TWISTED DWARF1 Mediates the Action of Auxin Transport Inhibitors on Actin Cytoskeleton Dynamics
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
27053424
PubMed Central
PMC4863381
DOI
10.1105/tpc.15.00726
PII: tpc.15.00726
Knihovny.cz E-zdroje
- MeSH
- Arabidopsis genetika metabolismus MeSH
- biologický transport genetika fyziologie MeSH
- kyseliny indoloctové metabolismus MeSH
- mikrofilamenta metabolismus MeSH
- proteiny huseníčku genetika metabolismus MeSH
- proteiny vázající takrolimus genetika metabolismus MeSH
- regulace genové exprese u rostlin genetika fyziologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- kyseliny indoloctové MeSH
- proteiny huseníčku MeSH
- proteiny vázající takrolimus MeSH
- TWD1 protein, Arabidopsis MeSH Prohlížeč
Plant growth and architecture is regulated by the polar distribution of the hormone auxin. Polarity and flexibility of this process is provided by constant cycling of auxin transporter vesicles along actin filaments, coordinated by a positive auxin-actin feedback loop. Both polar auxin transport and vesicle cycling are inhibited by synthetic auxin transport inhibitors, such as 1-N-naphthylphthalamic acid (NPA), counteracting the effect of auxin; however, underlying targets and mechanisms are unclear. Using NMR, we map the NPA binding surface on the Arabidopsis thaliana ABCB chaperone TWISTED DWARF1 (TWD1). We identify ACTIN7 as a relevant, although likely indirect, TWD1 interactor, and show TWD1-dependent regulation of actin filament organization and dynamics and that TWD1 is required for NPA-mediated actin cytoskeleton remodeling. The TWD1-ACTIN7 axis controls plasma membrane presence of efflux transporters, and as a consequence act7 and twd1 share developmental and physiological phenotypes indicative of defects in auxin transport. These can be phenocopied by NPA treatment or by chemical actin (de)stabilization. We provide evidence that TWD1 determines downstream locations of auxin efflux transporters by adjusting actin filament debundling and dynamizing processes and mediating NPA action on the latter. This function appears to be evolutionary conserved since TWD1 expression in budding yeast alters actin polarization and cell polarity and provides NPA sensitivity.
CEITEC Central European Institute of Technology Masaryk University CZ 625 00 Brno Czech Republic
Centro de Biotecnología y Genómica de Plantas 28223 Pozuelo de Alarcón Madrid Spain
Department of Biology University of Fribourg CH 1700 Fribourg Switzerland
Department of Plant and Microbial Biology University of Zurich CH 8008 Zurich Switzerland
Institute of Cell Dynamics and Imaging University of Münster D 48149 Münster Germany
Institute of Complex Systems ICS 6 Structural Biochemistry D 52425 Jülich Germany
Institute of Science and Technology Austria A 3400 Klosterneuburg Austria
LINV DIPSAA Università di Firenze 50019 Florence Italy
Max Planck Research Unit for Enzymology of Protein Folding D 06099 Halle Germany
Zobrazit více v PubMed
Abas L., Benjamins R., Malenica N., Paciorek T., Wiśniewska J., Moulinier-Anzola J.C., Sieberer T., Friml J., Luschnig C. (2006). Intracellular trafficking and proteolysis of the Arabidopsis auxin-efflux facilitator PIN2 are involved in root gravitropism. Nat. Cell Biol. 8: 249–256. Erratum. Nat. Cell Biol. 8: 424. PubMed
Bailly A., Sovero V., Vincenzetti V., Santelia D., Bartnik D., Koenig B.W., Mancuso S., Martinoia E., Geisler M. (2008). Modulation of P-glycoproteins by auxin transport inhibitors is mediated by interaction with immunophilins. J. Biol. Chem. 283: 21817–21826. PubMed
Bailly A., Wang B., Zwiewka M., Pollmann S., Schenck D., Lüthen H., Schulz A., Friml J., Geisler M. (2014). Expression of TWISTED DWARF1 lacking its in-plane membrane anchor leads to increased cell elongation and hypermorphic growth. Plant J. 77: 108–118. PubMed
Bailly A., Yang H., Martinoia E., Geisler M., Murphy A.S. (2011). Plant lessons: exploring ABCB functionality through structural modeling. Front. Plant Sci. 2: 108. PubMed PMC
Banasavadi-Siddegowda Y.K., Mai J., Fan Y., Bhattacharya S., Giovannucci D.R., Sanchez E.R., Fischer G., Wang X. (2011). FKBP38 peptidylprolyl isomerase promotes the folding of cystic fibrosis transmembrane conductance regulator in the endoplasmic reticulum. J. Biol. Chem. 286: 43071–43080. PubMed PMC
Barratt E., Bingham R.J., Warner D.J., Laughton C.A., Phillips S.E., Homans S.W. (2005). Van der Waals interactions dominate ligand-protein association in a protein binding site occluded from solvent water. J. Am. Chem. Soc. 127: 11827–11834. PubMed
Blancaflor E.B., Wang Y.S., Motes C.M. (2006). Organization and function of the actin cytoskeleton in developing root cells. Int. Rev. Cytol. 252: 219–264. PubMed
Blilou I., Xu J., Wildwater M., Willemsen V., Paponov I., Friml J., Heidstra R., Aida M., Palme K., Scheres B. (2005). The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature 433: 39–44. PubMed
Bouchard R., Bailly A., Blakeslee J.J., Oehring S.C., Vincenzetti V., Lee O.R., Paponov I., Palme K., Mancuso S., Murphy A.S., Schulz B., Geisler M. (2006). Immunophilin-like TWISTED DWARF1 modulates auxin efflux activities of Arabidopsis P-glycoproteins. J. Biol. Chem. 281: 30603–30612. PubMed
Burgardt N.I., Linnert M., Weiwad M., Geisler M., Lücke C. (2012). NMR assignments of the FKBP-type PPIase domain of FKBP42 from Arabidopsis thaliana. Biomol. NMR Assign. 6: 185–188. PubMed
Butler J.H., Hu S., Brady S.R., Dixon M.W., Muday G.K. (1998). In vitro and in vivo evidence for actin association of the naphthylphthalamic acid-binding protein from zucchini hypocotyls. Plant J. 13: 291–301. PubMed
Casamayor A., Snyder M. (2002). Bud-site selection and cell polarity in budding yeast. Curr. Opin. Microbiol. 5: 179–186. PubMed
Cho M., Lee S.H., Cho H.T. (2007). P-glycoprotein4 displays auxin efflux transporter-like action in Arabidopsis root hair cells and tobacco cells. Plant Cell 19: 3930–3943. PubMed PMC
Cho M., Lee Z.W., Cho H.T. (2012). ATP-binding cassette B4, an auxin-efflux transporter, stably associates with the plasma membrane and shows distinctive intracellular trafficking from that of PIN-FORMED proteins. Plant Physiol. 159: 642–654. PubMed PMC
Cox D.N., Muday G.K. (1994). NPA binding activity is peripheral to the plasma membrane and is associated with the cytoskeleton. Plant Cell 6: 1941–1953. PubMed PMC
Dhonukshe P., et al. (2008). Auxin transport inhibitors impair vesicle motility and actin cytoskeleton dynamics in diverse eukaryotes. Proc. Natl. Acad. Sci. USA 105: 4489–4494. PubMed PMC
Dixon M.W., Jacobson J.A., Cady C.T., Muday G.K. (1996). Cytoplasmic orientation of the naphthylphthalamic acid-binding protein in zucchini plasma membrane vesicles. Plant Physiol. 112: 421–432. PubMed PMC
Effendi Y., Ferro N., Labusch C., Geisler M., Scherer G.F. (2015). Complementation of the embryo-lethal T-DNA insertion mutant of AUXIN-BINDING-PROTEIN 1 (ABP1) with abp1 point mutated versions reveals crosstalk of ABP1 and phytochromes. J. Exp. Bot. 66: 403–418. PubMed PMC
Fernández Rico J., López R., Ema I., Ramírez G. (2004). Efficiency of the algorithms for the calculation of Slater molecular integrals in polyatomic molecules. J. Comput. Chem. 25: 1987–1994. PubMed
Friml J., Benková E., Mayer U., Palme K., Muster G. (2003). Automated whole mount localisation techniques for plant seedlings. Plant J. 34: 115–124. PubMed
Geisler M., Bailly A., Ivanchenko M. (2016). Master and servant: Regulation of auxin transporters by FKBPs and cyclophilins. Plant Sci. 245: 1–10. PubMed
Geisler M., Girin M., Brandt S., Vincenzetti V., Plaza S., Paris N., Kobae Y., Maeshima M., Billion K., Kolukisaoglu U.H., Schulz B., Martinoia E. (2004). Arabidopsis immunophilin-like TWD1 functionally interacts with vacuolar ABC transporters. Mol. Biol. Cell 15: 3393–3405. PubMed PMC
Geisler M., Murphy A.S. (2006). The ABC of auxin transport: the role of p-glycoproteins in plant development. FEBS Lett. 580: 1094–1102. PubMed
Geisler M., Wang B., Zhu J. (2014). Auxin transport during root gravitropism: transporters and techniques. Plant Biol. (Stuttg.) 16 (suppl. 1): 50–57. PubMed
Geisler M., et al. (2003). TWISTED DWARF1, a unique plasma membrane-anchored immunophilin-like protein, interacts with Arabidopsis multidrug resistance-like transporters AtPGP1 and AtPGP19. Mol. Biol. Cell 14: 4238–4249. PubMed PMC
Geldner N., Friml J., Stierhof Y.D., Jürgens G., Palme K. (2001). Auxin transport inhibitors block PIN1 cycling and vesicle trafficking. Nature 413: 425–428. PubMed
Gil P., Dewey E., Friml J., Zhao Y., Snowden K.C., Putterill J., Palme K., Estelle M., Chory J. (2001). BIG: a calossin-like protein required for polar auxin transport in Arabidopsis. Genes Dev. 15: 1985–1997. PubMed PMC
Gilliland L.U., Pawloski L.C., Kandasamy M.K., Meagher R.B. (2003). Arabidopsis actin gene ACT7 plays an essential role in germination and root growth. Plant J. 33: 319–328. PubMed
Granzin J., Eckhoff A., Weiergräber O.H. (2006). Crystal structure of a multi-domain immunophilin from Arabidopsis thaliana: a paradigm for regulation of plant ABC transporters. J. Mol. Biol. 364: 799–809. PubMed
Grebe M. (2004). Ups and downs of tissue and planar polarity in plants. BioEssays 26: 719–729. PubMed
Hemenway C.S., Heitman J. (1996). Immunosuppressant target protein FKBP12 is required for P-glycoprotein function in yeast. J. Biol. Chem. 271: 18527–18534. PubMed
Henrichs S., et al. (2012). Regulation of ABCB1/PGP1-catalysed auxin transport by linker phosphorylation. EMBO J. 31: 2965–2980. PubMed PMC
Henty J.L., Bledsoe S.W., Khurana P., Meagher R.B., Day B., Blanchoin L., Staiger C.J. (2011). Arabidopsis actin depolymerizing factor4 modulates the stochastic dynamic behavior of actin filaments in the cortical array of epidermal cells. Plant Cell 23: 3711–3726. PubMed PMC
Henty-Ridilla J.L., Li J., Blanchoin L., Staiger C.J. (2013). Actin dynamics in the cortical array of plant cells. Curr. Opin. Plant Biol. 16: 678–687. PubMed
Higaki T., Kutsuna N., Sano T., Kondo N., Hasezawa S. (2010). Quantification and cluster analysis of actin cytoskeletal structures in plant cells: role of actin bundling in stomatal movement during diurnal cycles in Arabidopsis guard cells. Plant J. 61: 156–165. PubMed
Hoffmann C., Moreau F., Moes M., Luthold C., Dieterle M., Goretti E., Neumann K., Steinmetz A., Thomas C. (2014a). Human muscle LIM protein dimerizes along the actin cytoskeleton and cross-links actin filaments. Mol. Cell. Biol. 34: 3053–3065. PubMed PMC
Hoffmann C., Moes D., Dieterle M., Neumann K., Moreau F., Tavares Furtado A., Dumas D., Steinmetz A., Thomas C. (2014b). Live cell imaging reveals actin-cytoskeleton-induced self-association of the actin-bundling protein WLIM1. J. Cell Sci. 127: 583–598. PubMed
Hülskamp M., Miséra S., Jürgens G. (1994). Genetic dissection of trichome cell development in Arabidopsis. Cell 76: 555–566. PubMed
Holweg C., Süsslin C., Nick P. (2004). Capturing in vivo dynamics of the actin cytoskeleton stimulated by auxin or light. Plant Cell Physiol. 45: 855–863. PubMed
Jacobs M., Rubery P.H. (1988). Naturally occurring auxin transport regulators. Science 241: 346–349. PubMed
Kamphausen T., Fanghänel J., Neumann D., Schulz B., Rahfeld J.U. (2002). Characterization of Arabidopsis thaliana AtFKBP42 that is membrane-bound and interacts with Hsp90. Plant J. 32: 263–276. PubMed
Kandasamy M.K., Gilliland L.U., McKinney E.C., Meagher R.B. (2001). One plant actin isovariant, ACT7, is induced by auxin and required for normal callus formation. Plant Cell 13: 1541–1554. PubMed PMC
Kandasamy M.K., McKinney E.C., Meagher R.B. (2009). A single vegetative actin isovariant overexpressed under the control of multiple regulatory sequences is sufficient for normal Arabidopsis development. Plant Cell 21: 701–718. PubMed PMC
Kania U., Fendrych M., Friml J. (2014). Polar delivery in plants; commonalities and differences to animal epithelial cells. Open Biol. 4: 140017. PubMed PMC
Kiefer C.S., Claes A.R., Nzayisenga J.C., Pietra S., Stanislas T., Hüser A., Ikeda Y., Grebe M. (2015). Arabidopsis AIP1-2 restricted by WER-mediated patterning modulates planar polarity. Development 142: 151–161. PubMed PMC
Kim J.Y., Henrichs S., Bailly A., Vincenzetti V., Sovero V., Mancuso S., Pollmann S., Kim D., Geisler M., Nam H.G. (2010). Identification of an ABCB/P-glycoprotein-specific inhibitor of auxin transport by chemical genomics. J. Biol. Chem. 285: 23309–23317. PubMed PMC
Kleine-Vehn J., Friml J. (2008). Polar targeting and endocytic recycling in auxin-dependent plant development. Annu. Rev. Cell Dev. Biol. 24: 447–473. PubMed
Kleine-Vehn J., Dhonukshe P., Swarup R., Bennett M., Friml J. (2006). Subcellular trafficking of the Arabidopsis auxin influx carrier AUX1 uses a novel pathway distinct from PIN1. Plant Cell 18: 3171–3181. PubMed PMC
Kubeš M., et al. (2012). The Arabidopsis concentration-dependent influx/efflux transporter ABCB4 regulates cellular auxin levels in the root epidermis. Plant J. 69: 640–654. PubMed
Lanza M., et al. (2012). Role of actin cytoskeleton in brassinosteroid signaling and in its integration with the auxin response in plants. Dev. Cell 22: 1275–1285. PubMed
Lewis D.R., Miller N.D., Splitt B.L., Wu G., Spalding E.P. (2007). Separating the roles of acropetal and basipetal auxin transport on gravitropism with mutations in two Arabidopsis multidrug resistance-like ABC transporter genes. Plant Cell 19: 1838–1850. PubMed PMC
Li G., Liang W., Zhang X., Ren H., Hu J., Bennett M.J., Zhang D. (2014). Rice actin-binding protein RMD is a key link in the auxin-actin regulatory loop that controls cell growth. Proc. Natl. Acad. Sci. USA 111: 10377–10382. PubMed PMC
Luschnig C. (2001). Auxin transport: why plants like to think BIG. Curr. Biol. 11: R831–R833. PubMed
Luschnig C. (2002). Auxin transport: ABC proteins join the club. Trends Plant Sci. 7: 329–332. PubMed
Luschnig C., Gaxiola R.A., Grisafi P., Fink G.R. (1998). EIR1, a root-specific protein involved in auxin transport, is required for gravitropism in Arabidopsis thaliana. Genes Dev. 12: 2175–2187. PubMed PMC
Mancuso S., Marras A.M., Magnus V., Baluska F. (2005). Noninvasive and continuous recordings of auxin fluxes in intact root apex with a carbon nanotube-modified and self-referencing microelectrode. Anal. Biochem. 341: 344–351. PubMed
Masucci J.D., Schiefelbein J.W. (1994). The rhd6 mutation of Arabidopsis thaliana alters root-hair initiation through an auxin- and ethylene-associated process. Plant Physiol. 106: 1335–1346. PubMed PMC
Mravec J., Kubes M., Bielach A., Gaykova V., Petrasek J., Skupa P., Chand S., Benkova E., Zazimalova E., Friml J. (2008). Interaction of PIN and PGP transport mechanisms in auxin distribution-dependent development. Development 135: 3345–3354. PubMed
Muday G.K. (2000). Maintenance of asymmetric cellular localization of an auxin transport protein through interaction with the actin cytoskeleton. J. Plant Growth Regul. 19: 385–396. PubMed
Muday G.K., Murphy A.S. (2002). An emerging model of auxin transport regulation. Plant Cell 14: 293–299. PubMed PMC
Murphy A.S., Hoogner K.R., Peer W.A., Taiz L. (2002). Identification, purification, and molecular cloning of N-1-naphthylphthalmic acid-binding plasma membrane-associated aminopeptidases from Arabidopsis. Plant Physiol. 128: 935–950. PubMed PMC
Müssar K.J., Kandasamy M.K., McKinney E.C., Meagher R.B. (2015). Arabidopsis plants deficient in constitutive class profilins reveal independent and quantitative genetic effects. BMC Plant Biol. 15: 177. PubMed PMC
Nagashima A., et al. (2008). Phytochromes and cryptochromes regulate the differential growth of Arabidopsis hypocotyls in both a PGP19-dependent and a PGP19-independent manner. Plant J. 53: 516–529. PubMed
Nick P., Han M.J., An G. (2009). Auxin stimulates its own transport by shaping actin filaments. Plant Physiol. 151: 155–167. PubMed PMC
Noh B., Murphy A.S., Spalding E.P. (2001). Multidrug resistance-like genes of Arabidopsis required for auxin transport and auxin-mediated development. Plant Cell 13: 2441–2454. PubMed PMC
Okada K., Ueda J., Komaki M.K., Bell C.J., Shimura Y. (1991). Requirement of the auxin polar transport system in early stages of Arabidopsis floral bud formation. Plant Cell 3: 677–684. PubMed PMC
Ottenschläger I., Wolff P., Wolverton C., Bhalerao R.P., Sandberg G., Ishikawa H., Evans M., Palme K. (2003). Gravity-regulated differential auxin transport from columella to lateral root cap cells. Proc. Natl. Acad. Sci. USA 100: 2987–2991. PubMed PMC
Paciorek T., Zazímalová E., Ruthardt N., Petrásek J., Stierhof Y.D., Kleine-Vehn J., Morris D.A., Emans N., Jürgens G., Geldner N., Friml J. (2005). Auxin inhibits endocytosis and promotes its own efflux from cells. Nature 435: 1251–1256. PubMed
Papuga J., Hoffmann C., Dieterle M., Moes D., Moreau F., Tholl S., Steinmetz A., Thomas C. (2010). Arabidopsis LIM proteins: a family of actin bundlers with distinct expression patterns and modes of regulation. Plant Cell 22: 3034–3052. PubMed PMC
Peer W.A., Murphy A.S. (2007). Flavonoids and auxin transport: modulators or regulators? Trends Plant Sci. 12: 556–563. PubMed
Peer W.A., Hosein F.N., Bandyopadhyay A., Makam S.N., Otegui M.S., Lee G.J., Blakeslee J.J., Cheng Y., Titapiwatanakun B., Yakubov B., Bangari B., Murphy A.S. (2009). Mutation of the membrane-associated M1 protease APM1 results in distinct embryonic and seedling developmental defects in Arabidopsis. Plant Cell 21: 1693–1721. PubMed PMC
Petrásek J., Cerná A., Schwarzerová K., Elckner M., Morris D.A., Zazímalová E. (2003). Do phytotropins inhibit auxin efflux by impairing vesicle traffic? Plant Physiol. 131: 254–263. PubMed PMC
Petrásek J., et al. (2006). PIN proteins perform a rate-limiting function in cellular auxin efflux. Science 312: 914–918. PubMed
Rahman A., Bannigan A., Sulaman W., Pechter P., Blancaflor E.B., Baskin T.I. (2007). Auxin, actin and growth of the Arabidopsis thaliana primary root. Plant J. 50: 514–528. PubMed
Rojas-Pierce M., Titapiwatanakun B., Sohn E.J., Fang F., Larive C.K., Blakeslee J., Cheng Y., Cutler S.R., Peer W.A., Murphy A.S., Raikhel N.V. (2007). Arabidopsis P-glycoprotein19 participates in the inhibition of gravitropism by gravacin. Chem. Biol. 14: 1366–1376. Erratum. Chem. Biol. 15: 87. PubMed
Rolo-Naranjo A., Codorniu-Hernandez E., Ferro N. (2010). Quantum chemical associations ligand-residue: their role to predict flavonoid binding sites in proteins. J. Chem. Inf. Model. 50: 924–933. PubMed
Scheidt H.A., Vogel A., Eckhoff A., Koenig B.W., Huster D. (2007). Solid-state NMR characterization of the putative membrane anchor of TWD1 from Arabidopsis thaliana. Eur. Biophys. J. 36: 393–404. PubMed
Schenck D., Christian M., Jones A., Lüthen H. (2010). Rapid auxin-induced cell expansion and gene expression: a four-decade-old question revisited. Plant Physiol. 152: 1183–1185. PubMed PMC
Seeliger D., de Groot B.L. (2010). Ligand docking and binding site analysis with PyMOL and Autodock/Vina. J. Comput. Aided Mol. Des. 24: 417–422. PubMed PMC
Sheahan M.B., Staiger C.J., Rose R.J., McCurdy D.W. (2004). A green fluorescent protein fusion to actin-binding domain 2 of Arabidopsis fimbrin highlights new features of a dynamic actin cytoskeleton in live plant cells. Plant Physiol. 136: 3968–3978. PubMed PMC
Staiger C.J., Sheahan M.B., Khurana P., Wang X., McCurdy D.W., Blanchoin L. (2009). Actin filament dynamics are dominated by rapid growth and severing activity in the Arabidopsis cortical array. J. Cell Biol. 184: 269–280. PubMed PMC
Szymanski W.G., Zauber H., Erban A., Gorka M., Wu X.N., Schulze W.X. (2015). Cytoskeletal components define protein location to membrane microdomains. Mol. Cell. Proteomics 14: 2493–2509. PubMed PMC
Thomas C. (2012). Bundling actin filaments from membranes: some novel players. Front. Plant Sci. 3: 188. PubMed PMC
Titapiwatanakun B., et al. (2009). ABCB19/PGP19 stabilises PIN1 in membrane microdomains in Arabidopsis. Plant J. 57: 27–44. PubMed
van der Honing H.S., Kieft H., Emons A.M., Ketelaar T. (2012). Arabidopsis VILLIN2 and VILLIN3 are required for the generation of thick actin filament bundles and for directional organ growth. Plant Physiol. 158: 1426–1438. PubMed PMC
Vanneste S., Friml J. (2009). Auxin: a trigger for change in plant development. Cell 136: 1005–1016. PubMed
Wang B., Bailly A., Zwiewka M., Henrichs S., Azzarello E., Mancuso S., Maeshima M., Friml J., Schulz A., Geisler M. (2013). Arabidopsis TWISTED DWARF1 functionally interacts with auxin exporter ABCB1 on the root plasma membrane. Plant Cell 25: 202–214. PubMed PMC
Weiergräber O.H., Eckhoff A., Granzin J. (2006). Crystal structure of a plant immunophilin domain involved in regulation of MDR-type ABC transporters. FEBS Lett. 580: 251–255. PubMed
Wu G., Otegui M.S., Spalding E.P. (2010). The ER-localized TWD1 immunophilin is necessary for localization of multidrug resistance-like proteins required for polar auxin transport in Arabidopsis roots. Plant Cell 22: 3295–3304. PubMed PMC
Wu S., et al. (2015). VLN2 regulates plant architecture by affecting microfilament dynamics and polar auxin transport in rice. Plant Cell 27: 2829–2845. PubMed PMC
Yu J.H., Crevenna A.H., Bettenbühl M., Freisinger T., Wedlich-Söldner R. (2011). Cortical actin dynamics driven by formins and myosin V. J. Cell Sci. 124: 1533–1541. PubMed
Zádníková P., et al. (2010). Role of PIN-mediated auxin efflux in apical hook development of Arabidopsis thaliana. Development 137: 607–617. PubMed
Zhu J., Geisler M. (2015). Keeping it all together: auxin-actin crosstalk in plant development. J. Exp. Bot. 66: 4983–4998. PubMed
Bundling up the Role of the Actin Cytoskeleton in Primary Root Growth