Uptake of Hydrogen Bonding Molecules by Benzene Nanoparticles

. 2022 May 05 ; 13 (17) : 3781-3788. [epub] 20220421

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35446589

The uptake of molecules on nanometer-size clusters of polyaromatic hydrocarbons (PAHs) is important for the condensation of water on PAH aerosols in the atmosphere and for ice mantle growth on nanoparticles in the interstellar medium. We generate benzene clusters BzN of mean size N̅ ≈ 300 (radius R̅ ≈ 2.2 Å) as a model system for the PAH nanoparticles. Using molecular beams and mass spectrometry detection, we investigate the uptake of water, methanol, and ethanol by these clusters. All picked up molecules are highly mobile on BzN and generate clusters within <3 ms. The relative uptakes for the different investigated molecules can be directly compared and quantified. Water molecules exhibit the lowest relative pickup probability that is ∼30% lower than those for methanol and ethanol, which are approximately the same.

Zobrazit více v PubMed

Seinfeld J. H.; Pandis S. N.. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change; John Wiley & Sons Inc.: Hoboken, NJ, 2016.

Laskin A.; Laskin J.; Nizkorodov S. Chemistry of Atmospheric Brown Carbon. Chem. Rev. 2015, 115, 4335–4382. 10.1021/cr5006167. PubMed DOI

Ravishankara A. R. Heterogeneous and Multiphase Chemistry in the Troposphere. Science 1997, 276, 1058–1065. 10.1126/science.276.5315.1058. DOI

George C.; Ammann M.; D’Anna B.; Donaldson D. J.; Nizkorodov S. A. Heterogeneous Photochemistry in the Atmosphere. Chem. Rev. 2015, 115, 4218–4258. 10.1021/cr500648z. PubMed DOI PMC

Finlayson-Pitts B. J.; Pitts J. N. Tropospheric Air Pollution: Ozone, Airborne Toxics, Polycyclic Aromatic Hydrocarbons, and Particles. Science 1997, 276, 1045–1052. 10.1126/science.276.5315.1045. PubMed DOI

Ehrenfreund P.; Rasmussen S.; Cleaves J. H.; Chen L. Experimentally Tracing the Key Steps in the Origin of Life: The Aromatic World. Astrobiology 2006, 6, 490–520. 10.1089/ast.2006.6.490. PubMed DOI

Peeters E.; Spoon H. W. W.; Tielens A. G. G. M. Polycyclic Aromatic Hydrocarbons as a Tracer of Star Formation?. Astrophys. J. 2004, 613, 986–1003. 10.1086/423237. DOI

Smith J. D. T.; Draine B. T.; Dale D. A.; Moustakas J.; Kennicutt R. C. Jr.; Helou G.; Armus L.; Roussel H.; Sheth K.; Bendo G. J.; et al. The Mid-Infrared Spectrum of Star-Forming Galaxies: Global Properties of Polycyclic Aromatic Hydrocarbon Emission. Astrophys. J. 2007, 656, 770–791. 10.1086/510549. DOI

Tielens A. G. G. M. Interstellar Polycyclic Aromatic Hydrocarbon Molecules. Annu. Rev. Astron. Astrophys. 2008, 46, 289–337. 10.1146/annurev.astro.46.060407.145211. DOI

Candian A.; Zhen J.; Tielens A. G. G. M. Aromatic Universe. Phys. Today 2018, 71, 38–43. 10.1063/PT.3.4068. DOI

Pendleton Y. J.; Allamandola L. J. The Organic Refractory Material in the Diffuse Interstellar Medium: Mid-Infrared Spectroscopic Constraints. Astrophysical J. Supp. 2002, 138, 75–98. 10.1086/322999. DOI

Snow T. P.; McCall B. J. Diffuse Atomic and Molecular Clouds. Annu. Rev. Astron. Astrophys. 2006, 44, 367–414. 10.1146/annurev.astro.43.072103.150624. DOI

Öberg K. I. Photochemistry and Astrochemistry: Photochemical Pathways to Interstellar Complex Organic Molecules. Chem. Rev. 2016, 116, 9631–9663. 10.1021/acs.chemrev.5b00694. PubMed DOI

Rapacioli M.; Calvo F.; Joblin C.; Parneix P.; Toublanc D.; Spiegelman F. Formation and Destruction of Polycyclic Aromatic Hydrocarbon Clusters in the Interstellar Medium. A&A 2006, 460, 519–531. 10.1051/0004-6361:20065412. DOI

Lange K.; Dominik C.; Tielens A. G. G. M. Stability of Polycyclic Aromatic Hydrocarbon Clusters in Protoplanetary Disks. A&A 2021, 653, A21.10.1051/0004-6361/202140590. DOI

Gibb E.; Whittet D.; Boogert A.; Tielens A. G. G. M. Interstellar ice: The Infrared Space Observatory Legacy. Astrophysical J. Supp. 2004, 151, 35–73. 10.1086/381182. DOI

Mons M.; Dimicoli I.; Piuzzi F. Gas Phase Hydrogen-Bonded Complexes of Aromatic Molecules: Photoionization and Energetics. Int. Rev. Phys. Chem. 2002, 21, 101–135. 10.1080/01442350110104310. DOI

Prakash M.; Samy K. G.; Subramanian V. Benzene-Water (BZWn (n = 1 – 10)) Clusters. J. Phys. Chem. A 2009, 113, 13845–13852. 10.1021/jp906770x. PubMed DOI

Miyazaki M.; Fujii A.; Ebata T.; Mikami N. Infrared Spectroscopy of Size-Selected Benzene-Water Cluster Cations [C6H6-(H2O)n]+ (n = 1 – 23): Hydrogen Bond Network Evolution and Microscopic Hydrophobicity. J. Phys. Chem. A 2004, 108, 10656–10660. 10.1021/jp045823f. DOI

Ibrahim Y. M.; Meot-Ner M. M. N.; Alshraeh E. H.; El-Shall M. S.; Scheiner S. Stepwise Hydration of Ionized Aromatics. Energies, Structures of the Hydrated Benzene Cation, and the Mechanism of Deprotonation Reactions. J. Am. Chem. Soc. 2005, 127, 7053–7064. 10.1021/ja050477g. PubMed DOI

Chatterjee K.; Dopfer O. Infrared Spectroscopy of Hydrated Polycyclic Aromatic Hydrocarbon Cations: Naphthalene+–Water. Phys. Chem. Chem. Phys. 2017, 19, 32262–32271. 10.1039/C7CP06893J. PubMed DOI

Xu B.; Stein T.; Ablikim U.; Jiang L.; Hendrix J.; Head-Gordon M.; Ahmed M. Probing Solvation and Reactivity in Ionized Polycyclic Aromatic Hydrocarbon–Water Clusters with Photoionization Mass Spectrometry and Electronic Structure Calculations. Faraday Discuss. 2019, 217, 414–433. 10.1039/C8FD00229K. PubMed DOI

Fárník M.; Lengyel J. Mass Spectrometry of Aerosol Particle Analogues in Molecular Beam Experiments. Mass Spec Rev. 2018, 37, 630–651. 10.1002/mas.21554. PubMed DOI

Fárník M.; Fedor J.; Kočišek J.; Lengyel J.; Pluhařová E.; Poterya V.; Pysanenko A. Pickup and Reactions of Molecules on Clusters Relevant for Atmospheric and Interstellar Processes. Phys. Chem. Chem. Phys. 2021, 23, 3195–3213. 10.1039/D0CP06127A. PubMed DOI

Lewerenz M.; Schilling B.; Toennies J. P. Successive Capture and Coagulation of Atoms and Molecules to Small Clusters in Large Liquid Helium Clusters. J. Chem. Phys. 1995, 102, 8191.10.1063/1.469231. DOI

Macler M.; Bae Y. K. Determination of Mean Cluster Size by Water Capture. J. Phys. Chem. A 1997, 101, 145–148. 10.1021/jp962055m. DOI

Fedor J.; Poterya V.; Pysanenko A.; Fárník M. Cluster Cross Sections from Pickup Measurements: Are the Established Methods Consistent?. J. Chem. Phys. 2011, 135, 104305.10.1063/1.3633474. PubMed DOI

Vongehr S.; Shao-Chun T.; Xiang-Kang M. Collision Statistics of Clusters: From Poisson Model to Poisson mixtures. Chinese Phys. B 2010, 19, 023602.10.1088/1674-1056/19/2/023602. DOI

Mestdagh J. M.; Gaveau M. A.; Gée C.; Sublemontier O.; Visticot J. P. Cluster Isolated Chemical Reactions. Int. Rev. Phys. Chem. 1997, 16, 215–247. 10.1080/014423597230280. DOI

Behrens M.; Fröchtenicht R.; Hartmann M.; Siebers J. G.; Buck U.; Hagemeister F. C. Vibrational Spectroscopy of Methanol and Acetonitrile Clusters in Cold Helium Droplets. J. Chem. Phys. 1999, 111, 2436–2443. 10.1063/1.479521. DOI

Gaveau M.-A.; Gloaguen E.; Fournier P.-R.; Mestdagh J.-M. Transition State Spectroscopy of the Photoinduced Ca + CH3F Reaction. 1. A Cluster Isolated Chemical Reaction Study. J. Phys. Chem. A 2005, 109, 9494–9498. 10.1021/jp053128h. PubMed DOI

Stienkemeier F.; Lehmann K. K. Spectroscopy and Dynamics in Helium Nanodroplets. J. Phys. B 2006, 39, R127–R166. 10.1088/0953-4075/39/8/R01. DOI

Pelimanni E.; Hautala L.; Hans A.; Kivimäki A.; Kook M.; Küstner-Wetekam C.; Marder L.; Patanen M.; Huttula M. Core and Valence Level Photoelectron Spectroscopy of Nanosolvated KCl. J. Phys. Chem. A 2021, 125, 4750–4759. 10.1021/acs.jpca.1c01539. PubMed DOI PMC

Jorgensen W. L.; Tirado-Rives J. The OPLS Potential Functions for Proteins. Energy Minimizations for Crystals of Cyclic Peptides and Crambin. J. Am. Chem. Soc. 1988, 110, 1657–1666. 10.1021/ja00214a001. PubMed DOI

Jorgensen W. L.; Severance D. L. Aromatic-Aromatic Interactions: Free Energy Profiles for the Benzene Dimer in Water, Chloroform, and Liquid Benzene. J. Am. Chem. Soc. 1990, 112, 4768–4774. 10.1021/ja00168a022. DOI

Fu C. F.; Tian S. X. A Comparative Study for Molecular Dynamics Simulations of Liquid Benzene. J. Chem. Theory Comput. 2011, 7, 2240–2252. 10.1021/ct2002122. PubMed DOI

Lengyel J.; Kočišek J.; Poterya V.; Pysanenko A.; Svrčková P.; Fárník M.; Zaouris D.; Fedor J. Uptake of Atmospheric Molecules by Ice Nanoparticles: Pickup Cross Sections. J. Chem. Phys. 2012, 137, 034304.10.1063/1.4733987. PubMed DOI

Lengyel J.; Pysanenko A.; Poterya V.; Slavíček P.; Fárník M.; Kočišek J.; Fedor J. Irregular Shapes of Water Clusters Generated in Supersonic Expansions. Phys. Rev. Lett. 2014, 112, 113401.10.1103/PhysRevLett.112.113401. PubMed DOI

Pysanenko A.; Habartová A.; Svrčková P.; Lengyel J.; Poterya V.; Roeselová M.; Fedor J.; Fárník M. Lack of Aggregation of Molecules on Ice Nanoparticles. J. Phys. Chem. A 2015, 119, 8991–8999. 10.1021/acs.jpca.5b05368. PubMed DOI

Pysanenko A.; Pluhařová E.; Vinklárek I. S.; Rakovský J.; Poterya V.; Kočišek J.; Fárník M. Ion and radical chemistry in (H2O2)N clusters. Phys. Chem. Chem. Phys. 2020, 22, 15312–15320. 10.1039/C9CP06817A. PubMed DOI

Pysanenko A.; Vinklárek I. S.; Fárník M.; Poterya V. Generation of (H2O2)N Clusters on Argon and Ice Nanoparticles. Int. J. Mass Spectrom. 2021, 461, 116514.10.1016/j.ijms.2020.116514. DOI

Poštulka J.; Slavíček P.; Pysanenko A.; Poterya V.; Fárník M. Bimolecular Reactions on Sticky and Slippery Clusters: Electron-Induced Reactions of Hydrogen Peroxide. J. Chem. Phys. 2022, 156, 054306.10.1063/5.0079283. PubMed DOI

Rubovič P.; Pysanenko A.; Lengyel J.; Nachtigallová D.; Fárník M. Biomolecule Analogues 2-Hydroxypyridine and 2-Pyridone Base Pairing on Ice Nanoparticles. J. Phys. Chem. A 2016, 120, 4720–4730. 10.1021/acs.jpca.5b11359. PubMed DOI

Pysanenko A.; Kočišek J.; Nachtigallová D.; Poterya V.; Fárník M. Clustering of Uracil Molecules on Ice Nanoparticles. J. Phys. Chem. A 2017, 121, 1069–1077. 10.1021/acs.jpca.6b12594. PubMed DOI

Lengyel J.; Pysanenko A.; Fárníková K.; Pluhařová E.; Fárník M. Oxidation Enhances Aerosol Nucleation: Measurement of Kinetic Pickup Probability of Organic Molecules on Hydrated Acid Clusters. J. Phys. Chem. Lett. 2020, 11, 2101–2105. 10.1021/acs.jpclett.0c00207. PubMed DOI

Han G.; Ding Y.; Qian P.; Zhang C.; Song W. Theoretical Investigation of Gas Phase Ethanol-(Water)n (n = 1–5) Clusters and Comparison with Gas Phase Pure Water Clusters (Water)n (n = 2–6). Int. J. Quantum Chem. 2013, 113, 1511–1521. 10.1002/qua.24352. DOI

Mandal A.; Prakash M.; Kumar R. M.; Parthasarathi R.; Subramanian V. Ab Initio and DFT Studies on Methanol-Water Clusters. J. Phys. Chem. A 2010, 114, 2250–2258. 10.1021/jp909397z. PubMed DOI

Albertí M.; Amat A.; Aguilar A.; Pirani F. Methanol–Methanol and Methanol–Water Systems: the Intermolecular Interactions Controlling the Transition from Small Clusters to the Liquid Phase. Phys. Chem. Chem. Phys. 2017, 19, 16765–16774. 10.1039/C7CP02919E. PubMed DOI

Fileti E. E.; Chaudhuri P.; Canuto S. Relative Strength of Hydrogen Bond Interaction in Alcohol–Water Complexes. Chem. Phys. Lett. 2004, 400, 494–499. 10.1016/j.cplett.2004.10.149. DOI

Cohen R. C.; Saykally R. J. Determination of an Improved Intermolecular Global Potential Energy Surface for Ar–H2O from Vibration–Rotation–Tunneling Spectroscopy. J. Chem. Phys. 1993, 98, 6007–6030. 10.1063/1.464841. DOI

Carvalho F. M.; Kiametis A. S.; de Araújo Oliveira A. L.; Pirani F.; Gargano R. Spectroscopy, Lifetime, and Charge-Displacement of the Methanol-Noble Gas Complexes: An Integrated Experimental-Theoretical Investigation. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2021, 246, 119049.10.1016/j.saa.2020.119049. PubMed DOI

Hobza P. Calculations on Noncovalent Interactions and Databases of Benchmark Interaction Energies. Acc. Chem. Res. 2012, 45, 663–672. 10.1021/ar200255p. PubMed DOI

Matisz G.; Kelterer A. M.; Fabian W. M.; Kunsági-Máté S. Coordination of Methanol Clusters to Benzene: A Computational Study. J. Phys. Chem. A 2011, 115, 10556–10564. 10.1021/jp206248w. PubMed DOI

Hema; Bhatt T.; Pant T.; Dhondiyal C. C.; Rana M.; Chowdhury P.; Joshi G. C.; Arya P.; Tiwari H. Computational Study of the Intermolecular Interactions and Their Effect on the UV-Visible Spectra of the Ternary Liquid Mixture of Benzene, Ethanol and Propylene Glycol. J. Mol. Model. 2020, 26, 268.10.1007/s00894-020-04533-y. PubMed DOI

Kim K. S.; Tarakeshwar P.; Lee J. Y. Molecular Clusters of Π-Systems: Theoretical Studies of Structures, Spectra, and Origin of Interaction Energies. Chem. Rev. 2000, 100, 4145–4186. 10.1021/cr990051i. PubMed DOI

González L.; Mó O.; Yáñez M. Density Functional Theory Study on Ethanol Dimers and Cyclic Ethanol Trimers. J. Chem. Phys. 1999, 111, 3855–3861. 10.1063/1.479689. DOI

Slipchenko L. V.; Gordon M. S. Water-Benzene Interactions: An Effective Fragment Potential and Correlated Quantum Chemistry Study. J. Phys. Chem. A 2009, 113, 2092–2102. 10.1021/jp808845b. PubMed DOI

Müller-Dethlefs K.; Hobza P. Noncovalent Interactions: A Challenge for Experiment and Theory. Chem. Rev. 2000, 100, 143–168. 10.1021/cr9900331. PubMed DOI

Hartmann M.; Miller R. E.; Toennies J. P.; Vilesov A. F. Rotationally Resolved Spectroscopy of SF6 in Liquid Helium Clusters: A Molecular Probe of Cluster Temperature. Phys. Rev. Lett. 1995, 75, 1566.10.1103/PhysRevLett.75.1566. PubMed DOI

Farges J.; de Feraudy M. F.; Raoult B.; Torchet G. Structure and Temperature of Rare Gas Clusters in a Supersonic Expansion. Sur. Sci. 1981, 106, 95–100. 10.1016/0039-6028(81)90186-2. DOI

Farges J.; de Feraudy M. F.; Raoult B.; Torchet G. Noncrystalline Structure of Argon Clusters. II. Multilayer Icosahedral Structure of ArN Clusters 50 ≤ N ≤ 750. J. Chem. Phys. 1986, 84, 3491–3501. 10.1063/1.450235. DOI

Becker D.; Dierking C. W.; Suchan J.; Zurheide F.; Lengyel J.; Fárník M.; Slavíček P.; Buck U.; Zeuch T. Temperature Evolution in IR Action Spectroscopy Experiments with Sodium Doped Water Clusters. Phys. Chem. Chem. Phys. 2021, 23, 7682–7695. 10.1039/D0CP05390B. PubMed DOI

Steinbach C.; Fárník M.; Ettischer I.; Siebers J.; Buck U. Isomeric Transitions in Size-Selected Methanol Hexamers Probed by OH-Stretch Spectroscopy. Phys. Chem. Chem. Phys. 2006, 8, 2752–2758. 10.1039/B604715G. PubMed DOI

Heenan R. K.; Valente E. J.; Bartell L. S. Electron Diffraction Studies of Supersonic Jets. II. Formation of Benzene Clusters. J. Chem. Phys. 1983, 78, 243–248. 10.1063/1.444548. DOI

Stace A.; Bernard D.; Crooks J.; Reid K. Benzene Clusters: Liquid or Solid State?. Mol. Phys. 1987, 60, 671–679. 10.1080/00268978700100451. DOI

Cheng H.-P.; Berry R. S. Surface Melting of Clusters and Implications for Bulk Matter. Phys. Rev. 1992, 45, 7969–7980. 10.1103/PhysRevA.45.7969. PubMed DOI

Pradzynski C. C.; Forck R. M.; Zeuch T.; Slavíček P.; Buck U. A Fully Size-Resolved Perspective on the Crystallization of Water Clusters. Science 2012, 337, 1529–1532. 10.1126/science.1225468. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Bridging Gaps between Clusters in Molecular-Beam Experiments and Aerosol Nanoclusters

. 2023 Jan 12 ; 14 (1) : 287-294. [epub] 20230104

Stabilization of benzene radical anion in ammonia clusters

. 2022 Nov 18 ; 24 (44) : 27128-27135. [epub] 20221118

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...