Bridging Gaps between Clusters in Molecular-Beam Experiments and Aerosol Nanoclusters

. 2023 Jan 12 ; 14 (1) : 287-294. [epub] 20230104

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid36598955

Clusters in molecular beam experiments can mimic aerosol nanoclusters and provide molecular-level details for various processes relevant to atmospheric aerosol research. Aerosol nanoclusters, particles of sizes below 10 nm, are difficult to investigate in ambient atmosphere and thus represent a gap in our understanding of the new particle formation process. Recent field measurements and laboratory experiments are closing this gap; however, experiments with clusters in molecular beams are rarely involved. Yet, they can offer an unprecedented detailed insight into the processes including particles in this size range. In this Perspective, we discuss several up-to-date molecular beam experiments with clusters and demonstrate that the investigated clusters approach aerosol nanoclusters in terms of their complexity and chemistry. We examine remaining gaps between atmospheric aerosols and clusters in molecular beams and speculate about future experiments bridging these gaps.

Zobrazit více v PubMed

Pöschl U. Atmospheric Aerosols: Composition, Transformation, Climate and Health Effects. Angew. Chem. Int. Ed. 2005, 44, 7520–7540. 10.1002/anie.200501122. PubMed DOI

Mahowald N.; Ward D. S.; Kloster S.; Flanner M. G.; Heald C. L.; Heavens N. G.; Hess P. G.; Lamarque J.-F.; Chuang P. Y. Aerosol Impacts on Climate and Biogeochemistry. Annu. Rev. Env. Resour. 2011, 36, 45–74. 10.1146/annurev-environ-042009-094507. DOI

Kolb C. E.; Worsnop D. R. Chemistry and Composition of Atmospheric Aerosol Particles. Annu. Rev. Phys. Chem. 2012, 63, 471–491. 10.1146/annurev-physchem-032511-143706. PubMed DOI

George C.; Ammann M.; D’Anna B.; Donaldson D. J.; Nizkorodov S. A. Heterogeneous Photochemistry in the Atmosphere. Chem. Rev. 2015, 115, 4218–4258. 10.1021/cr500648z. PubMed DOI PMC

McNeill V. F. Atmospheric Aerosols: Clouds, Chemistry, and Climate. Annu. Rev. Chem. Biomol. Eng. 2017, 8, 427–444. 10.1146/annurev-chembioeng-060816-101538. PubMed DOI

Finlayson-Pitts B. J.; Pitts J. N.. Chemistry of the Upper and Lower Atmosphere; Academic Press: San Diego, 2000.

Seinfeld J. H.; Pandis S. N.. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change; John Wiley & Sons Inc.: Hoboken, NJ, 2016.

Kerminen V.-M.; Chen X.; Vakkari V.; Petäjä T.; Kulmala M.; Bianchi F. Atmospheric New Particle Formation and Growth: Review of Field Observations. Environ. Res. Lett. 2018, 13, 103003.10.1088/1748-9326/aadf3c. DOI

Lee S. H.; Gordon H.; Yu H.; Lehtipalo K.; Haley R.; Li Y.; Zhang R. New Particle Formation in the Atmosphere: From Molecular Clusters to Global Climate. J. Geophys. Res. Atmos. 2019, 124, 7098–7146. 10.1029/2018JD029356. DOI

Smith J. N.; Draper D. C.; Chee S.; Dam M.; Glicker H.; Myers D.; Thomas A. E.; Lawler M. J.; Myllys N. Atmospheric Clusters to Nanoparticles: Recent Progress and Challenges in Closing the Gap in Chemical Composition. J.Aerosol Sci. 2021, 153, 105733.10.1016/j.jaerosci.2020.105733. DOI

Kulmala M.; Kontkanen J.; Junninen H.; Lehtipalo K.; Manninen H. E.; Nieminen T.; Petäjä T.; Sipilä M.; Schobesberger S.; Rantala P.; et al. Direct Observations of Atmospheric Aerosol Nucleation. Science 2013, 339, 943–946. 10.1126/science.1227385. PubMed DOI

Zhang R.; Khalizov A.; Wang L.; Hu M.; Xu W. Nucleation and Growth of Nanoparticles in the Atmosphere. Chem. Rev. 2012, 112, 1957–2011. 10.1021/cr2001756. PubMed DOI

Dunne E. M.; Gordon H.; Kürten A.; Almeida J.; Duplissy J.; Williamson C.; Ortega I. K.; Pringle K. J.; Adamov A.; Baltensperger U.; et al. Global Atmospheric Particle Formation from CERN CLOUD Measurements. Science 2016, 354, 1119–1124. 10.1126/science.aaf2649. PubMed DOI

Li C.; Signorell R. Understanding Vapor Nucleation on the Molecular Level: A Review. J. Aerosol Sci. 2021, 153, 105676.10.1016/j.jaerosci.2020.105676. DOI

Murphy D. M. The Design of Single Particle Laser Mass Spectrometers. Mass Spectrom. Rev. 2007, 26, 150–165. 10.1002/mas.20113. PubMed DOI

Canagaratna M.; Jayne J.; Jimenez J.; Allan J.; Alfarra M.; Zhang Q.; Onasch T.; Drewnick F.; Coe H.; Middlebrook A.; et al. Chemical and Microphysical Characterization of Ambient Aerosols with the Aerodyne Aerosol Mass Spectrometer. Mass Spectrom. Rev. 2007, 26, 185–222. 10.1002/mas.20115. PubMed DOI

Junninen H.; Ehn M.; Petäjä T.; Luosujärvi L.; Kotiaho T.; Kostiainen R.; Rohner U.; Gonin M.; Fuhrer K.; Kulmala M.; et al. A High-Resolution Mass Spectrometer to Measure Atmospheric Ion Composition. Atmos. Meas. Technol. 2010, 3, 1039–1053. 10.5194/amt-3-1039-2010. DOI

Bertram T. H.; Kimmel J. R.; Crisp T. A.; Ryder O. S.; Yatavelli R. L. N.; Thornton J. A.; Cubison M. J.; Gonin M.; Worsnop D. R. A Field-Deployable, Chemical Ionization Time-of-Flight Mass Spectrometer. Atmos. Meas. Technol. 2011, 4, 1471–1479. 10.5194/amt-4-1471-2011. DOI

Jokinen T.; Sipilä M.; Junninen H.; Ehn M.; Lönn G.; Hakala J.; Petäjä T.; Mauldin R. L.; Kulmala M.; Worsnop D. R. Atmospheric Sulphuric Acid and Neutral Cluster Measurements Using CI-APi-TOF. Atmos. Chem. Phys. 2012, 12, 4117–4125. 10.5194/acp-12-4117-2012. DOI

Johnston M. V.; Kerecman D. E. Molecular Characterization of Atmospheric Organic Aerosol by Mass Spectrometry. Annu. Rev. Anal. Chem. 2019, 12, 247–274. 10.1146/annurev-anchem-061516-045135. PubMed DOI

Kirkby J.; Curtius J.; Almeida J.; Dunne E.; Duplissy J.; Ehrhart S.; Franchin A.; Gagne S.; Ickes L.; Kürten A.; et al. Role of Sulphuric Acid, Ammonia and Galactic Cosmic Rays in Atmospheric Aerosol Nucleation. Nature 2011, 476, 429–433. 10.1038/nature10343. PubMed DOI

Almeida J.; Schobesberger S.; Kürten A.; Ortega I. K.; Kupiainen-Määttä O.; Praplan A. P.; Adamov A.; Amorim A.; Bianchi F.; Breitenlechner M.; et al. Molecular Understanding of Sulphuric Acid-Amine Particle Nucleation in the Atmosphere. Nature 2013, 502, 359–363. 10.1038/nature12663. PubMed DOI PMC

Kürten A.; Jokinen T.; Simon M.; Sipilä M.; Sarnela N.; Junninen H.; Adamov A.; Almeida J.; Amorim A.; Bianchi F.; et al. Neutral Molecular Cluster Formation of Sulfuric Acid–Dimethylamine Observed in Real Time under Atmospheric Conditions. Proc. Natl. Acad. Sci. U.S.A. 2014, 111, 15019–15024. 10.1073/pnas.1404853111. PubMed DOI PMC

Kay B. D.; Hermann V.; Castleman A. W. Studies of Gas-Phase Clusters: the Solvation of HNO3 in Microscopic Aqueous Clusters. Chem. Phys. Lett. 1981, 80, 469–474. 10.1016/0009-2614(81)85059-2. DOI

Zhang X.; Mereand E. L.; Castleman A. W. Reactions of Water Cluster Ions with Nitric Acid. J. Phys. Chem. 1994, 98, 3554–3557. 10.1021/j100064a044. DOI

MacTaylor R. S.; Castleman A. W. Jr Cluster Ion Reactions: Insights into Processes of Atmospheric Significance. J. Atmos. Chem. 2000, 36, 23–63. 10.1023/A:1006376914390. DOI

Ahmed M.; Apps C. J.; Buesnel R.; Hughes C.; Hillier H.; Watt N. E.; Whitehead J. C. Adsorption of NxOy-Based Molecules on Large Water Clusters: An Experimental and Theoretical Study. J. Phys. Chem. A 1997, 101, 1254–1259. 10.1021/jp962213+. DOI

Yoder B. L.; Litman J. H.; Forysinski P. W.; Corbett J. L.; Signorell R. Sizer for Neutral Weakly Bound Ultrafine Aerosol Particles Based on Sodim Doping and Mass Spectrometric Detection. J. Phys. Chem. Lett. 2011, 2, 2623–2628. 10.1021/jz201086v. DOI

Fárník M.; Lengyel J. Mass Spectrometry of Aerosol Particle Analogues in Molecular Beam Experiments. Mass Spec Rev. 2018, 37, 630–651. 10.1002/mas.21554. PubMed DOI

Fárník M.; Fedor J.; Kočišek J.; Lengyel J.; Pluhařová E.; Poterya V.; Pysanenko A. Pickup and Reactions of Molecules on Clusters Relevant for Atmospheric and Interstellar Processes. Phys. Chem. Chem. Phys. 2021, 23, 3195–3213. 10.1039/D0CP06127A. PubMed DOI

Vehkamäki H.; Riipinen I. Thermodynamics and Kinetics of Atmospheric Aerosol Particle Formation and Growth. Chem. Soc. Rev. 2012, 41, 5160–5173. 10.1039/c2cs00002d. PubMed DOI

Elm J.; Kubečka J.; Besel V.; Jääskeläinen M. J.; Halonen R.; Kurtén T.; Vehkamäki H. Modeling the Formation and Growth of Atmospheric Molecular Clusters: A Review. J. Aerosol Sci. 2020, 149, 105621.10.1016/j.jaerosci.2020.105621. DOI

Li C.; Lippe M.; Krohn J.; Signorell R. Extraction of Monomer-Cluster Association Rate Constants from Water Nucleation Data Measured at Extreme Supersaturations. J. Chem. Phys. 2019, 151, 094305.10.1063/1.5118350. PubMed DOI

Wyslouzil B. E.; Wölk J. Overview: Homogeneous Nucleation from the Vapor Phase–The Experimental Science. J. Chem. Phys. 2016, 145, 211702.10.1063/1.4962283. PubMed DOI

Pauly H.Atom, Molecule and Cluster Beams; Springer: Berlin, 2000.

Lengyel J.; Pysanenko A.; Kočišek J.; Poterya V.; Pradzynski C.; Zeuch T.; Slavíček P.; Fárník M. Nucleation of Mixed Nitric Acid-Water Ice Nanoparticles in Molecular Beams that Starts with a HNO3 Molecule. J. Phys. Chem. Lett. 2012, 3, 3096–3109. 10.1021/jz3013886. PubMed DOI

Pysanenko A.; Lengyel J.; Fárník M. Uptake of Methanol on Mixed HNO3/H2O Clusters: An Absolute Pickup Cross Section. J. Chem. Phys. 2018, 148, 154301.10.1063/1.5021471. PubMed DOI

Lengyel J.; Pysanenko A.; Fárníková K.; Pluhařová E.; Fárník M. Oxidation Enhances Aerosol Nucleation: Measurement of Kinetic Pickup Probability of Organic Molecules on Hydrated Acid Clusters. J. Phys. Chem. Lett. 2020, 11, 2101–2105. 10.1021/acs.jpclett.0c00207. PubMed DOI

Pysanenko A.; Habartová A.; Svrčková P.; Lengyel J.; Poterya V.; Roeselová M.; Fedor J.; Fárník M. Lack of Aggregation of Molecules on Ice Nanoparticles. J. Phys. Chem. A 2015, 119, 8991–8999. 10.1021/acs.jpca.5b05368. PubMed DOI

Poštulka J.; Slavíček P.; Pysanenko A.; Poterya V.; Fárník M. Bimolecular Reactions on Sticky and Slippery Clusters: Electron-Induced Reactions of Hydrogen Peroxide. J. Chem. Phys. 2022, 156, 054306.10.1063/5.0079283. PubMed DOI

Ahmed M.; Apps C. J.; Hughes C.; Whitehead J. C. The Adsorption of Methanol on Large Water Clusters. Chem. Phys. Lett. 1995, 240, 216–223. 10.1016/0009-2614(95)00517-8. DOI

Ahmed M.; Apps C. J.; Hughes C.; Watt N. E.; Whitehead J. C. Adsorption of Organic Molecules on Large Water Clusters. J. Phys. Chem. A 1997, 101, 1250–1253. 10.1021/jp9622142. DOI

Cuvellier J.; Meynadier P.; de Pujo P.; Sublemontier O.; Visticot J.-P.; Berlande J.; Lallement A.; Mestdagh J.-M. A Simple Method to Determine the Mean Cluster Size in a Molecular Beam. Z. Phys. D 1991, 21, 265.10.1007/BF01426384. DOI

Macler M.; Bae Y. K. Determination of Mean Cluster Size by Water Capture. J. Phys. Chem. A 1997, 101, 145–148. 10.1021/jp962055m. DOI

Fedor J.; Poterya V.; Pysanenko A.; Fárník M. Cluster Cross Sections from Pickup Measurements: Are the Established Methods Consistent?. J. Chem. Phys. 2011, 135, 104305.10.1063/1.3633474. PubMed DOI

Vinklárek I. S.; Pysanenko A.; Pluhařová E.; Fárník M. Uptake of Hydrogen Bonding Molecules by Benzene Nanoparticles. J. Phys. Chem. Lett. 2022, 13, 3781–3788. 10.1021/acs.jpclett.2c00835. PubMed DOI PMC

Lengyel J.; Kočišek J.; Poterya V.; Pysanenko A.; Svrčková P.; Fárník M.; Zaouris D.; Fedor J. Uptake of Atmospheric Molecules by Ice Nanoparticles: Pickup Cross Sections. J. Chem. Phys. 2012, 137, 034304.10.1063/1.4733987. PubMed DOI

Lengyel J.; Pysanenko A.; Poterya V.; Slavíček P.; Fárník M.; Kočišek J.; Fedor J. Irregular Shapes of Water Clusters Generated in Supersonic Expansions. Phys. Rev. Lett. 2014, 112, 113401.10.1103/PhysRevLett.112.113401. PubMed DOI

Wang M.; Kong W.; Marten R.; He X.-C.; Chen D.; Pfeifer J.; Heitto A.; Kontkanen J.; Dada L.; Kürten A.; et al. Rapid Growth of New Atmospheric Particles by Nitric Acid and Ammonia Condensation. Nature 2020, 581, 184–189. 10.1038/s41586-020-2270-4. PubMed DOI PMC

Bready C. J.; Fowler V. R.; Juechter L. A.; Kurfman L. A.; Mazaleski G. E.; Shields G. C. The Driving Effects of Common Atmospheric Mlecules for Formation of Prenucleation Clusters: The Case of Sulfuric Acid, Formic Acid, Nitric Acid, Ammonia, and Dimethyl Amine. Environ. Sci.: Atmos. 2022, 2, 1469–1486. 10.1039/D2EA00087C. PubMed DOI PMC

Lengyel J.; Ončák M.; Fedor J.; Kočišek J.; Pysanenko A.; Beyer M. K.; Fárník M. Electron-Triggered Chemistry in HNO3/H2O Complexes. Phys. Chem. Chem. Phys. 2017, 19, 11753–11758. 10.1039/C7CP01205E. PubMed DOI PMC

Lengyel J.; Fedor J.; Fárník M. Dissociative electron attachment to HNO3 and its hydrates: Energy-Selective Electron-Induced Chemistry. Phys. Chem. Chem. Phys. 2019, 21, 8691–8697. 10.1039/C9CP00990F. PubMed DOI

Zhang R. Y.; Suh I.; Zhao J.; Zhang D.; Fortner E. C.; Tie X. X.; Molina L. T.; Molina M. J. Atmospheric New Particle Formation Enhanced by Organic Acids. Science 2004, 304, 1487–1490. 10.1126/science.1095139. PubMed DOI

Riipinen I.; Yli-Juuti T.; Pierce J. R.; Petäjä T.; Worsnop D. R.; Kulmala M.; Donahue N. M. The Contribution of Organics to Atmospheric Nanoparticle Growth. Nat. Geosci. 2012, 5, 453–458. 10.1038/ngeo1499. DOI

Donahue N. M.; Ortega I. K.; Chuang W.; Riipinen I.; Riccobono F.; Schobesberger S.; Dommen J.; Baltensperger U.; Kulmala M.; Worsnop D. R.; et al. How do Organic Vapors Contribute to New-Particle Formation?. Faraday Discuss. 2013, 165, 91–104. 10.1039/c3fd00046j. PubMed DOI

Bianchi F.; Kurtén T.; Riva M.; Mohr C.; Rissanen M. P.; Roldin P.; Berndt T.; Crounse J. D.; Wennberg P. O.; Mentel T. F.; et al. Highly Oxygenated Organic Molecules (HOM) from Gas-Phase Autoxidation Involving Peroxy Radicals: A Key Contributor to Atmospheric Aerosol. Chem. Rev. 2019, 119, 3472–3509. 10.1021/acs.chemrev.8b00395. PubMed DOI PMC

Litman J. H.; Yoder B. L.; Schläppi B.; Signorell R. Sodium-Doping as a Reference to Study the Influence of Intracluster Chemistry on the Fragmentation of Weakly-Bound Clusters Upon Vacuum Ultraviolet Photionization. Phys. Chem. Chem. Phys. 2013, 15, 940–949. 10.1039/C2CP43098C. PubMed DOI

Lengyel J.; Pysanenko A.; Poterya V.; Kočišek J.; Fárník M. Extensive Water Cluster Fragmentation After Low Energy Electron Ionization. Chem. Phys. Lett. 2014, 612, 256–261. 10.1016/j.cplett.2014.08.038. DOI

Šmídová D.; Lengyel J.; Pysanenko A.; Med J.; Slavíček P.; Fárník M. Reactivity of Hydrated Electron in Finite Size System: Sodium Pickup on Mixed N2O-Water Nanoparticles. J. Phys. Chem. Lett. 2015, 6, 2865–2869. 10.1021/acs.jpclett.5b01269. PubMed DOI

Lengyel J.; Pysanenko A.; Rubovič P.; Fárník M. Sodium Doping and Reactivity in Pure and Mixed Ice Nanoparticles. Eur. Phys. J. D 2015, 69, 269.10.1140/epjd/e2015-60532-6. DOI

Šmídová D.; Lengyel J.; Kočišek J.; Pysanenko A.; Fárník M. Analysis of Mixed Nitric Oxide-Water Clusters by Complementary Ionization Methods. Int. J. Mass Spectrom. 2017, 421, 144–149. 10.1016/j.ijms.2017.06.012. DOI

Lengyel J.; Pysanenko A.; Fárník M. Electron-Induced Chemistry in Microhydrated Sulfuric Acid Clusters. Atmos. Chem. Phys. 2017, 17, 14171–14180. 10.5194/acp-17-14171-2017. DOI

Berresheim H.; Elste T.; Tremmel H. G.; Allen A. G.; Hansson H. C.; Rosman K.; Maso M. D.; Mäkelä J. M.; Kulmala M.; O’Dowd C. D. Gas-Aerosol Relationships of H2SO4, MSA, and OH: Observations in the Coastal Marine Boundary Layer at Mace Head, Ireland. 2002, 107, 8100. J. Geophys. Res. 2002, 107, 8100.10.1029/2000JD000229. DOI

Pysanenko A.; Huss T.; Fárník M.; Lengyel J. Effect of Hydration on Electron Attachment to Methanesulfonic Acid Clusters. J. Phys. Chem. A 2022, 126, 1542–1550. 10.1021/acs.jpca.2c00221. PubMed DOI

Pysanenko A.; Fárníková K.; Lengyel J.; Pluhařová E.; Fárník M. Molecular-Level Insight into Uptake of Dimethylamine on Hydrated Nitric Acid Clusters. Environ. Sci.: Atmos. 2022, 2, 1292–1302. 10.1039/D2EA00094F. DOI

Yu H.; McGraw R.; Lee S.-H. Effects of Amines on Formation of sub-3 nm Particles and Their Subsequent Growth. Geophys. Res. Lett. 2012, 39, 2.10.1029/2011GL050099. DOI

Glasoe W. A.; Volz K.; Panta B.; Freshour N.; Bachman R.; Hanson D. R.; Mc-Murry P. H.; Jen C. Sulfuric Acid Nucleation: An Experimental Study of the Effect of Seven Bases. J. Geophys. Res. Atmos. 2015, 120, 1933–1950. 10.1002/2014JD022730. DOI

Myllys N.; Chee S.; Olenius T.; Lawler M.; Smith J. Molecular-Level Understanding of Synergistic Effects in Sulfuric Acid-Amine-Ammonia Mixed Clusters. J. Phys. Chem. A 2019, 123, 2420–2425. 10.1021/acs.jpca.9b00909. PubMed DOI

Peter T. Microphysics and Heterogeneous Chemistry of Polar Stratospheric Clouds. Annu. Rev. Phys. Chem. 1997, 48, 785–822. 10.1146/annurev.physchem.48.1.785. PubMed DOI

Solomon S. Stratospheric ozone depletion: A review of concepts and history. Rev. Geophys. 1999, 37, 275–316. 10.1029/1999RG900008. DOI

Ončák M.; Slavíček P.; Poterya V.; Fárník M.; Buck U. Emergence of Charge-Transfer-to-Solvent Band in the Absorption Spectra of Hydrogen Halides on Ice Nanoparticles: Spectroscopic Evidence for Acidic Dissociation. J. Phys. Chem. A 2008, 112, 5344–5353. 10.1021/jp8012305. PubMed DOI

Ončák M.; Slavíček P.; Fárník M.; Buck U. Photochemistry of Hydrogen Halides on Water Clusters: Simulations of Electronic Spectra and Photodynamics, and Comparison with Photodissociation Experiments. J. Phys. Chem. A 2011, 115, 6155–6168. 10.1021/jp111264e. PubMed DOI

Poterya V.; Lengyel J.; Pysanenko A.; Svrčková P.; Fárník M. Imaging of Hydrogen Halides Photochemistry on Argon and Ice Nanoparticles. J. Chem. Phys. 2014, 141, 074309.10.1063/1.4892585. PubMed DOI

Poterya V.; Kočišek J.; Lengyel J.; Svrčková P.; Pysanenko A.; Hollas D.; Slavíček P.; Fárník M. Clustering and Photochemistry of Freon CF2Cl2 on Argon and Ice Nanoparticles. J. Phys. Chem. A 2014, 118, 4740–4749. 10.1021/jp503983x. PubMed DOI

Sobolewski A. L.; Domcke W. Photochemistry of HCl(H2O)4: Cluster Model of the Photodetachment of the Chloride Anion in Water. J. Phys. Chem. A 2003, 107, 1557–1562. 10.1021/jp021533s. DOI

Poterya V.; Kočišek J.; Pysanenko A.; Fárník M. Caging of Cl atoms from photodissociation of CF2Cl2 in clusters. Phys. Chem. Chem. Phys. 2014, 16, 421–429. 10.1039/C3CP51926K. PubMed DOI

Poštulka J.; Slavíček P.; Domaracka A.; Pysanenko A.; Fárník M.; Kočišek J. Proton Transfer from Pinene Stabilizes Water Clusters. Phys. Chem. Chem. Phys. 2019, 21, 13925–13933. 10.1039/C8CP05959D. PubMed DOI

Delaunay R.; Gatchell M.; Rousseau P.; Domaracka A.; Maclot S.; Wang Y.; Stockett M. H.; Chen T.; Adoui L.; Alcamí M.; et al. Molecular Growth Inside of Polycyclic Aromatic Hydrocarbon Clusters Induced by Ion Collisions. J. Phys. Chem. Lett. 2015, 6, 1536–1542. 10.1021/acs.jpclett.5b00405. PubMed DOI

Gatchell M.; Delaunay R.; D'Angelo G.; Mika A.; Kulyk K.; Domaracka A.; Rousseau P.; Zettergren H.; Huber B. A.; Cederquist H. Ion-Induced Molecular Growth in Clusters of Small Hydrocarbon Chains. Phys. Chem. Chem. Phys. 2017, 19, 19665–19672. 10.1039/C7CP02090B. PubMed DOI

Patanen M.; Unger I.; Saak C.-M.; Gopakumar G.; Lexelius R.; Björneholm O.; Salter M.; Zieger P. Surface Composition of Size-Selected Sea Salt Particles Under the Influence of Organic Acids Studied in situ Using Synchrotron Radiation X-ray Photoelectron Spectroscopy. Environ. Sci.: Atmos. 2022, 2, 1032–1040. 10.1039/D2EA00035K. DOI

Pelimanni E.; Saak C.-M.; Michailoudi G.; Prisle N.; Huttula M.; Patanen M. Solvent and Cosolute Dependence of Mg Surface Enrichment in Submicron Aerosol Particles. Phys. Chem. Chem. Phys. 2022, 24, 2934–2943. 10.1039/D1CP04953D. PubMed DOI PMC

Arnold M.; Kowalski J.; zu Putlitz G.; Stehlin T.; Träger F. Neutralization of Mass-Selected Cluster Ions by Charge Transfer Reactions. Z. Phys. A 1985, 322, 179–182. 10.1007/BF01411879. DOI

Abshagen M.; Kowalski J.; Meyberg M.; zu Putlitz G.; Slaby J.; Träger F. Neutralization of Mass-Separated Lead-Cluster Ions in Sodium Vapor. Chem. Phys. Lett. 1990, 174, 455–460. 10.1016/S0009-2614(90)87179-U. DOI

Lee Y. T.; McDonald J. D.; Lebreton P. R.; Herschbach D. R. Molecular Beam reactive Scattering Apparatus with Electron Bombardment Detector. Rev. Sci. Instrum. 1969, 40, 1402–1408. 10.1063/1.1683809. DOI

Jungwirth P.; Rosenfeld D.; Buch V. A Possible New Molecular Mechanism of Thundercloud Electrification. Atmospheric Research 2005, 76, 190–205. 10.1016/j.atmosres.2004.11.016. DOI

Williams E. R. Lightning and Climate: A Review. Atmospheric Research 2005, 76, 272–287. 10.1016/j.atmosres.2004.11.014. DOI

Becker D.; Dierking C. W.; Suchan J.; Zurheide F.; Lengyel J.; Fárník M.; Slavíček P.; Buck U.; Zeuch T. Temperature Evolution in IR Action Spectroscopy Experiments with Sodium Doped Water Clusters. Phys. Chem. Chem. Phys. 2021, 23, 7682–7695. 10.1039/D0CP05390B. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Condensed Matter Systems Exposed to Radiation: Multiscale Theory, Simulations, and Experiment

. 2024 Jul 10 ; 124 (13) : 8014-8129. [epub] 20240606

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...