A single-cell analytical approach to quantify activated caspase-3/7 during osteoblast proliferation, differentiation, and apoptosis
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
20-00726
Grantová Agentura České Republiky
PubMed
34169347
DOI
10.1007/s00216-021-03471-9
PII: 10.1007/s00216-021-03471-9
Knihovny.cz E-zdroje
- Klíčová slova
- Apoptosis, Bioluminescence detection, Caspase-3/7, Cell death and differentiation, Single-cell detection and quantification,
- MeSH
- aktivace enzymů MeSH
- apoptóza MeSH
- buněčná diferenciace MeSH
- buněčné linie MeSH
- kaspasa 3 chemie genetika metabolismus MeSH
- kaspasa 7 chemie genetika metabolismus MeSH
- myši MeSH
- osteoblasty cytologie fyziologie MeSH
- proliferace buněk MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- kaspasa 3 MeSH
- kaspasa 7 MeSH
The protein heterogeneity at the single-cell level has been recognized to be vital for an understanding of various life processes during animal development. In addition, the knowledge of accurate quantity of relevant proteins at cellular level is essential for appropriate interpretation of diagnostic and therapeutic results. Some low-copy-number proteins are known to play a crucial role during cell proliferation, differentiation, and also in apoptosis. The fate decision is often based on the concentration of these proteins in the individual cells. This is likely to apply also for caspases, cysteine proteases traditionally associated with cell death via apoptosis but recently being discovered also as important factors in cell proliferation and differentiation. The hypothesis was tested in bone-related cells, where modulation of fate from apoptosis to proliferation/differentiation and vice versa is particularly challenging, e.g., towards anti-osteoporotic treatments and anti-cancer strategies. An ultrasensitive and highly selective method based on bioluminescence photon counting was used to quantify activated caspase-3/7 in order to demonstrate protein-level heterogeneity in individual cells within one population and to associate quantitative measurements with different cell fates (proliferation, differentiation, apoptosis). The results indicate a gradual increase of caspase-3/7 activation from the proliferative status to differentiation (more than three times) and towards apoptosis (more than six times). The findings clearly support one of the putative key mechanisms of non-apoptotic functions of pro-apoptotic caspases based on fine-tuning of their activation levels.
Zobrazit více v PubMed
Nicholson DW. Caspase structure, proteolytic substrates, and function during apoptotic cell death. Cell Death Differ. 1999;6(11):1028–42. https://doi.org/10.1038/sj.cdd.4400598 . PubMed DOI
Kabigting JET, Toyama Y. Interplay between caspase, yes-associated protein, and mechanics: a possible switch between life and death? Curr Opin Cell Biol. 2020;67:141–6. https://doi.org/10.1016/j.ceb.2020.10.010 . PubMed DOI
Bell RAV, Megeney LA. Evolution of caspase-mediated cell death and differentiation: twins separated at birth. Cell Death Differ. 2017;24(8):1359–68. https://doi.org/10.1038/cdd.2017.37 . PubMed DOI PMC
Kennedy OD, Herman BC, Laudier DM, Majeska RJ, Sun HB, Schaffler MB. Activation of resorption in fatigue-loaded bone involves both apoptosis and active pro-osteoclastogenic signaling by distinct osteocyte populations. Bone. 2012;50(5):1115–22. https://doi.org/10.1016/j.bone.2012.01.025 . PubMed DOI PMC
Szymczyk KH, Freeman TA, Adams CS, Srinivas V, Steinbeck MJ. Active caspase-3 is required for osteoclast differentiation. J Cell Physiol. 2006;209(3):836–44. https://doi.org/10.1002/jcp.20770 . PubMed DOI
Miura M, Chen XD, Allen MR, Bi Y, Gronthos S, Seo BM, et al. A crucial role of caspase-3 in osteogenic differentiation of bone marrow stromal stem cells. J Clin Invest. 2004;114(12):1704–13. https://doi.org/10.1172/JCI20427 . PubMed DOI PMC
Kratochvílová A, Veselá B, Ledvina V, Švandová E, Klepárník K, Dadáková K, et al. Osteogenic impact of pro-apoptotic caspase inhibitors in MC3T3-E1 cells. Sci Rep. 2020;10(1):7489. https://doi.org/10.1038/s41598-020-64294-9 . PubMed DOI PMC
Svandova E, Vesela B, Tucker AS, Matalova E. Activation of pro-apoptotic caspases in non-apoptotic cells during odontogenesis and related osteogenesis. Front Physiol. 2018;9:174. https://doi.org/10.3389/fphys.2018.00174 . PubMed DOI PMC
Adamova E, Janeckova E, Kleparnik K, Matalova E. Caspases and osteogenic markers--in vitro screening of inhibition impact. In vitro cellular & developmental biology Animal. 2016;52(2):144–8. https://doi.org/10.1007/s11626-015-9964-1 . DOI
Mogi M, Togari A. Activation of caspases is required for osteoblastic differentiation. J Biol Chem. 2003;278(48):47477–82. https://doi.org/10.1074/jbc.M307055200 . PubMed DOI
Connolly P, Garcia-Carpio I, Villunger A. Cell-cycle cross talk with caspases and their substrates. Cold Spring Harb Perspect Biol. 2020;12(6). https://doi.org/10.1101/cshperspect.a036475 .
Julien O, Wells JA. Caspases and their substrates. Cell Death Differ. 2017;24(8):1380–9. https://doi.org/10.1038/cdd.2017.44 . PubMed DOI PMC
Roux J, Hafner M, Bandara S, Sims JJ, Hudson H, Chai D, et al. Fractional killing arises from cell-to-cell variability in overcoming a caspase activity threshold. Mol Syst Biol. 2015;11(5):803. https://doi.org/10.15252/msb.20145584 . PubMed DOI PMC
Florentin A, Arama E. Caspase levels and execution efficiencies determine the apoptotic potential of the cell. J Cell Biol. 2012;196(4):513–27. https://doi.org/10.1083/jcb.201107133 . PubMed DOI PMC
Mokhtar-Ahmadabadi R, Madadi Z, Akbari-Birgani S, Grillon C, Hasani L, Hosseinkhani S, et al. Developing a circularly permuted variant of Renilla luciferase as a bioluminescent sensor for measuring Caspase-9 activity in the cell-free and cell-based systems. Biochem Biophys Res Commun. 2018;506(4):1032–9. https://doi.org/10.1016/j.bbrc.2018.11.009 . PubMed DOI
Cheng H, Li SY, Zheng HR, Li CX, Xie BR, Chen KW, et al. Multi-Förster resonance energy transfer-based fluorescent probe for spatiotemporal matrix metalloproteinase-2 and caspase-3 imaging. Anal Chem. 2017;89(8):4349–54. https://doi.org/10.1021/acs.analchem.7b00277 . PubMed DOI
den Hamer A, Dierickx P, Arts R, de Vries JSPM, Brunsveld L, Merkx M. Bright bioluminescent BRET sensor proteins for measuring intracellular caspase activity. ACS Sens. 2017;2(6):729–34. https://doi.org/10.1021/acssensors.7b00239 . DOI
Ledvina V, Janeckova E, Matalova E, Kleparnik K. Parallel single-cell analysis of active caspase-3/7 in apoptotic and non-apoptotic cells. Anal Bioanal Chem. 2017;409(1):269–74. https://doi.org/10.1007/s00216-016-9998-6 . PubMed DOI
Liskova M, Kleparnik K, Matalova E, Hegrova J, Prikryl J, Svandova E, et al. Bioluminescence determination of active caspase-3 in single apoptotic cells. Electrophoresis. 2013;34(12):1772–7. https://doi.org/10.1002/elps.201200675 . PubMed DOI
Sanders MG, Parsons MJ, Howard AG, Liu J, Fassio SR, Martinez JA, et al. Single-cell imaging of inflammatory caspase dimerization reveals differential recruitment to inflammasomes. Cell Death Dis. 2015;6:e1813. https://doi.org/10.1038/cddis.2015.186 . PubMed DOI PMC
Liu T, Yamaguchi Y, Shirasaki Y, Shikada K, Yamagishi M, Hoshino K, et al. Single-cell imaging of caspase-1 dynamics reveals an all-or-none inflammasome signaling response. Cell Rep. 2014;8(4):974–82. https://doi.org/10.1016/j.celrep.2014.07.012 . PubMed DOI
Antczak C, Takagi T, Ramirez CN, Radu C, Djaballah H. Live-cell imaging of caspase activation for high-content screening. J Biomol Screen. 2009;14(8):956–69. https://doi.org/10.1177/1087057109343207 . PubMed DOI PMC
O'Brien MA, Daily WJ, Hesselberth PE, Moravec RA, Scurria MA, Klaubert DH, et al. Homogeneous, bioluminescent protease assays: caspase-3 as a model. J Biomol Screen. 2005;10(2):137–48. https://doi.org/10.1177/1087057104271865 . PubMed DOI
Sato Y, Ishihara N, Nagayama D, Saiki A, Tatsuno I. 7-Ketocholesterol induces apoptosis of MC3T3-E1 cells associated with reactive oxygen species generation, endoplasmic reticulum stress and caspase-3/7 dependent pathway. Mol Genet Metab Rep. 2017;10:56–60. https://doi.org/10.1016/j.ymgmr.2017.01.006 . PubMed DOI PMC
Yazid MD, Ariffin SHZ, Senafi S, Razak MA, Wahab RMA. Determination of the differentiation capacities of murines’ primary mononucleated cells and MC3T3-E1 cells. Cancer Cell Int. 2010;10:42. https://doi.org/10.1186/1475-2867-10-42 . PubMed DOI PMC
Walsh JG, Cullen SP, Sheridan C, Lüthi AU, Gerner C, Martin SJ. Executioner caspase-3 and caspase-7 are functionally distinct proteases. Proc Natl Acad Sci U S A. 2008;105(35):12815–9. https://doi.org/10.1073/pnas.0707715105 . PubMed DOI PMC
Svandova E, Lesot H, Vanden Berghe T, Tucker AS, Sharpe PT, Vandenabeele P, et al. Non-apoptotic functions of caspase-7 during osteogenesis. Cell Death Dis. 2014;5:e1366. https://doi.org/10.1038/cddis.2014.330 . PubMed DOI PMC
Shi M, Geng X, Wang C, Guan Y. Quantification of low copy number proteins in single cells. Anal Chem. 2019;91(18):11493–6. https://doi.org/10.1021/acs.analchem.9b02989 . PubMed DOI
Qi G, Sun D, Tian Y, Xu C, Zhang Y, Wang D, et al. Fast activation and tracing of caspase-3 involved cell apoptosis by combined electrostimulation and smart signal-amplified SERS nanoprobes. Anal Chem. 2020;92(11):7861–8. https://doi.org/10.1021/acs.analchem.0c01114 . PubMed DOI
Cookson NA, Cookson SW, Tsimring LS, Hasty J. Cell cycle-dependent variations in protein concentration. Nucleic Acids Res. 2010;38(8):2676–81. https://doi.org/10.1093/nar/gkp1069 . PubMed DOI
Lin J, Amir A. Homeostasis of protein and mRNA concentrations in growing cells. Nat Commun. 2018;9(1):4496. https://doi.org/10.1038/s41467-018-06714-z . PubMed DOI PMC
Caspase-8 Deficient Osteoblastic Cells Display Alterations in Non-Apoptotic Pathways