneity in colorectal cancer and matching patient-derived spheroid cultures. Mol Oncol (2018) 12(1):132–47. 10.1002/1878-0261.12156 PubMed DOI PMC
Kam Y, Das T, Tian H, Foroutan P, Ruiz E, Martinez G, et al. Sweat but no gain: Inhibiting proliferation of multidrug resistant cancer cells with ersatzdroges. Int J Cancer (2015) 136(4):E188–96. 10.1002/ijc.29158 PubMed DOI PMC
Mahoney BP, Raghunand N, Baggett B, Gillies RJ. Tumor acidity, ion trapping and chemotherapeutics: I. Acid pH affects the distribution of chemotherapeutic agents in vitro. Biochem Pharmacol (2003) 66(7):1207–18. 10.1016/s0006-2952(03)00467-2 PubMed DOI
Lindner K, Borchardt C, Schöpp M, Bürgers A, Stock C, Hussey DJ, et al. Proton pump inhibitors (PPIs) impact on tumour cell survival, metastatic potential and chemotherapy resistance, and affect expression of resistance-relevant miRNAs in esophageal cancer. J Exp Clin Cancer Res (2014) 33(1):1–12. 10.1186/s13046-014-0073-x PubMed DOI PMC
Corbet C, Feron O. Tumour acidosis: From the passenger to the driver’s seat. Nat Rev Cancer (2017) 17(10):577–93. 10.1038/nrc.2017.77 PubMed DOI
Yilmaz B, Li H. Gut microbiota and iron: The crucial actors in health and disease. Pharmaceuticals (2018) 11(4):98. 10.3390/ph11040098 PubMed DOI PMC
Van Der Luit AH, Budde M, Verheij M, Van Blitterswijk WJ. Different modes of internalization of apoptotic alkyl-lysophospholipid and cell-rescuing lysophosphatidylcholine. Biochem J (2003) 374(Pt 3):747–53. 10.1042/BJ20030179 PubMed DOI PMC
Chen JLY, Lucas JE, Schroeder T, Mori S, Wu J, Nevins J, et al. The genomic analysis of lactic acidosis and acidosis response in human cancers. PLoS Genet (2008) 4(12):e1000293. 10.1371/journal.pgen.1000293 PubMed DOI PMC
Chen JLY, Merl D, Peterson CW, Wu J, Liu PY, Yin H, et al. Lactic acidosis triggers starvation response with paradoxical induction of TXNIP through MondoA. PLoS Genet (2010) 6(9):e1001093. 10.1371/journal.pgen.1001093. PubMed DOI PMC
Elstrom RL, Bauer DE, Buzzai M, Karnauskas R, Harris MH, Plas DR, et al. Akt stimulates aerobic glycolysis in cancer cells. Cancer Res (2004) 64(11):3892–9. 10.1158/0008-5472.CAN-03-2904 PubMed DOI
Franke TF. PI3K/Akt: Getting it right matters. Oncogene (2008) 27(50):6473–88. 10.1038/onc.2008.313 PubMed DOI
Coloff JL, Mason EF, Altman BJ, Gerriets VA, Liu T, Nichols AN, et al. Akt requires glucose metabolism to suppress Puma expression and prevent apoptosis of leukemic T cells. J Biol Chem (2011) 286(7):5921–33. 10.1074/jbc.M110.179101 PubMed DOI PMC
Majewski N, Nogueira V, Bhaskar P, Coy PE, Skeen JE, Gottlob K, et al. Hexokinase-mitochondria interaction mediated by Akt is required to inhibit apoptosis in the presence or absence of Bax and Bak. Mol Cell (2004) 16(5):819–30. 10.1016/j.molcel.2004.11.014 PubMed DOI
Dietl K, Renner K, Dettmer K, Timischl B, Eberhart K, Dorn C, et al. Lactic Acid and Acidification Inhibit TNF Secretion and Glycolysis of Human Monocytes. J Immunol (2010) 184(3):1200–9. 10.4049/jimmunol.0902584 PubMed DOI
Wu H, Ying M, Hu X. Lactic acidosis switches cancer cells from aerobic glycolysis back to dominant oxidative phosphorylation. Oncotarget (2016) 7(26):40621–9. 10.18632/oncotarget.9746 PubMed DOI PMC
Corbet C, Draoui N, Polet F, Pinto A, Drozak X, Riant O, et al. The SIRT1/HIF2α axis drives reductive glutamine metabolism under chronic acidosis and alters tumor response to therapy. Cancer Res (2014) 74(19):5507–19. 10.1158/0008-5472.CAN-14-0705 PubMed DOI
Wojtkowiak JW, Rothberg JM, Kumar V, Schramm KJ, Haller E, Proemsey JB, et al. Chronic autophagy is a cellular adaptation to tumor acidic pH microenvironments. Cancer Res (2012) 72(16):3938–47. 10.1158/0008-5472.CAN-11-3881 PubMed DOI PMC
Seiwert N, Neitzel C, Stroh S, Frisan T, Audebert M, Toulany M, et al. AKT2 suppresses pro-survival autophagy triggered by DNA double-strand breaks in colorectal cancer cells. Cell Death Dis (2017) 8(8):e3019. 10.1038/cddis.2017.418 PubMed DOI PMC
Xu F, Na L, Li Y, Chen L. Roles of the PI3K/AKT/mTOR signalling pathways in neurodegenerative diseases and tumours. Cell Biosci (2020) 10(1):1–12. 10.1186/s13578-020-00416-0 PubMed DOI PMC
Shankar E, Weis M, Avva J, Shukla S, Shukla M, Sreenath S, et al. Complex Systems Biology Approach in Connecting PI3K-Akt and NF-κB Pathways in Prostate Cancer. Cells (2019) 8(3):201. 10.3390/cells8030201 PubMed DOI PMC
Faes S, Duval AP, Planche A, Uldry E, Santoro T, Pythoud C, et al. Acidic tumor microenvironment abrogates the efficacy of mTORC1 inhibitors. Mol Cancer (2016) 15(1):1–11. 10.1186/s12943-016-0562-y PubMed DOI PMC
Chen B, Liu J, Ho T-T, Ding X, Mo Y-Y. ERK-mediated NF-κB activation through ASIC1 in response to acidosis. Oncogenesis (2016) 5(12):e279–e279. 10.1038/oncsis.2016.81 PubMed DOI PMC
Synergistic cytotoxicity of perifosine and ABT-737 to colon cancer cells
Caspase-8 Deficient Osteoblastic Cells Display Alterations in Non-Apoptotic Pathways