Uptake of Hydrogen Bonding Molecules by Benzene Nanoparticles
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
35446589
PubMed Central
PMC9082588
DOI
10.1021/acs.jpclett.2c00835
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
The uptake of molecules on nanometer-size clusters of polyaromatic hydrocarbons (PAHs) is important for the condensation of water on PAH aerosols in the atmosphere and for ice mantle growth on nanoparticles in the interstellar medium. We generate benzene clusters BzN of mean size N̅ ≈ 300 (radius R̅ ≈ 2.2 Å) as a model system for the PAH nanoparticles. Using molecular beams and mass spectrometry detection, we investigate the uptake of water, methanol, and ethanol by these clusters. All picked up molecules are highly mobile on BzN and generate clusters within <3 ms. The relative uptakes for the different investigated molecules can be directly compared and quantified. Water molecules exhibit the lowest relative pickup probability that is ∼30% lower than those for methanol and ethanol, which are approximately the same.
Zobrazit více v PubMed
Seinfeld J. H.; Pandis S. N.. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change; John Wiley & Sons Inc.: Hoboken, NJ, 2016.
Laskin A.; Laskin J.; Nizkorodov S. Chemistry of Atmospheric Brown Carbon. Chem. Rev. 2015, 115, 4335–4382. 10.1021/cr5006167. PubMed DOI
Ravishankara A. R. Heterogeneous and Multiphase Chemistry in the Troposphere. Science 1997, 276, 1058–1065. 10.1126/science.276.5315.1058. DOI
George C.; Ammann M.; D’Anna B.; Donaldson D. J.; Nizkorodov S. A. Heterogeneous Photochemistry in the Atmosphere. Chem. Rev. 2015, 115, 4218–4258. 10.1021/cr500648z. PubMed DOI PMC
Finlayson-Pitts B. J.; Pitts J. N. Tropospheric Air Pollution: Ozone, Airborne Toxics, Polycyclic Aromatic Hydrocarbons, and Particles. Science 1997, 276, 1045–1052. 10.1126/science.276.5315.1045. PubMed DOI
Ehrenfreund P.; Rasmussen S.; Cleaves J. H.; Chen L. Experimentally Tracing the Key Steps in the Origin of Life: The Aromatic World. Astrobiology 2006, 6, 490–520. 10.1089/ast.2006.6.490. PubMed DOI
Peeters E.; Spoon H. W. W.; Tielens A. G. G. M. Polycyclic Aromatic Hydrocarbons as a Tracer of Star Formation?. Astrophys. J. 2004, 613, 986–1003. 10.1086/423237. DOI
Smith J. D. T.; Draine B. T.; Dale D. A.; Moustakas J.; Kennicutt R. C. Jr.; Helou G.; Armus L.; Roussel H.; Sheth K.; Bendo G. J.; et al. The Mid-Infrared Spectrum of Star-Forming Galaxies: Global Properties of Polycyclic Aromatic Hydrocarbon Emission. Astrophys. J. 2007, 656, 770–791. 10.1086/510549. DOI
Tielens A. G. G. M. Interstellar Polycyclic Aromatic Hydrocarbon Molecules. Annu. Rev. Astron. Astrophys. 2008, 46, 289–337. 10.1146/annurev.astro.46.060407.145211. DOI
Candian A.; Zhen J.; Tielens A. G. G. M. Aromatic Universe. Phys. Today 2018, 71, 38–43. 10.1063/PT.3.4068. DOI
Pendleton Y. J.; Allamandola L. J. The Organic Refractory Material in the Diffuse Interstellar Medium: Mid-Infrared Spectroscopic Constraints. Astrophysical J. Supp. 2002, 138, 75–98. 10.1086/322999. DOI
Snow T. P.; McCall B. J. Diffuse Atomic and Molecular Clouds. Annu. Rev. Astron. Astrophys. 2006, 44, 367–414. 10.1146/annurev.astro.43.072103.150624. DOI
Öberg K. I. Photochemistry and Astrochemistry: Photochemical Pathways to Interstellar Complex Organic Molecules. Chem. Rev. 2016, 116, 9631–9663. 10.1021/acs.chemrev.5b00694. PubMed DOI
Rapacioli M.; Calvo F.; Joblin C.; Parneix P.; Toublanc D.; Spiegelman F. Formation and Destruction of Polycyclic Aromatic Hydrocarbon Clusters in the Interstellar Medium. A&A 2006, 460, 519–531. 10.1051/0004-6361:20065412. DOI
Lange K.; Dominik C.; Tielens A. G. G. M. Stability of Polycyclic Aromatic Hydrocarbon Clusters in Protoplanetary Disks. A&A 2021, 653, A21.10.1051/0004-6361/202140590. DOI
Gibb E.; Whittet D.; Boogert A.; Tielens A. G. G. M. Interstellar ice: The Infrared Space Observatory Legacy. Astrophysical J. Supp. 2004, 151, 35–73. 10.1086/381182. DOI
Mons M.; Dimicoli I.; Piuzzi F. Gas Phase Hydrogen-Bonded Complexes of Aromatic Molecules: Photoionization and Energetics. Int. Rev. Phys. Chem. 2002, 21, 101–135. 10.1080/01442350110104310. DOI
Prakash M.; Samy K. G.; Subramanian V. Benzene-Water (BZWn (n = 1 – 10)) Clusters. J. Phys. Chem. A 2009, 113, 13845–13852. 10.1021/jp906770x. PubMed DOI
Miyazaki M.; Fujii A.; Ebata T.; Mikami N. Infrared Spectroscopy of Size-Selected Benzene-Water Cluster Cations [C6H6-(H2O)n]+ (n = 1 – 23): Hydrogen Bond Network Evolution and Microscopic Hydrophobicity. J. Phys. Chem. A 2004, 108, 10656–10660. 10.1021/jp045823f. DOI
Ibrahim Y. M.; Meot-Ner M. M. N.; Alshraeh E. H.; El-Shall M. S.; Scheiner S. Stepwise Hydration of Ionized Aromatics. Energies, Structures of the Hydrated Benzene Cation, and the Mechanism of Deprotonation Reactions. J. Am. Chem. Soc. 2005, 127, 7053–7064. 10.1021/ja050477g. PubMed DOI
Chatterjee K.; Dopfer O. Infrared Spectroscopy of Hydrated Polycyclic Aromatic Hydrocarbon Cations: Naphthalene+–Water. Phys. Chem. Chem. Phys. 2017, 19, 32262–32271. 10.1039/C7CP06893J. PubMed DOI
Xu B.; Stein T.; Ablikim U.; Jiang L.; Hendrix J.; Head-Gordon M.; Ahmed M. Probing Solvation and Reactivity in Ionized Polycyclic Aromatic Hydrocarbon–Water Clusters with Photoionization Mass Spectrometry and Electronic Structure Calculations. Faraday Discuss. 2019, 217, 414–433. 10.1039/C8FD00229K. PubMed DOI
Fárník M.; Lengyel J. Mass Spectrometry of Aerosol Particle Analogues in Molecular Beam Experiments. Mass Spec Rev. 2018, 37, 630–651. 10.1002/mas.21554. PubMed DOI
Fárník M.; Fedor J.; Kočišek J.; Lengyel J.; Pluhařová E.; Poterya V.; Pysanenko A. Pickup and Reactions of Molecules on Clusters Relevant for Atmospheric and Interstellar Processes. Phys. Chem. Chem. Phys. 2021, 23, 3195–3213. 10.1039/D0CP06127A. PubMed DOI
Lewerenz M.; Schilling B.; Toennies J. P. Successive Capture and Coagulation of Atoms and Molecules to Small Clusters in Large Liquid Helium Clusters. J. Chem. Phys. 1995, 102, 8191.10.1063/1.469231. DOI
Macler M.; Bae Y. K. Determination of Mean Cluster Size by Water Capture. J. Phys. Chem. A 1997, 101, 145–148. 10.1021/jp962055m. DOI
Fedor J.; Poterya V.; Pysanenko A.; Fárník M. Cluster Cross Sections from Pickup Measurements: Are the Established Methods Consistent?. J. Chem. Phys. 2011, 135, 104305.10.1063/1.3633474. PubMed DOI
Vongehr S.; Shao-Chun T.; Xiang-Kang M. Collision Statistics of Clusters: From Poisson Model to Poisson mixtures. Chinese Phys. B 2010, 19, 023602.10.1088/1674-1056/19/2/023602. DOI
Mestdagh J. M.; Gaveau M. A.; Gée C.; Sublemontier O.; Visticot J. P. Cluster Isolated Chemical Reactions. Int. Rev. Phys. Chem. 1997, 16, 215–247. 10.1080/014423597230280. DOI
Behrens M.; Fröchtenicht R.; Hartmann M.; Siebers J. G.; Buck U.; Hagemeister F. C. Vibrational Spectroscopy of Methanol and Acetonitrile Clusters in Cold Helium Droplets. J. Chem. Phys. 1999, 111, 2436–2443. 10.1063/1.479521. DOI
Gaveau M.-A.; Gloaguen E.; Fournier P.-R.; Mestdagh J.-M. Transition State Spectroscopy of the Photoinduced Ca + CH3F Reaction. 1. A Cluster Isolated Chemical Reaction Study. J. Phys. Chem. A 2005, 109, 9494–9498. 10.1021/jp053128h. PubMed DOI
Stienkemeier F.; Lehmann K. K. Spectroscopy and Dynamics in Helium Nanodroplets. J. Phys. B 2006, 39, R127–R166. 10.1088/0953-4075/39/8/R01. DOI
Pelimanni E.; Hautala L.; Hans A.; Kivimäki A.; Kook M.; Küstner-Wetekam C.; Marder L.; Patanen M.; Huttula M. Core and Valence Level Photoelectron Spectroscopy of Nanosolvated KCl. J. Phys. Chem. A 2021, 125, 4750–4759. 10.1021/acs.jpca.1c01539. PubMed DOI PMC
Jorgensen W. L.; Tirado-Rives J. The OPLS Potential Functions for Proteins. Energy Minimizations for Crystals of Cyclic Peptides and Crambin. J. Am. Chem. Soc. 1988, 110, 1657–1666. 10.1021/ja00214a001. PubMed DOI
Jorgensen W. L.; Severance D. L. Aromatic-Aromatic Interactions: Free Energy Profiles for the Benzene Dimer in Water, Chloroform, and Liquid Benzene. J. Am. Chem. Soc. 1990, 112, 4768–4774. 10.1021/ja00168a022. DOI
Fu C. F.; Tian S. X. A Comparative Study for Molecular Dynamics Simulations of Liquid Benzene. J. Chem. Theory Comput. 2011, 7, 2240–2252. 10.1021/ct2002122. PubMed DOI
Lengyel J.; Kočišek J.; Poterya V.; Pysanenko A.; Svrčková P.; Fárník M.; Zaouris D.; Fedor J. Uptake of Atmospheric Molecules by Ice Nanoparticles: Pickup Cross Sections. J. Chem. Phys. 2012, 137, 034304.10.1063/1.4733987. PubMed DOI
Lengyel J.; Pysanenko A.; Poterya V.; Slavíček P.; Fárník M.; Kočišek J.; Fedor J. Irregular Shapes of Water Clusters Generated in Supersonic Expansions. Phys. Rev. Lett. 2014, 112, 113401.10.1103/PhysRevLett.112.113401. PubMed DOI
Pysanenko A.; Habartová A.; Svrčková P.; Lengyel J.; Poterya V.; Roeselová M.; Fedor J.; Fárník M. Lack of Aggregation of Molecules on Ice Nanoparticles. J. Phys. Chem. A 2015, 119, 8991–8999. 10.1021/acs.jpca.5b05368. PubMed DOI
Pysanenko A.; Pluhařová E.; Vinklárek I. S.; Rakovský J.; Poterya V.; Kočišek J.; Fárník M. Ion and radical chemistry in (H2O2)N clusters. Phys. Chem. Chem. Phys. 2020, 22, 15312–15320. 10.1039/C9CP06817A. PubMed DOI
Pysanenko A.; Vinklárek I. S.; Fárník M.; Poterya V. Generation of (H2O2)N Clusters on Argon and Ice Nanoparticles. Int. J. Mass Spectrom. 2021, 461, 116514.10.1016/j.ijms.2020.116514. DOI
Poštulka J.; Slavíček P.; Pysanenko A.; Poterya V.; Fárník M. Bimolecular Reactions on Sticky and Slippery Clusters: Electron-Induced Reactions of Hydrogen Peroxide. J. Chem. Phys. 2022, 156, 054306.10.1063/5.0079283. PubMed DOI
Rubovič P.; Pysanenko A.; Lengyel J.; Nachtigallová D.; Fárník M. Biomolecule Analogues 2-Hydroxypyridine and 2-Pyridone Base Pairing on Ice Nanoparticles. J. Phys. Chem. A 2016, 120, 4720–4730. 10.1021/acs.jpca.5b11359. PubMed DOI
Pysanenko A.; Kočišek J.; Nachtigallová D.; Poterya V.; Fárník M. Clustering of Uracil Molecules on Ice Nanoparticles. J. Phys. Chem. A 2017, 121, 1069–1077. 10.1021/acs.jpca.6b12594. PubMed DOI
Lengyel J.; Pysanenko A.; Fárníková K.; Pluhařová E.; Fárník M. Oxidation Enhances Aerosol Nucleation: Measurement of Kinetic Pickup Probability of Organic Molecules on Hydrated Acid Clusters. J. Phys. Chem. Lett. 2020, 11, 2101–2105. 10.1021/acs.jpclett.0c00207. PubMed DOI
Han G.; Ding Y.; Qian P.; Zhang C.; Song W. Theoretical Investigation of Gas Phase Ethanol-(Water)n (n = 1–5) Clusters and Comparison with Gas Phase Pure Water Clusters (Water)n (n = 2–6). Int. J. Quantum Chem. 2013, 113, 1511–1521. 10.1002/qua.24352. DOI
Mandal A.; Prakash M.; Kumar R. M.; Parthasarathi R.; Subramanian V. Ab Initio and DFT Studies on Methanol-Water Clusters. J. Phys. Chem. A 2010, 114, 2250–2258. 10.1021/jp909397z. PubMed DOI
Albertí M.; Amat A.; Aguilar A.; Pirani F. Methanol–Methanol and Methanol–Water Systems: the Intermolecular Interactions Controlling the Transition from Small Clusters to the Liquid Phase. Phys. Chem. Chem. Phys. 2017, 19, 16765–16774. 10.1039/C7CP02919E. PubMed DOI
Fileti E. E.; Chaudhuri P.; Canuto S. Relative Strength of Hydrogen Bond Interaction in Alcohol–Water Complexes. Chem. Phys. Lett. 2004, 400, 494–499. 10.1016/j.cplett.2004.10.149. DOI
Cohen R. C.; Saykally R. J. Determination of an Improved Intermolecular Global Potential Energy Surface for Ar–H2O from Vibration–Rotation–Tunneling Spectroscopy. J. Chem. Phys. 1993, 98, 6007–6030. 10.1063/1.464841. DOI
Carvalho F. M.; Kiametis A. S.; de Araújo Oliveira A. L.; Pirani F.; Gargano R. Spectroscopy, Lifetime, and Charge-Displacement of the Methanol-Noble Gas Complexes: An Integrated Experimental-Theoretical Investigation. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2021, 246, 119049.10.1016/j.saa.2020.119049. PubMed DOI
Hobza P. Calculations on Noncovalent Interactions and Databases of Benchmark Interaction Energies. Acc. Chem. Res. 2012, 45, 663–672. 10.1021/ar200255p. PubMed DOI
Matisz G.; Kelterer A. M.; Fabian W. M.; Kunsági-Máté S. Coordination of Methanol Clusters to Benzene: A Computational Study. J. Phys. Chem. A 2011, 115, 10556–10564. 10.1021/jp206248w. PubMed DOI
Hema; Bhatt T.; Pant T.; Dhondiyal C. C.; Rana M.; Chowdhury P.; Joshi G. C.; Arya P.; Tiwari H. Computational Study of the Intermolecular Interactions and Their Effect on the UV-Visible Spectra of the Ternary Liquid Mixture of Benzene, Ethanol and Propylene Glycol. J. Mol. Model. 2020, 26, 268.10.1007/s00894-020-04533-y. PubMed DOI
Kim K. S.; Tarakeshwar P.; Lee J. Y. Molecular Clusters of Π-Systems: Theoretical Studies of Structures, Spectra, and Origin of Interaction Energies. Chem. Rev. 2000, 100, 4145–4186. 10.1021/cr990051i. PubMed DOI
González L.; Mó O.; Yáñez M. Density Functional Theory Study on Ethanol Dimers and Cyclic Ethanol Trimers. J. Chem. Phys. 1999, 111, 3855–3861. 10.1063/1.479689. DOI
Slipchenko L. V.; Gordon M. S. Water-Benzene Interactions: An Effective Fragment Potential and Correlated Quantum Chemistry Study. J. Phys. Chem. A 2009, 113, 2092–2102. 10.1021/jp808845b. PubMed DOI
Müller-Dethlefs K.; Hobza P. Noncovalent Interactions: A Challenge for Experiment and Theory. Chem. Rev. 2000, 100, 143–168. 10.1021/cr9900331. PubMed DOI
Hartmann M.; Miller R. E.; Toennies J. P.; Vilesov A. F. Rotationally Resolved Spectroscopy of SF6 in Liquid Helium Clusters: A Molecular Probe of Cluster Temperature. Phys. Rev. Lett. 1995, 75, 1566.10.1103/PhysRevLett.75.1566. PubMed DOI
Farges J.; de Feraudy M. F.; Raoult B.; Torchet G. Structure and Temperature of Rare Gas Clusters in a Supersonic Expansion. Sur. Sci. 1981, 106, 95–100. 10.1016/0039-6028(81)90186-2. DOI
Farges J.; de Feraudy M. F.; Raoult B.; Torchet G. Noncrystalline Structure of Argon Clusters. II. Multilayer Icosahedral Structure of ArN Clusters 50 ≤ N ≤ 750. J. Chem. Phys. 1986, 84, 3491–3501. 10.1063/1.450235. DOI
Becker D.; Dierking C. W.; Suchan J.; Zurheide F.; Lengyel J.; Fárník M.; Slavíček P.; Buck U.; Zeuch T. Temperature Evolution in IR Action Spectroscopy Experiments with Sodium Doped Water Clusters. Phys. Chem. Chem. Phys. 2021, 23, 7682–7695. 10.1039/D0CP05390B. PubMed DOI
Steinbach C.; Fárník M.; Ettischer I.; Siebers J.; Buck U. Isomeric Transitions in Size-Selected Methanol Hexamers Probed by OH-Stretch Spectroscopy. Phys. Chem. Chem. Phys. 2006, 8, 2752–2758. 10.1039/B604715G. PubMed DOI
Heenan R. K.; Valente E. J.; Bartell L. S. Electron Diffraction Studies of Supersonic Jets. II. Formation of Benzene Clusters. J. Chem. Phys. 1983, 78, 243–248. 10.1063/1.444548. DOI
Stace A.; Bernard D.; Crooks J.; Reid K. Benzene Clusters: Liquid or Solid State?. Mol. Phys. 1987, 60, 671–679. 10.1080/00268978700100451. DOI
Cheng H.-P.; Berry R. S. Surface Melting of Clusters and Implications for Bulk Matter. Phys. Rev. 1992, 45, 7969–7980. 10.1103/PhysRevA.45.7969. PubMed DOI
Pradzynski C. C.; Forck R. M.; Zeuch T.; Slavíček P.; Buck U. A Fully Size-Resolved Perspective on the Crystallization of Water Clusters. Science 2012, 337, 1529–1532. 10.1126/science.1225468. PubMed DOI
Bridging Gaps between Clusters in Molecular-Beam Experiments and Aerosol Nanoclusters
Stabilization of benzene radical anion in ammonia clusters