Bridging Gaps between Clusters in Molecular-Beam Experiments and Aerosol Nanoclusters
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, přehledy
PubMed
36598955
PubMed Central
PMC9841566
DOI
10.1021/acs.jpclett.2c03417
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Clusters in molecular beam experiments can mimic aerosol nanoclusters and provide molecular-level details for various processes relevant to atmospheric aerosol research. Aerosol nanoclusters, particles of sizes below 10 nm, are difficult to investigate in ambient atmosphere and thus represent a gap in our understanding of the new particle formation process. Recent field measurements and laboratory experiments are closing this gap; however, experiments with clusters in molecular beams are rarely involved. Yet, they can offer an unprecedented detailed insight into the processes including particles in this size range. In this Perspective, we discuss several up-to-date molecular beam experiments with clusters and demonstrate that the investigated clusters approach aerosol nanoclusters in terms of their complexity and chemistry. We examine remaining gaps between atmospheric aerosols and clusters in molecular beams and speculate about future experiments bridging these gaps.
Zobrazit více v PubMed
Pöschl U. Atmospheric Aerosols: Composition, Transformation, Climate and Health Effects. Angew. Chem. Int. Ed. 2005, 44, 7520–7540. 10.1002/anie.200501122. PubMed DOI
Mahowald N.; Ward D. S.; Kloster S.; Flanner M. G.; Heald C. L.; Heavens N. G.; Hess P. G.; Lamarque J.-F.; Chuang P. Y. Aerosol Impacts on Climate and Biogeochemistry. Annu. Rev. Env. Resour. 2011, 36, 45–74. 10.1146/annurev-environ-042009-094507. DOI
Kolb C. E.; Worsnop D. R. Chemistry and Composition of Atmospheric Aerosol Particles. Annu. Rev. Phys. Chem. 2012, 63, 471–491. 10.1146/annurev-physchem-032511-143706. PubMed DOI
George C.; Ammann M.; D’Anna B.; Donaldson D. J.; Nizkorodov S. A. Heterogeneous Photochemistry in the Atmosphere. Chem. Rev. 2015, 115, 4218–4258. 10.1021/cr500648z. PubMed DOI PMC
McNeill V. F. Atmospheric Aerosols: Clouds, Chemistry, and Climate. Annu. Rev. Chem. Biomol. Eng. 2017, 8, 427–444. 10.1146/annurev-chembioeng-060816-101538. PubMed DOI
Finlayson-Pitts B. J.; Pitts J. N.. Chemistry of the Upper and Lower Atmosphere; Academic Press: San Diego, 2000.
Seinfeld J. H.; Pandis S. N.. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change; John Wiley & Sons Inc.: Hoboken, NJ, 2016.
Kerminen V.-M.; Chen X.; Vakkari V.; Petäjä T.; Kulmala M.; Bianchi F. Atmospheric New Particle Formation and Growth: Review of Field Observations. Environ. Res. Lett. 2018, 13, 103003.10.1088/1748-9326/aadf3c. DOI
Lee S. H.; Gordon H.; Yu H.; Lehtipalo K.; Haley R.; Li Y.; Zhang R. New Particle Formation in the Atmosphere: From Molecular Clusters to Global Climate. J. Geophys. Res. Atmos. 2019, 124, 7098–7146. 10.1029/2018JD029356. DOI
Smith J. N.; Draper D. C.; Chee S.; Dam M.; Glicker H.; Myers D.; Thomas A. E.; Lawler M. J.; Myllys N. Atmospheric Clusters to Nanoparticles: Recent Progress and Challenges in Closing the Gap in Chemical Composition. J.Aerosol Sci. 2021, 153, 105733.10.1016/j.jaerosci.2020.105733. DOI
Kulmala M.; Kontkanen J.; Junninen H.; Lehtipalo K.; Manninen H. E.; Nieminen T.; Petäjä T.; Sipilä M.; Schobesberger S.; Rantala P.; et al. Direct Observations of Atmospheric Aerosol Nucleation. Science 2013, 339, 943–946. 10.1126/science.1227385. PubMed DOI
Zhang R.; Khalizov A.; Wang L.; Hu M.; Xu W. Nucleation and Growth of Nanoparticles in the Atmosphere. Chem. Rev. 2012, 112, 1957–2011. 10.1021/cr2001756. PubMed DOI
Dunne E. M.; Gordon H.; Kürten A.; Almeida J.; Duplissy J.; Williamson C.; Ortega I. K.; Pringle K. J.; Adamov A.; Baltensperger U.; et al. Global Atmospheric Particle Formation from CERN CLOUD Measurements. Science 2016, 354, 1119–1124. 10.1126/science.aaf2649. PubMed DOI
Li C.; Signorell R. Understanding Vapor Nucleation on the Molecular Level: A Review. J. Aerosol Sci. 2021, 153, 105676.10.1016/j.jaerosci.2020.105676. DOI
Murphy D. M. The Design of Single Particle Laser Mass Spectrometers. Mass Spectrom. Rev. 2007, 26, 150–165. 10.1002/mas.20113. PubMed DOI
Canagaratna M.; Jayne J.; Jimenez J.; Allan J.; Alfarra M.; Zhang Q.; Onasch T.; Drewnick F.; Coe H.; Middlebrook A.; et al. Chemical and Microphysical Characterization of Ambient Aerosols with the Aerodyne Aerosol Mass Spectrometer. Mass Spectrom. Rev. 2007, 26, 185–222. 10.1002/mas.20115. PubMed DOI
Junninen H.; Ehn M.; Petäjä T.; Luosujärvi L.; Kotiaho T.; Kostiainen R.; Rohner U.; Gonin M.; Fuhrer K.; Kulmala M.; et al. A High-Resolution Mass Spectrometer to Measure Atmospheric Ion Composition. Atmos. Meas. Technol. 2010, 3, 1039–1053. 10.5194/amt-3-1039-2010. DOI
Bertram T. H.; Kimmel J. R.; Crisp T. A.; Ryder O. S.; Yatavelli R. L. N.; Thornton J. A.; Cubison M. J.; Gonin M.; Worsnop D. R. A Field-Deployable, Chemical Ionization Time-of-Flight Mass Spectrometer. Atmos. Meas. Technol. 2011, 4, 1471–1479. 10.5194/amt-4-1471-2011. DOI
Jokinen T.; Sipilä M.; Junninen H.; Ehn M.; Lönn G.; Hakala J.; Petäjä T.; Mauldin R. L.; Kulmala M.; Worsnop D. R. Atmospheric Sulphuric Acid and Neutral Cluster Measurements Using CI-APi-TOF. Atmos. Chem. Phys. 2012, 12, 4117–4125. 10.5194/acp-12-4117-2012. DOI
Johnston M. V.; Kerecman D. E. Molecular Characterization of Atmospheric Organic Aerosol by Mass Spectrometry. Annu. Rev. Anal. Chem. 2019, 12, 247–274. 10.1146/annurev-anchem-061516-045135. PubMed DOI
Kirkby J.; Curtius J.; Almeida J.; Dunne E.; Duplissy J.; Ehrhart S.; Franchin A.; Gagne S.; Ickes L.; Kürten A.; et al. Role of Sulphuric Acid, Ammonia and Galactic Cosmic Rays in Atmospheric Aerosol Nucleation. Nature 2011, 476, 429–433. 10.1038/nature10343. PubMed DOI
Almeida J.; Schobesberger S.; Kürten A.; Ortega I. K.; Kupiainen-Määttä O.; Praplan A. P.; Adamov A.; Amorim A.; Bianchi F.; Breitenlechner M.; et al. Molecular Understanding of Sulphuric Acid-Amine Particle Nucleation in the Atmosphere. Nature 2013, 502, 359–363. 10.1038/nature12663. PubMed DOI PMC
Kürten A.; Jokinen T.; Simon M.; Sipilä M.; Sarnela N.; Junninen H.; Adamov A.; Almeida J.; Amorim A.; Bianchi F.; et al. Neutral Molecular Cluster Formation of Sulfuric Acid–Dimethylamine Observed in Real Time under Atmospheric Conditions. Proc. Natl. Acad. Sci. U.S.A. 2014, 111, 15019–15024. 10.1073/pnas.1404853111. PubMed DOI PMC
Kay B. D.; Hermann V.; Castleman A. W. Studies of Gas-Phase Clusters: the Solvation of HNO3 in Microscopic Aqueous Clusters. Chem. Phys. Lett. 1981, 80, 469–474. 10.1016/0009-2614(81)85059-2. DOI
Zhang X.; Mereand E. L.; Castleman A. W. Reactions of Water Cluster Ions with Nitric Acid. J. Phys. Chem. 1994, 98, 3554–3557. 10.1021/j100064a044. DOI
MacTaylor R. S.; Castleman A. W. Jr Cluster Ion Reactions: Insights into Processes of Atmospheric Significance. J. Atmos. Chem. 2000, 36, 23–63. 10.1023/A:1006376914390. DOI
Ahmed M.; Apps C. J.; Buesnel R.; Hughes C.; Hillier H.; Watt N. E.; Whitehead J. C. Adsorption of NxOy-Based Molecules on Large Water Clusters: An Experimental and Theoretical Study. J. Phys. Chem. A 1997, 101, 1254–1259. 10.1021/jp962213+. DOI
Yoder B. L.; Litman J. H.; Forysinski P. W.; Corbett J. L.; Signorell R. Sizer for Neutral Weakly Bound Ultrafine Aerosol Particles Based on Sodim Doping and Mass Spectrometric Detection. J. Phys. Chem. Lett. 2011, 2, 2623–2628. 10.1021/jz201086v. DOI
Fárník M.; Lengyel J. Mass Spectrometry of Aerosol Particle Analogues in Molecular Beam Experiments. Mass Spec Rev. 2018, 37, 630–651. 10.1002/mas.21554. PubMed DOI
Fárník M.; Fedor J.; Kočišek J.; Lengyel J.; Pluhařová E.; Poterya V.; Pysanenko A. Pickup and Reactions of Molecules on Clusters Relevant for Atmospheric and Interstellar Processes. Phys. Chem. Chem. Phys. 2021, 23, 3195–3213. 10.1039/D0CP06127A. PubMed DOI
Vehkamäki H.; Riipinen I. Thermodynamics and Kinetics of Atmospheric Aerosol Particle Formation and Growth. Chem. Soc. Rev. 2012, 41, 5160–5173. 10.1039/c2cs00002d. PubMed DOI
Elm J.; Kubečka J.; Besel V.; Jääskeläinen M. J.; Halonen R.; Kurtén T.; Vehkamäki H. Modeling the Formation and Growth of Atmospheric Molecular Clusters: A Review. J. Aerosol Sci. 2020, 149, 105621.10.1016/j.jaerosci.2020.105621. DOI
Li C.; Lippe M.; Krohn J.; Signorell R. Extraction of Monomer-Cluster Association Rate Constants from Water Nucleation Data Measured at Extreme Supersaturations. J. Chem. Phys. 2019, 151, 094305.10.1063/1.5118350. PubMed DOI
Wyslouzil B. E.; Wölk J. Overview: Homogeneous Nucleation from the Vapor Phase–The Experimental Science. J. Chem. Phys. 2016, 145, 211702.10.1063/1.4962283. PubMed DOI
Pauly H.Atom, Molecule and Cluster Beams; Springer: Berlin, 2000.
Lengyel J.; Pysanenko A.; Kočišek J.; Poterya V.; Pradzynski C.; Zeuch T.; Slavíček P.; Fárník M. Nucleation of Mixed Nitric Acid-Water Ice Nanoparticles in Molecular Beams that Starts with a HNO3 Molecule. J. Phys. Chem. Lett. 2012, 3, 3096–3109. 10.1021/jz3013886. PubMed DOI
Pysanenko A.; Lengyel J.; Fárník M. Uptake of Methanol on Mixed HNO3/H2O Clusters: An Absolute Pickup Cross Section. J. Chem. Phys. 2018, 148, 154301.10.1063/1.5021471. PubMed DOI
Lengyel J.; Pysanenko A.; Fárníková K.; Pluhařová E.; Fárník M. Oxidation Enhances Aerosol Nucleation: Measurement of Kinetic Pickup Probability of Organic Molecules on Hydrated Acid Clusters. J. Phys. Chem. Lett. 2020, 11, 2101–2105. 10.1021/acs.jpclett.0c00207. PubMed DOI
Pysanenko A.; Habartová A.; Svrčková P.; Lengyel J.; Poterya V.; Roeselová M.; Fedor J.; Fárník M. Lack of Aggregation of Molecules on Ice Nanoparticles. J. Phys. Chem. A 2015, 119, 8991–8999. 10.1021/acs.jpca.5b05368. PubMed DOI
Poštulka J.; Slavíček P.; Pysanenko A.; Poterya V.; Fárník M. Bimolecular Reactions on Sticky and Slippery Clusters: Electron-Induced Reactions of Hydrogen Peroxide. J. Chem. Phys. 2022, 156, 054306.10.1063/5.0079283. PubMed DOI
Ahmed M.; Apps C. J.; Hughes C.; Whitehead J. C. The Adsorption of Methanol on Large Water Clusters. Chem. Phys. Lett. 1995, 240, 216–223. 10.1016/0009-2614(95)00517-8. DOI
Ahmed M.; Apps C. J.; Hughes C.; Watt N. E.; Whitehead J. C. Adsorption of Organic Molecules on Large Water Clusters. J. Phys. Chem. A 1997, 101, 1250–1253. 10.1021/jp9622142. DOI
Cuvellier J.; Meynadier P.; de Pujo P.; Sublemontier O.; Visticot J.-P.; Berlande J.; Lallement A.; Mestdagh J.-M. A Simple Method to Determine the Mean Cluster Size in a Molecular Beam. Z. Phys. D 1991, 21, 265.10.1007/BF01426384. DOI
Macler M.; Bae Y. K. Determination of Mean Cluster Size by Water Capture. J. Phys. Chem. A 1997, 101, 145–148. 10.1021/jp962055m. DOI
Fedor J.; Poterya V.; Pysanenko A.; Fárník M. Cluster Cross Sections from Pickup Measurements: Are the Established Methods Consistent?. J. Chem. Phys. 2011, 135, 104305.10.1063/1.3633474. PubMed DOI
Vinklárek I. S.; Pysanenko A.; Pluhařová E.; Fárník M. Uptake of Hydrogen Bonding Molecules by Benzene Nanoparticles. J. Phys. Chem. Lett. 2022, 13, 3781–3788. 10.1021/acs.jpclett.2c00835. PubMed DOI PMC
Lengyel J.; Kočišek J.; Poterya V.; Pysanenko A.; Svrčková P.; Fárník M.; Zaouris D.; Fedor J. Uptake of Atmospheric Molecules by Ice Nanoparticles: Pickup Cross Sections. J. Chem. Phys. 2012, 137, 034304.10.1063/1.4733987. PubMed DOI
Lengyel J.; Pysanenko A.; Poterya V.; Slavíček P.; Fárník M.; Kočišek J.; Fedor J. Irregular Shapes of Water Clusters Generated in Supersonic Expansions. Phys. Rev. Lett. 2014, 112, 113401.10.1103/PhysRevLett.112.113401. PubMed DOI
Wang M.; Kong W.; Marten R.; He X.-C.; Chen D.; Pfeifer J.; Heitto A.; Kontkanen J.; Dada L.; Kürten A.; et al. Rapid Growth of New Atmospheric Particles by Nitric Acid and Ammonia Condensation. Nature 2020, 581, 184–189. 10.1038/s41586-020-2270-4. PubMed DOI PMC
Bready C. J.; Fowler V. R.; Juechter L. A.; Kurfman L. A.; Mazaleski G. E.; Shields G. C. The Driving Effects of Common Atmospheric Mlecules for Formation of Prenucleation Clusters: The Case of Sulfuric Acid, Formic Acid, Nitric Acid, Ammonia, and Dimethyl Amine. Environ. Sci.: Atmos. 2022, 2, 1469–1486. 10.1039/D2EA00087C. PubMed DOI PMC
Lengyel J.; Ončák M.; Fedor J.; Kočišek J.; Pysanenko A.; Beyer M. K.; Fárník M. Electron-Triggered Chemistry in HNO3/H2O Complexes. Phys. Chem. Chem. Phys. 2017, 19, 11753–11758. 10.1039/C7CP01205E. PubMed DOI PMC
Lengyel J.; Fedor J.; Fárník M. Dissociative electron attachment to HNO3 and its hydrates: Energy-Selective Electron-Induced Chemistry. Phys. Chem. Chem. Phys. 2019, 21, 8691–8697. 10.1039/C9CP00990F. PubMed DOI
Zhang R. Y.; Suh I.; Zhao J.; Zhang D.; Fortner E. C.; Tie X. X.; Molina L. T.; Molina M. J. Atmospheric New Particle Formation Enhanced by Organic Acids. Science 2004, 304, 1487–1490. 10.1126/science.1095139. PubMed DOI
Riipinen I.; Yli-Juuti T.; Pierce J. R.; Petäjä T.; Worsnop D. R.; Kulmala M.; Donahue N. M. The Contribution of Organics to Atmospheric Nanoparticle Growth. Nat. Geosci. 2012, 5, 453–458. 10.1038/ngeo1499. DOI
Donahue N. M.; Ortega I. K.; Chuang W.; Riipinen I.; Riccobono F.; Schobesberger S.; Dommen J.; Baltensperger U.; Kulmala M.; Worsnop D. R.; et al. How do Organic Vapors Contribute to New-Particle Formation?. Faraday Discuss. 2013, 165, 91–104. 10.1039/c3fd00046j. PubMed DOI
Bianchi F.; Kurtén T.; Riva M.; Mohr C.; Rissanen M. P.; Roldin P.; Berndt T.; Crounse J. D.; Wennberg P. O.; Mentel T. F.; et al. Highly Oxygenated Organic Molecules (HOM) from Gas-Phase Autoxidation Involving Peroxy Radicals: A Key Contributor to Atmospheric Aerosol. Chem. Rev. 2019, 119, 3472–3509. 10.1021/acs.chemrev.8b00395. PubMed DOI PMC
Litman J. H.; Yoder B. L.; Schläppi B.; Signorell R. Sodium-Doping as a Reference to Study the Influence of Intracluster Chemistry on the Fragmentation of Weakly-Bound Clusters Upon Vacuum Ultraviolet Photionization. Phys. Chem. Chem. Phys. 2013, 15, 940–949. 10.1039/C2CP43098C. PubMed DOI
Lengyel J.; Pysanenko A.; Poterya V.; Kočišek J.; Fárník M. Extensive Water Cluster Fragmentation After Low Energy Electron Ionization. Chem. Phys. Lett. 2014, 612, 256–261. 10.1016/j.cplett.2014.08.038. DOI
Šmídová D.; Lengyel J.; Pysanenko A.; Med J.; Slavíček P.; Fárník M. Reactivity of Hydrated Electron in Finite Size System: Sodium Pickup on Mixed N2O-Water Nanoparticles. J. Phys. Chem. Lett. 2015, 6, 2865–2869. 10.1021/acs.jpclett.5b01269. PubMed DOI
Lengyel J.; Pysanenko A.; Rubovič P.; Fárník M. Sodium Doping and Reactivity in Pure and Mixed Ice Nanoparticles. Eur. Phys. J. D 2015, 69, 269.10.1140/epjd/e2015-60532-6. DOI
Šmídová D.; Lengyel J.; Kočišek J.; Pysanenko A.; Fárník M. Analysis of Mixed Nitric Oxide-Water Clusters by Complementary Ionization Methods. Int. J. Mass Spectrom. 2017, 421, 144–149. 10.1016/j.ijms.2017.06.012. DOI
Lengyel J.; Pysanenko A.; Fárník M. Electron-Induced Chemistry in Microhydrated Sulfuric Acid Clusters. Atmos. Chem. Phys. 2017, 17, 14171–14180. 10.5194/acp-17-14171-2017. DOI
Berresheim H.; Elste T.; Tremmel H. G.; Allen A. G.; Hansson H. C.; Rosman K.; Maso M. D.; Mäkelä J. M.; Kulmala M.; O’Dowd C. D. Gas-Aerosol Relationships of H2SO4, MSA, and OH: Observations in the Coastal Marine Boundary Layer at Mace Head, Ireland. 2002, 107, 8100. J. Geophys. Res. 2002, 107, 8100.10.1029/2000JD000229. DOI
Pysanenko A.; Huss T.; Fárník M.; Lengyel J. Effect of Hydration on Electron Attachment to Methanesulfonic Acid Clusters. J. Phys. Chem. A 2022, 126, 1542–1550. 10.1021/acs.jpca.2c00221. PubMed DOI
Pysanenko A.; Fárníková K.; Lengyel J.; Pluhařová E.; Fárník M. Molecular-Level Insight into Uptake of Dimethylamine on Hydrated Nitric Acid Clusters. Environ. Sci.: Atmos. 2022, 2, 1292–1302. 10.1039/D2EA00094F. DOI
Yu H.; McGraw R.; Lee S.-H. Effects of Amines on Formation of sub-3 nm Particles and Their Subsequent Growth. Geophys. Res. Lett. 2012, 39, 2.10.1029/2011GL050099. DOI
Glasoe W. A.; Volz K.; Panta B.; Freshour N.; Bachman R.; Hanson D. R.; Mc-Murry P. H.; Jen C. Sulfuric Acid Nucleation: An Experimental Study of the Effect of Seven Bases. J. Geophys. Res. Atmos. 2015, 120, 1933–1950. 10.1002/2014JD022730. DOI
Myllys N.; Chee S.; Olenius T.; Lawler M.; Smith J. Molecular-Level Understanding of Synergistic Effects in Sulfuric Acid-Amine-Ammonia Mixed Clusters. J. Phys. Chem. A 2019, 123, 2420–2425. 10.1021/acs.jpca.9b00909. PubMed DOI
Peter T. Microphysics and Heterogeneous Chemistry of Polar Stratospheric Clouds. Annu. Rev. Phys. Chem. 1997, 48, 785–822. 10.1146/annurev.physchem.48.1.785. PubMed DOI
Solomon S. Stratospheric ozone depletion: A review of concepts and history. Rev. Geophys. 1999, 37, 275–316. 10.1029/1999RG900008. DOI
Ončák M.; Slavíček P.; Poterya V.; Fárník M.; Buck U. Emergence of Charge-Transfer-to-Solvent Band in the Absorption Spectra of Hydrogen Halides on Ice Nanoparticles: Spectroscopic Evidence for Acidic Dissociation. J. Phys. Chem. A 2008, 112, 5344–5353. 10.1021/jp8012305. PubMed DOI
Ončák M.; Slavíček P.; Fárník M.; Buck U. Photochemistry of Hydrogen Halides on Water Clusters: Simulations of Electronic Spectra and Photodynamics, and Comparison with Photodissociation Experiments. J. Phys. Chem. A 2011, 115, 6155–6168. 10.1021/jp111264e. PubMed DOI
Poterya V.; Lengyel J.; Pysanenko A.; Svrčková P.; Fárník M. Imaging of Hydrogen Halides Photochemistry on Argon and Ice Nanoparticles. J. Chem. Phys. 2014, 141, 074309.10.1063/1.4892585. PubMed DOI
Poterya V.; Kočišek J.; Lengyel J.; Svrčková P.; Pysanenko A.; Hollas D.; Slavíček P.; Fárník M. Clustering and Photochemistry of Freon CF2Cl2 on Argon and Ice Nanoparticles. J. Phys. Chem. A 2014, 118, 4740–4749. 10.1021/jp503983x. PubMed DOI
Sobolewski A. L.; Domcke W. Photochemistry of HCl(H2O)4: Cluster Model of the Photodetachment of the Chloride Anion in Water. J. Phys. Chem. A 2003, 107, 1557–1562. 10.1021/jp021533s. DOI
Poterya V.; Kočišek J.; Pysanenko A.; Fárník M. Caging of Cl atoms from photodissociation of CF2Cl2 in clusters. Phys. Chem. Chem. Phys. 2014, 16, 421–429. 10.1039/C3CP51926K. PubMed DOI
Poštulka J.; Slavíček P.; Domaracka A.; Pysanenko A.; Fárník M.; Kočišek J. Proton Transfer from Pinene Stabilizes Water Clusters. Phys. Chem. Chem. Phys. 2019, 21, 13925–13933. 10.1039/C8CP05959D. PubMed DOI
Delaunay R.; Gatchell M.; Rousseau P.; Domaracka A.; Maclot S.; Wang Y.; Stockett M. H.; Chen T.; Adoui L.; Alcamí M.; et al. Molecular Growth Inside of Polycyclic Aromatic Hydrocarbon Clusters Induced by Ion Collisions. J. Phys. Chem. Lett. 2015, 6, 1536–1542. 10.1021/acs.jpclett.5b00405. PubMed DOI
Gatchell M.; Delaunay R.; D'Angelo G.; Mika A.; Kulyk K.; Domaracka A.; Rousseau P.; Zettergren H.; Huber B. A.; Cederquist H. Ion-Induced Molecular Growth in Clusters of Small Hydrocarbon Chains. Phys. Chem. Chem. Phys. 2017, 19, 19665–19672. 10.1039/C7CP02090B. PubMed DOI
Patanen M.; Unger I.; Saak C.-M.; Gopakumar G.; Lexelius R.; Björneholm O.; Salter M.; Zieger P. Surface Composition of Size-Selected Sea Salt Particles Under the Influence of Organic Acids Studied in situ Using Synchrotron Radiation X-ray Photoelectron Spectroscopy. Environ. Sci.: Atmos. 2022, 2, 1032–1040. 10.1039/D2EA00035K. DOI
Pelimanni E.; Saak C.-M.; Michailoudi G.; Prisle N.; Huttula M.; Patanen M. Solvent and Cosolute Dependence of Mg Surface Enrichment in Submicron Aerosol Particles. Phys. Chem. Chem. Phys. 2022, 24, 2934–2943. 10.1039/D1CP04953D. PubMed DOI PMC
Arnold M.; Kowalski J.; zu Putlitz G.; Stehlin T.; Träger F. Neutralization of Mass-Selected Cluster Ions by Charge Transfer Reactions. Z. Phys. A 1985, 322, 179–182. 10.1007/BF01411879. DOI
Abshagen M.; Kowalski J.; Meyberg M.; zu Putlitz G.; Slaby J.; Träger F. Neutralization of Mass-Separated Lead-Cluster Ions in Sodium Vapor. Chem. Phys. Lett. 1990, 174, 455–460. 10.1016/S0009-2614(90)87179-U. DOI
Lee Y. T.; McDonald J. D.; Lebreton P. R.; Herschbach D. R. Molecular Beam reactive Scattering Apparatus with Electron Bombardment Detector. Rev. Sci. Instrum. 1969, 40, 1402–1408. 10.1063/1.1683809. DOI
Jungwirth P.; Rosenfeld D.; Buch V. A Possible New Molecular Mechanism of Thundercloud Electrification. Atmospheric Research 2005, 76, 190–205. 10.1016/j.atmosres.2004.11.016. DOI
Williams E. R. Lightning and Climate: A Review. Atmospheric Research 2005, 76, 272–287. 10.1016/j.atmosres.2004.11.014. DOI
Becker D.; Dierking C. W.; Suchan J.; Zurheide F.; Lengyel J.; Fárník M.; Slavíček P.; Buck U.; Zeuch T. Temperature Evolution in IR Action Spectroscopy Experiments with Sodium Doped Water Clusters. Phys. Chem. Chem. Phys. 2021, 23, 7682–7695. 10.1039/D0CP05390B. PubMed DOI
Condensed Matter Systems Exposed to Radiation: Multiscale Theory, Simulations, and Experiment