Atmospheric processes on ice nanoparticles in molecular beams

. 2014 ; 2 () : 4. [epub] 20140224

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid24790973

THIS REVIEW SUMMARIZES SOME RECENT EXPERIMENTS WITH ICE NANOPARTICLES (LARGE WATER CLUSTERS) IN MOLECULAR BEAMS AND OUTLINES THEIR ATMOSPHERIC RELEVANCE: (1) Investigation of mixed water-nitric acid particles by means of the electron ionization and sodium doping combined with photoionization revealed the prominent role of HNO3 molecule as the condensation nuclei. (2) The uptake of atmospheric molecules by water ice nanoparticles has been studied, and the pickup cross sections for some molecules exceed significantly the geometrical sizes of the ice nanoparticles. (3) Photodissociation of hydrogen halides on water ice particles has been shown to proceed via excitation of acidically dissociated ion pair and subsequent biradical generation and H3O dissociation. The photodissociation of CF2Cl2 molecules in clusters is also mentioned. Possible atmospheric consequences of all these results are briefly discussed.

Zobrazit více v PubMed

Baum G., Huber J. R. (1993). Photodissociation of CF2Cl2 at 193 nm investigated by photofragment spectroscopy. Chem. Phys. Lett. 203, 261–264 10.1016/0009-2614(93)85398-8 DOI

Bobbert C., Schütte S., Steinbach C., Buck U. (2002). Fragmentation and reliable size distributions of large ammonia and water clusters. Eur. Phys. J. D 19, 183–192 10.1140/epjd/e20020070 DOI

Buch V., Bauerecker S., Devlin J. P., Buck U., Kazimirski J. K. (2004). Solid water clusters in the size range of tens-thousands of H2O: a combined computational/spectroscopic outlook. Int. Rev. Phys. Chem. 23, 375–433 10.1080/01442350412331316124 DOI

Buch V., Devlin J. P. (ed.). (2003). Water in Confining Geometries. Berlin: Springer; 10.1007/978-3-662-05231-0 DOI

Buck U. (2002). Photodissociation of hydrogen halide molecules in different cluster environment. J. Phys. Chem. A 106, 10049–10062 10.1021/jp0208079 DOI

Campargue R. (ed.). (2001). Atomic and Molecular Beams. The State of the Art 2000. Berlin: Springer; 10.1007/978-3-642-56800-8 DOI

Chandler D. W., Houston P. L. (1987). Two-dimensional imaging of state-selected photodissociation products detected by multiphoton ionization. J. Chem. Phys. 87, 1445 10.1063/1.453276 DOI

Cuvellier J., Meynadier P., de Pujo P., Sublemontier O., Visticot J.-P., Berlande J., et al. (1991). A simple method to determine the mean cluster size in a molecular beam. Z. Phys. D 21, 265–269 10.1007/BF01426384 DOI

Dermota T. E., Hydutsky D. P., Bianco N. J., Castleman A. W. (2005). Photoinduced ion-pair formation in the (HI)m(H2O)n cluster system. J. Chem. Phys. 123, 214308 10.1063/1.2135291 PubMed DOI

Dickens D. B., Sloan J. J. (2002). The nucleation and freezing of dilute nitric acid aerosols. J. Phys. Chem. A 106, 10543–10549 10.1021/jp0259566 DOI

Eppink A. T. J. B., Parker D. H. (1997). Velocity map imaging of ions and electrons using electrostatic lenses: application in photoelectron and photofragment ion imaging of molecular oxygen. Rev. Sci. Instrum. 68, 3477 10.1063/1.1148310 DOI

Fárník M. (2011). Molecular Dynamics in Free Clusters and Nanoparticles Studied in Molecular Beams. Prague: ICT Prague Press; ISBN: 978-80-7080-781-1.

Fárník M., Buck U. (2006). Oriented xenon hydride molecules in the gas phase. Int. Rev. Phys. Chem. 25, 583–612 10.1080/01442350600847746 DOI

Fárník M., Nahler N. H., Buck U., Slavíček P., Jungwirth P. (2005). Photodissociation of HBr on the surface of Arn clusters at 193 nm. Chem. Phys. 315, 161–170 10.1016/j.chemphys.2005.03.025 PubMed DOI

Fárník M., Poterya V., Kočišek J., Fedor J., Slavíček P. (2012). Short review on the acetylene photochemistry in clusters: photofragment caging and reactivity. Mol. Phys. 110, 2817–2828 10.1080/00268976.2012.706389 DOI

Fedor J., Kočišek J., Poterya V., Votava O., Pysanenko A., Lipciuc L., et al. (2011a). Velocity map imaging of hbr photodissociation in large rare gas clusters. J. Chem. Phys. 134, 154303 10.1063/1.3578610 PubMed DOI

Fedor J., Poterya V., Pysanenko A., Fárník M. (2011b). Cluster cross sections from pickup measurements are the established methods consistent. J. Chem. Phys. 135, 104305 10.1063/1.3633474 PubMed DOI

Fenner K., Furlan A., Huber J. R. (1997). Photofragmentation of OClO clusters in a supersonic jet at 360 and 275 nm. J. Phys. Chem. A 101, 5736–5741 10.1021/jp9710289 DOI

Finlayson-Pitts B. J. (2009). Reactions at surfaces in the atmosphere: integration of experiments and theory as necessary (but not necessarily sufficient) for predicting the physical chemistry of aerosols. Phys. Chem. Chem. Phys. 11, 7760–7779 10.1039/b906540g PubMed DOI

Finlayson-Pitts B. J., Pitts J. N. (2000). Chemistry of the Upper and Lower Atmosphere. San Diego: Academic Press

Forck R. M., Dauster I., Schieweck Y., Zeuch T., Buck U., Ončák M., et al. (2010). Observation of two classes of isomers of hydrated electrons in sodium-water clusters. J. Chem. Phys. 132, 221102 10.1063/1.3439393 PubMed DOI

Forck R. M., Pradzynski C. C., Wolff S., Ončák M., Slavíček P., Zeuch T. (2012). Size resolved infrared spectroscopy of Na(CH3OH)n (n = 4–7) clusters in the oh stretching region: unravelling the interaction of methanol clusters with a sodium atom and the emergence of the solvated electron. Phys. Chem. Chem. Phys. 9, 3004–3016 10.1039/c2cp23301k PubMed DOI

Forysinski P., Zielke P., Luckhaus D., Corbett J., Signorell R. (2011). Photoionization of small sodium-doped acetic acid clusters. J. Chem. Phys. 134, 094314 10.1063/1.3559464 PubMed DOI

Fujii A., Mizuse K. (2013). Infrared spectroscopic studies on hydrogen-bonded water networks in gas phase clusters. Int. Rev. Phys. Chem. 32, 266–307 10.1080/0144235X.2012.760836 DOI

Gebhardt C. R., Rakitzis T. P., Samartzis P. C., Ladopoulos V., Kitsopoulos T. N. (2001). Slice imaging: a new approach to ion imaging and velocity mapping. Rev. Sci. Instrum. 72, 3848 10.1063/1.1403010 PubMed DOI

Hanson D. R. (1995). Reactivity of ClONO2 on H218O ice and organic liquids. J. Phys. Chem. 99, 13059–13061 10.1021/j100035a003 DOI

Heath C. H., Streletzsky K. A., Wyslouzil B. E., Wölk J., Strey R. (2003). Small angle neutron scattering from D2O-H2O nanodroplets and binary nucleation rates in a supersonic nozzle. J. Chem. Phys. 118, 5465–5473 10.1063/1.1554736 DOI

Hurley S. M., Dermota T. E., Hydutsky D. P., Castleman A. W. (2002). Dynamics of hydrogen bromide dissolution in the ground and excited states. Science 298, 202–204 10.1126/science.1075307 PubMed DOI

Hurley S. M., Dermota T. E., Hydutsky D. P., Castleman A. W. (2003). The ultrafast dynamics of HBr-water clusters: influences on ion-pair formation. J. Chem. Phys. 118, 9272 10.1063/1.1568729 DOI

Huthwelker T., Ammann M., Peter T. (2006). The uptake of acidic gases on ice. Chem. Rev. 106, 1375–1444 10.1021/cr020506v PubMed DOI

Hydutsky D. P., Bianco N. J., Castleman A. W. (2009). Photochemistry and solvation of HI(H2O)n clusters: evidence of biradical formation. Chem. Phys. Lett. 476, 15–18 10.1016/j.cplett.2009.05.005 DOI

IUPAC subcommittee on gas kinetic data evaluation, data sheet PCL15 (2000). Available online at: http://www.iupac-kinetic.ch.cam.ac.uk/ Accessed on 15th Dec 2000.

Kay B. D., Hermann V., Castleman A. W. (1981). Studies of gas-phase clusters: the solvation of HNO3 in microscopic aqueous clusters. Chem. Phys. Lett. 80, 469–474 10.1016/0009-2614(81)85059-2 DOI

Kočišek J., Lengyel J., Fárník M. (2013a). Ionization of large homogeneous and heterogeneous clusters generated in acetylene-Ar expansions: cluster ion polymerization. J. Chem. Phys. 138, 124306 10.1063/1.4796262 PubMed DOI

Kočišek J., Lengyel J., Fárník M., Slavíček P. (2013b). Energy and charge transfer in ionized argon coated water clusters. J. Chem. Phys. 139, 214308 10.1063/1.4834715 PubMed DOI

Kreher C., Carter R., Huber J. R. (1999). Photodissociation of OClO and Ar/OClO and H2O/OClO clusters studied by the resonance enhanced multiphoton ionzation-time of flight method. J. Chem. Phys. 110, 3309 10.1063/1.478196 DOI

Kim Y. J., Wyslouzil B. E., Wilhelmski G., Wölk J., Strey R. (2004). Izothermal nucleation rates in a supersonic nozzles and the properties of small water clusters. J. Phys. Chem. A 108, 4365–4377 10.1021/jp037030j DOI

Klán P., Holoubek I. (2002). Ice (photo)chemistry. Ice as medium for long-term (photo)chemical transformations – environmental implications. Chemosphere 46, 1201–1210 10.1016/S0045-6535(01)00285-5 PubMed DOI

Kulmala M., Kontkanen J., Junninen H., Lehtipalo K., Manninen H. E., Nieminen T., et al. (2013). Direct observations of atmospheric aerosol nucleation. Science 339, 943–946 10.1126/science.1227385 PubMed DOI

Lengyel J., Gorejová R., Herman Z., Fáarník M. (2013). Proton transfer in hydrogen-bonded network of phenol molecules: intracluster formation of water. J. Phys. Chem. A 117, 11225–11232 10.1021/jp406773s PubMed DOI

Lengyel J., Kočišek J., Poterya V., Pysanenko A., Svrčková P., Fárník M., et al. (2012a). Uptake of atmospheric molecules by ice nanoparticles: pickup cross sections. J. Chem. Phys. 137, 034304 10.1063/1.4733987 PubMed DOI

Lengyel J., Pysanenko A., Kočišek J., Poterya V., Pradzynski C., Zeuch T., et al. (2012b). Nucleation of mixed nitric acid–water ice nanoparticles in molecular beams that starts with a HNO3 molecule. J. Phys. Chem. Lett. 3, 3096–3101 10.1021/jz3013886 PubMed DOI

Li Q., Huber J. R. (2001). The photodissociation of water-clustered HNO3 studied at 193 nm by the LIF method. Chem. Phys. Lett. 345, 415–422 10.1016/S0009-2614(01)00915-0 DOI

Li T., Donadio D., Galli G. (2013). Ice nucleation at the nanoscale probes no man's land of water. Nat. Commun. 4, 1877 10.1038/ncomms2918 PubMed DOI

Lu Q.-B. (2010). Cosmic-ray-driven electron-induced reactions of halogenated molecules adsorbed on ice surfaces: implications for atmospheric ozone depletion and global climate change. Phys. Rep. 487, 141–167 10.1016/j.physrep.2009.12.002 DOI

MacTaylor R. S., Castleman A. W. (2000). Cluster ion reactions: insights into processes of atmospheric significance. J. Atmos. Chem. 36, 23–63 10.1023/A:1006376914390 DOI

Manka A., Pathak H., Tanimura S., Wölk J., Strey R., Wyslouzil B. E. (2012). Freezing water in no-man's land. Phys. Chem. Chem. Phys. 14, 4505–4516 10.1039/c2cp23116f PubMed DOI

Marcotte G., Ayotte P., Bendounan A., Sirotti F., Laffon C., Parent P. (2013). Dissociative adsorption of nitric acid at the surface of amorphous solid water revealed by X-ray absorption spectroscopy. J. Phys. Chem. Lett. 4, 2643–2648 10.1021/jz401310j DOI

Nahler N. H., Fárník M., Buck U. (2004a). Search for oriented HXeX molecules from the photolysis of HCl and HBr in xenon clusters. Chem. Phys. 301, 173–182 10.1016/j.chemphys.2003.11.016 DOI

Nahler N. H., Fárník M., Buck U., Vach H., Gerber R. B. (2004b). Photodissociation of HCl and small (HCl)m complexes in and on large Arn clusters. J. Chem. Phys. 121, 1293 10.1063/1.1763570 PubMed DOI

Ončák M., Slavíček P., Fárník M., Buck U. (2011). Photochemistry of hydrogen halides on water clusters: simulations of electronic spectra and photodynamics, and comparison with photodissociation experiments. J. Phys. Chem. A 115, 6155–6168 10.1021/jp111264e PubMed DOI

Ončák M., Slavíček P., Poterya V., Fárník M., Buck U. (2008). Emergence of charge-transfer-to-solvent band in the absorption spectra of hydrogen halides on ice nanoparticles: spectroscopic evidence for acidic dissociation. J. Phys. Chem. A 112, 5344–5353 10.1021/jp8012305 PubMed DOI

Oppliger R., Allanic A., Rossi M. J. (1997). Real-time kinetics of the uptake of ClONO2 on ice and in the presence of HCl in the temperature range 160 K≤ T ≤200 K. J. Phys. Chem. A 101, 1903–1911 10.1021/jp963065q DOI

Peter T. (1997). Microphysics and heterogeneous chemistry of polar stratospheric clouds. Ann. Rev. Phys. Chem. 48, 785–822 10.1146/annurev.physchem.48.1.785 PubMed DOI

Poterya V., Fárník M., Ončák M., Slavíček P. (2008a). Water photodissociation in free ice nanoparticles at 243 nm and 193 nm. Phys. Chem. Chem. Phys. 10, 4835 10.1039/b806865h PubMed DOI

Poterya V., Fáarník M., Slavíček P., Buck U., Kresin V. V. (2007). Photodissociation of hydrogen halide molecules on free ice nanoparticles. J. Chem. Phys. 126, 071101 10.1063/1.2709635 PubMed DOI

Poterya V., Fedor J., Pysanenko A., Tkáč O., Lengyel J., Ončák M., et al. (2011). Photochemistry of HI on argon and water nanoparticles: hydronium radical generation in HI·(H2O)n. Phys. Chem. Chem. Phys. 13, 2250–2258 10.1039/c0cp01518k PubMed DOI

Poterya V., Kočišek J., Pysanenko A., Fárník M. (2014). Caging of Cl atoms from photodissociation of CF2Cl2 in clusters. Phys. Chem. Chem. Phys. 16, 421–429 10.1039/c3cp51926k PubMed DOI

Poterya V., Votava O., Fárník M., Ončák M., Slavíček P., Buck U., et al. (2008b). Generation and orientation of organoxenon molecule H-Xe-CCH in the gas phase. J. Chem. Phys. 128, 104313 10.1063/1.2837656 PubMed DOI

Pradzynski C. C., Forck R. M., Zeuch T., Slavíček P., Buck U. (2012). A fully size-resolved perspective on the crystallization of water clusters. Science 337, 1529–1532 10.1126/science.1225468 PubMed DOI

Prenni A. J., Tolbert M. A. (2001). Studies of polar stratospheric cloud formation. Acc. Chem. Res. 34, 545–553 10.1021/ar950186k PubMed DOI

Preston T. C., Wang C. C., Signorell R. (2012). Infrared spectroscopy and modeling of co-crystalline CO2·C2H2 aerosol particles. I. The formation and decomposition of co-crystalline CO2·C2H2 aerosol particles. J. Chem. Phys. 136, 094509 10.1063/1.3690063 PubMed DOI

Ravishankara A. R. (1997). Heterogeneous and multiphase chemistry in the troposphere. Science 276, 1058–1065 10.1126/science.276.5315.1058 DOI

Signorell R., Reid J. P. (ed.). (2011). Fundamentals and applications in aerosol spectroscopy. Boca Raton, FL: CRC Press; Taylor and Francis Group; 10.1201/b10417 DOI

Slavíček P., Jungwirth P., Lewerenz M., Nahler N. H., Fárník M., Buck U. (2003). Pickup and photodissociation of hydrogen halides in floppy neon clusters. J. Phys. Chem. A 107, 7743–7754 10.1021/jp0357525 DOI

Slavíček P., Jungwirth P., Lewerenz M., Nahler N. H., Fárník M., Buck U. (2004). Photodissociation of hydrogen iodine on the surface of large argon clusters: the orientation of the librational wave function and the scattering from the cluster cage. J. Chem. Phys. 120, 4498 10.1063/1.1643895 PubMed DOI

Sobolewski A. L., Domcke W. (2002). Hydrated hydronium: a cluster model of the solvated electron? Phys. Chem. Chem. Phys. 4, 4–10 10.1039/b107373g DOI

Sobolewski A. L., Domcke W. (2003). Photochemistry of HCl(H2O)4: cluster model of the photodetachment of the chloride anion in water. J. Phys. Chem. A 107, 1557–1562 10.1021/jp021533s DOI

Sobolewski A. L., Domcke W. G. (2007). Computational studies of the photophysics of hydrogen-bonded molecular systems. J. Phys. Chem. A 111, 11725–11735 10.1021/jp075803o PubMed DOI

Solomon S. (1999). Stratospheric ozone depletion: a review of concepts and history. Rev. Geophys. 37, 275–316 10.1029/1999RG900008 DOI

Stetzer O., Möhler O., Wagner R., Benz S., Saathoff H., Bunz H., et al. (2006). Homogeneous nucleation rates of nitric acid dihydrate (nad) at simulated stratospheric conditions – part I: experimental results. Atmos. Chem. Phys. 6, 3023–3033 10.5194/acp-6-3023-2006 DOI

Taketani F., Takahashi K., Matsumi Y. (2005). Quantum yields for Cl(2Pj) atom formation from the photolysys of chlorofluorocarbons and chlorinated hydrocarbons at 193.3 nm. J. Phys. Chem. A 109, 2855–2860 10.1021/jp044218+ PubMed DOI

Vaida V. (2011). Perspective: water cluster mediated atmospheric chemistry. J. Chem. Phys. 135, 020901 10.1063/1.3608919 PubMed DOI

Vehkamäki H., McGrath M. J., Kurtén T., Julin J., Lehtinen K. E. J., Kulmala M. (2012). Rethinking the application of the first nucleation theorem to particle formation. J. Chem. Phys. 136, 094107 10.1063/1.3689227 PubMed DOI

Whitaker B. (ed.). (2003). Imaging in Molecular Dynamics. Cambridge: Cambridge University Press; 10.1017/CBO9780511535437 DOI

Yabushita A., Inoue Y., Senga T., Kawasaki M., Sato S. (2002). Photodissociation of chlorine molecules adsorbed on amorphous and crystalline water ice films. J. Phys. Chem. B 106, 3151–3159 10.1021/jp012855j DOI

Yacovitch T. I., Heine N., Brieger C., Wende T., Hock C., Neumark D. M., et al. (2012). Vibrational spectroscopy of atmospherically relevant acid cluster anions: bisulfate versus nitrate core structures. J. Chem. Phys. 136, 241102 10.1063/1.4732148 PubMed DOI

Yacovitch T. I., Wende T., Jiang L., Heine N., Meijer G., Neumark D. M., et al. (2011). Infrared spectroscopy of hydrated bisulfate anion clusters: HSO4(H2O)1-16. J. Phys. Chem. Lett. 2, 2135–2140 10.1021/jz200917f DOI

Yen M., Johnson P. M., White M. G. (1993). The vacuum ultraviolet photodissociation of the chlorofluorocarbons. photolysis of CF3Cl, CF2Cl2, and CFCl3 at 187, 125, and 118 nm. J. Chem. Phys. 99, 126–139 10.1063/1.465791 DOI

Yoder B. L., Litman J. H., Forysinski P. W., Corbett J. L., Signorell R. (2011). Sizer for neutral weakly bound ultrafine aerosol particles based on sodim doping and mass spectrometric detection. J. Phys. Chem. Lett. 2, 2623–2628 10.1021/jz201086v DOI

Zamith S., de Tournadre G., Labastie P., L'Hermite J.-M. (2013). Attachment cross-sections of protonated and deprotonated water clusters. J. Chem. Phys. 138, 034301 10.1063/1.4775401 PubMed DOI

Zamith S., Feiden P., Labastie P., L'Hermite J.-M. (2010a). Sticking properties of water clusters. Phys. Rev. Lett. 104, 103401 10.1103/PhysRevLett.104.103401 PubMed DOI

Zamith S., Feiden P., Labastie P., L'Hermite J.-M. (2010b). Attachment cross sections of protonated water clusters. J. Chem. Phys. 133, 154305 10.1063/1.3505302 PubMed DOI

Zeuch T., Buck U. (2013). Sodium doped hydrogen bonded clusters: solvated electrons and size selection. Chem. Phys. Lett. 579, 1–10 10.1016/j.cplett.2013.06.011 PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Electron-triggered chemistry in HNO3/H2O complexes

. 2017 May 17 ; 19 (19) : 11753-11758.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...