Electron-triggered chemistry in HNO3/H2O complexes
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články
Grantová podpora
M 1983
Austrian Science Fund FWF - Austria
PubMed
28397887
PubMed Central
PMC5450009
DOI
10.1039/c7cp01205e
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Polar stratospheric clouds, which consist mainly of nitric acid containing ice particles, play a pivotal role in stratospheric chemistry. We investigate mixed nitric acid-water clusters (HNO3)m(H2O)n, m ≈ 1-6, n ≈ 1-15, in a laboratory molecular beam experiment using electron attachment and mass spectrometry and interpret our experiments using DFT calculations. The reactions are triggered by the attachment of free electrons (0-14 eV) which leads to subsequent intracluster ion-molecule reactions. In these reactions, the nitrate anion NO3- turns out to play the central role. This contradicts the electron attachment to the gas-phase HNO3 molecule, which leads almost exclusively to NO2-. The nitrate containing clusters are formed through at least three different reaction pathways and represent terminal product ions in the reaction cascade initiated by the electron attachment. Besides, the complex reaction pathways represent a new hitherto unrecognized source of atmospherically important OH and HONO molecules.
Zobrazit více v PubMed
Ravishankara A. R. Science. 1997;276:1058.
Kirner O., Müller R., Ruhnke R., Fischer H. Atmos. Chem. Phys. 2015;15:2019.
Peter T. Annu. Rev. Phys. Chem. 1997;48:785. PubMed
Martin S. T. Chem. Rev. 2000;100:3403. PubMed
Campbell L., Brunger M. J. Int. Rev. Phys. Chem. 2016;35:297.
Fehsenfeld F. C., Howard C. J., Schmeltekopf A. L. J. Chem. Phys. 1975;63:2835.
Adams N. G., Smith D., Viggiano A. A., Paulson J. F., Henchman M. J. J. Chem. Phys. 1986;84:6728.
Shuman N. S., Miller T. M., Viggiano A. A. J. Chem. Phys. 2012;136:124307. PubMed
Lengyel J., Pysanenko A., Kočišek J., Poterya V., Pradzynski C. C., Zeuch T., Slavíček P., Fárník M. J. Phys. Chem. Lett. 2012;3:3096. PubMed
Lengyel J., Pysanenko A., Rubovič P., Fárník M. Eur. Phys. J. D. 2015;69:269.
Fárník M., Poterya V. Front. Chem. 2014;2:4. PubMed PMC
Lengyel J., Kočišek J., Fárník M., Fedor J. J. Phys. Chem. C. 2016;120:7397. PubMed
Kočišek J., Grygoryeva K., Lengyel J., Fárník M., Fedor J. Eur. Phys. J. D. 2016;70:98.
May O., Fedor J., Allan M. Phys. Rev. A. 2009;80:12706.
Fedor J., Cicman P., Coupier B., Feil S., Winkler M., Głuch K., Husarik J., Jaksch D., Farizon B., Mason N. J., Scheier P., Märk T. D. J. Phys. B: At., Mol. Opt. Phys. 2006;39:3935.
Rangwala S. A., Krishnakumar E., Kumar S. V. K. Phys. Rev. A. 2003;68:52710.
Walker M., Harvey A. J. A., Sen A., Dessent C. E. H. J. Phys. Chem. A. 2013;117:12590. PubMed
Scott J. R., Wright J. B. J. Phys. Chem. A. 2004;108:10578.
Goebbert D. J., Garand E., Wende T., Bergmann R., Meijer G., Asmis K. R., Neumark D. M. J. Phys. Chem. A. 2009;113:7584. PubMed
Heine N., Yacovitch T. I., Schubert F., Brieger C., Neumark D. M., Asmis K. R. J. Phys. Chem. A. 2014;118:7613. PubMed
Lalitha M., Senthilkumar L. J. Mol. Graphics Modell. 2014;54:148. PubMed
Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Mennucci B. and Petersson G. A., et al., Gaussian 09, Revision D.01, Gaussian, Inc, Wallingford CT, 2013.
Slavíček P., Ončák M., Hollas D. and Svoboda O., ABIN, Version 1.0, https://github.com/PHOTOX/ABIN, accessed 05.08.2016.
Ferguson E. E., Arnold F. Acc. Chem. Res. 1981;14:327.
Möhler O., Arnold F. J. Atmos. Chem. 1991;13:33.
Huey L. Int. J. Mass Spectrom. Ion Processes. 1996;153:145.
Wincel H., Mereand E., Castleman, Jr. A. W. J. Phys. Chem. 1996;100:7488.
Lengyel J., van der Linde C., Akhgarnusch A., Beyer M. K. Int. J. Mass Spectrom. 2016 doi: 10.1016/j.ijms.2016.09.023. DOI
Hotop H., Ruf M.-W., Allan M., Fabrikant I. I. Adv. At., Mol., Opt. Phys. 2003;49:85.
Janečková R., May O., Milosavljević A. R., Fedor J. Int. J. Mass Spectrom. 2014;365–366:163.
Kay B. D., Hermann V., Castleman Jr. A. W. Chem. Phys. Lett. 1981;80:469.
McCurdy P. R., Hess W. P., Xantheas S. S. J. Phys. Chem. A. 2002;106:7628.
Leopold K. R. Annu. Rev. Phys. Chem. 2011;62:327. PubMed
Riikonen S., Parkkinen P., Halonen L., Gerber R. B. J. Phys. Chem. Lett. 2013;4:1850. PubMed
Ončák M., Slavíček P., Fárník M., Buck U. J. Phys. Chem. A. 2011;115:6155. PubMed
Guggemos N., Slavíček P., Kresin V. V. Phys. Rev. Lett. 2015;114:43401. PubMed
Fabrikant I. I. J. Phys. B: At., Mol. Opt. Phys. 2016;49:222005.
Lengyel J., Med J., Slavíček P. and Beyer M. K., 2017, submitted. PubMed PMC
Paulson J. F., Dale F. J. Chem. Phys. 1982;77:4006.
Viggiano A. A., Arnold F. Planet. Space Sci. 1981;29:895.
Heitmann H., Arnold F. Nature. 1983;306:747.
Viggiano A. A. and Arnold F., Ion Chemistry and Composition of the Atmosphere, CRC Press, Inc., Boca Raton, 1995.
Arnold F. Space Sci. Rev. 2008;137:225.
Finlayson-Pitts B. J. and Pitts J. N., Chemistry of the Upper and Lower Atmosphere: Theory, Experiments and Applications, Academic Press, San Diego, CA, 2000.
Bridging Gaps between Clusters in Molecular-Beam Experiments and Aerosol Nanoclusters
Stabilization of benzene radical anion in ammonia clusters