Electron-triggered chemistry in HNO3/H2O complexes

. 2017 May 17 ; 19 (19) : 11753-11758.

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid28397887

Grantová podpora
M 1983 Austrian Science Fund FWF - Austria

Polar stratospheric clouds, which consist mainly of nitric acid containing ice particles, play a pivotal role in stratospheric chemistry. We investigate mixed nitric acid-water clusters (HNO3)m(H2O)n, m ≈ 1-6, n ≈ 1-15, in a laboratory molecular beam experiment using electron attachment and mass spectrometry and interpret our experiments using DFT calculations. The reactions are triggered by the attachment of free electrons (0-14 eV) which leads to subsequent intracluster ion-molecule reactions. In these reactions, the nitrate anion NO3- turns out to play the central role. This contradicts the electron attachment to the gas-phase HNO3 molecule, which leads almost exclusively to NO2-. The nitrate containing clusters are formed through at least three different reaction pathways and represent terminal product ions in the reaction cascade initiated by the electron attachment. Besides, the complex reaction pathways represent a new hitherto unrecognized source of atmospherically important OH and HONO molecules.

Zobrazit více v PubMed

Ravishankara A. R. Science. 1997;276:1058.

Kirner O., Müller R., Ruhnke R., Fischer H. Atmos. Chem. Phys. 2015;15:2019.

Peter T. Annu. Rev. Phys. Chem. 1997;48:785. PubMed

Martin S. T. Chem. Rev. 2000;100:3403. PubMed

Campbell L., Brunger M. J. Int. Rev. Phys. Chem. 2016;35:297.

Fehsenfeld F. C., Howard C. J., Schmeltekopf A. L. J. Chem. Phys. 1975;63:2835.

Adams N. G., Smith D., Viggiano A. A., Paulson J. F., Henchman M. J. J. Chem. Phys. 1986;84:6728.

Shuman N. S., Miller T. M., Viggiano A. A. J. Chem. Phys. 2012;136:124307. PubMed

Lengyel J., Pysanenko A., Kočišek J., Poterya V., Pradzynski C. C., Zeuch T., Slavíček P., Fárník M. J. Phys. Chem. Lett. 2012;3:3096. PubMed

Lengyel J., Pysanenko A., Rubovič P., Fárník M. Eur. Phys. J. D. 2015;69:269.

Fárník M., Poterya V. Front. Chem. 2014;2:4. PubMed PMC

Lengyel J., Kočišek J., Fárník M., Fedor J. J. Phys. Chem. C. 2016;120:7397. PubMed

Kočišek J., Grygoryeva K., Lengyel J., Fárník M., Fedor J. Eur. Phys. J. D. 2016;70:98.

May O., Fedor J., Allan M. Phys. Rev. A. 2009;80:12706.

Fedor J., Cicman P., Coupier B., Feil S., Winkler M., Głuch K., Husarik J., Jaksch D., Farizon B., Mason N. J., Scheier P., Märk T. D. J. Phys. B: At., Mol. Opt. Phys. 2006;39:3935.

Rangwala S. A., Krishnakumar E., Kumar S. V. K. Phys. Rev. A. 2003;68:52710.

Walker M., Harvey A. J. A., Sen A., Dessent C. E. H. J. Phys. Chem. A. 2013;117:12590. PubMed

Scott J. R., Wright J. B. J. Phys. Chem. A. 2004;108:10578.

Goebbert D. J., Garand E., Wende T., Bergmann R., Meijer G., Asmis K. R., Neumark D. M. J. Phys. Chem. A. 2009;113:7584. PubMed

Heine N., Yacovitch T. I., Schubert F., Brieger C., Neumark D. M., Asmis K. R. J. Phys. Chem. A. 2014;118:7613. PubMed

Lalitha M., Senthilkumar L. J. Mol. Graphics Modell. 2014;54:148. PubMed

Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Mennucci B. and Petersson G. A., et al., Gaussian 09, Revision D.01, Gaussian, Inc, Wallingford CT, 2013.

Slavíček P., Ončák M., Hollas D. and Svoboda O., ABIN, Version 1.0, https://github.com/PHOTOX/ABIN, accessed 05.08.2016.

Ferguson E. E., Arnold F. Acc. Chem. Res. 1981;14:327.

Möhler O., Arnold F. J. Atmos. Chem. 1991;13:33.

Huey L. Int. J. Mass Spectrom. Ion Processes. 1996;153:145.

Wincel H., Mereand E., Castleman, Jr. A. W. J. Phys. Chem. 1996;100:7488.

Lengyel J., van der Linde C., Akhgarnusch A., Beyer M. K. Int. J. Mass Spectrom. 2016 doi: 10.1016/j.ijms.2016.09.023. DOI

Hotop H., Ruf M.-W., Allan M., Fabrikant I. I. Adv. At., Mol., Opt. Phys. 2003;49:85.

Janečková R., May O., Milosavljević A. R., Fedor J. Int. J. Mass Spectrom. 2014;365–366:163.

Kay B. D., Hermann V., Castleman Jr. A. W. Chem. Phys. Lett. 1981;80:469.

McCurdy P. R., Hess W. P., Xantheas S. S. J. Phys. Chem. A. 2002;106:7628.

Leopold K. R. Annu. Rev. Phys. Chem. 2011;62:327. PubMed

Riikonen S., Parkkinen P., Halonen L., Gerber R. B. J. Phys. Chem. Lett. 2013;4:1850. PubMed

Ončák M., Slavíček P., Fárník M., Buck U. J. Phys. Chem. A. 2011;115:6155. PubMed

Guggemos N., Slavíček P., Kresin V. V. Phys. Rev. Lett. 2015;114:43401. PubMed

Fabrikant I. I. J. Phys. B: At., Mol. Opt. Phys. 2016;49:222005.

Lengyel J., Med J., Slavíček P. and Beyer M. K., 2017, submitted. PubMed PMC

Paulson J. F., Dale F. J. Chem. Phys. 1982;77:4006.

Viggiano A. A., Arnold F. Planet. Space Sci. 1981;29:895.

Heitmann H., Arnold F. Nature. 1983;306:747.

Viggiano A. A. and Arnold F., Ion Chemistry and Composition of the Atmosphere, CRC Press, Inc., Boca Raton, 1995.

Arnold F. Space Sci. Rev. 2008;137:225.

Finlayson-Pitts B. J. and Pitts J. N., Chemistry of the Upper and Lower Atmosphere: Theory, Experiments and Applications, Academic Press, San Diego, CA, 2000.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...