Stabilization of benzene radical anion in ammonia clusters

. 2022 Nov 18 ; 24 (44) : 27128-27135. [epub] 20221118

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36342373

Grantová podpora
W 1259 Austrian Science Fund FWF - Austria

We investigate electron attachment to large ammonia clusters doped with a single benzene (Bz) molecule (NH3)N·Bz, N̄ ≈ 320. Negatively charged clusters are probed by mass spectrometry, and the energy-dependent ion yields are derived from mass spectra measured at different electron energies. The ion efficiency curves of pure ammonia clusters exhibit two maxima. At around 6 eV, (NH3)n-1NH2- ions are produced via dissociative electron attachment (DEA) to NH3 molecules. (NH3)n- ions produced at this energy are formed by DEA followed by fragment caging. At low energies around 1.3 eV, only (NH3)n- ions are formed for cluster sizes n ≥ 35 that correspond to solvated electrons in ammonia clusters. The doped (NH3)n·Bz- cluster ions exhibit essentially the same energy dependence. The (NH3)n·Bz- ions are metastable and evaporate NH3 molecule(s), while pure (NH3)n- ions are stable. The lifetime for NH3 molecule evaporation from the Bz-doped clusters was estimated as τ ≈ 18 μs. We interpret the metastability of the doped clusters by the charge localization on a Bz- ion solvated in the ammonia, which is accompanied by an energy release leading to the evaporation of NH3 molecule(s).

Zobrazit více v PubMed

Birch A. J. Nature. 1946;158:585. doi: 10.1038/158585c0. DOI

Haberland H. Schindler H.-G. Worsnop D. R. Ber. Bunsenges. Phys. Chem. 1984;88:270–272. doi: 10.1002/bbpc.19840880322. DOI

Haberland H. Ludewigt C. Schindler H.-G. Worsnop D. R. Surf. Sci. 1985;156:157–164. doi: 10.1016/0039-6028(85)90569-2. DOI

Sarkas H. W. Arnold S. T. Eaton J. G. Lee G. H. Bowen K. H. J. Chem. Phys. 2002;116:5731. doi: 10.1063/1.1451057. DOI

Young R. M. Newmark D. M. Chem. Rev. 2012;112:5553–5577. doi: 10.1021/cr300042h. PubMed DOI

Stampfli P. Bennemann K. H. Phys. Rev. Lett. 1987;58:2635. doi: 10.1103/PhysRevLett.58.2635. PubMed DOI

Baranyi B. Turi L. J. Chem. Phys. 2020;151:204304. doi: 10.1063/1.5123790. PubMed DOI

Baranyi B. Turi L. J. Phys. Chem. B. 2020;124:7205–7216. doi: 10.1021/acs.jpcb.0c03908. PubMed DOI PMC

Snodgrass J. T. Coe J. V. Freidhoff C. B. McHugh K. M. Arnold S. T. Bowen K. H. Faraday Discuss. Chem. Soc. 1988;86:241–256. doi: 10.1039/DC9888600241. DOI

Snodgrass J. T. Coe J. V. Freidhoff C. B. McHugh K. M. Arnold S. T. Bowen K. H. J. Phys. Chem. 1995;99:9675–9680. doi: 10.1021/j100024a006. DOI

Sharp T. E. Dowell J. T. J. Chem. Phys. 1969;50:3024. doi: 10.1063/1.1671500. DOI

Compton R. N. Stockdale J. A. Reinhardt P. W. Phys. Rev. 1969;180:111. doi: 10.1103/PhysRev.180.111. DOI

Rawat P. Prabhudesai V. S. Rahman M. A. Ram N. B. Krishnakumar E. Int. J. Mass Spectrom. 2008;277:96–102. doi: 10.1016/j.ijms.2008.05.015. DOI

Ram N. B. Krisnakumar E. J. Chem. Phys. 2012;136:164308. doi: 10.1063/1.4705358. PubMed DOI

Marasas R. A. Iyoda T. Miller J. R. J. Phys. Chem. A. 2003;107:2033–2038. doi: 10.1021/jp026893u. DOI

Allan M. Čurík R. Čársky P. J. Chem. Phys. 2019;151:064119. doi: 10.1063/1.5110677. PubMed DOI

Mitsui M. Nakajima A. Kaya K. Even U. J. Chem. Phys. 2001;115:5707–5710. doi: 10.1063/1.1407844. DOI

Kostal V. Brezina K. Marsalek O. Jungwirth P. J. Phys. Chem. A. 2021;125:5811–5818. doi: 10.1021/acs.jpca.1c04594. PubMed DOI

Fárník M. Lengyel J. Mass Spec Rev. 2018;37:630–651. doi: 10.1002/mas.21554. PubMed DOI

Fárník M. Fedor J. Kočišek J. Lengyel J. Pluhařová E. Poterya V. Pysanenko A. Phys. Chem. Chem. Phys. 2021;23:3195–3213. doi: 10.1039/D0CP06127A. PubMed DOI

Bobbert C. Schütte S. Steinbach C. Buck U. Eur. Phys. J. D. 2002;19:183–192.

Lengyel J. Pysanenko A. Kočišek J. Poterya V. Pradzynski C. Zeuch T. Slavíček P. Fárník M. J. Phys. Chem. Lett. 2012;3:3096–3109. doi: 10.1021/jz3013886. PubMed DOI

Kočišek J. Lengyel J. Fárník M. J. Chem. Phys. 2013;138:124306. doi: 10.1063/1.4796262. PubMed DOI

Lengyel J. Kočišek J. Fárník M. Fedor J. J. Phys. Chem. C. 2016;120:7397–7402. doi: 10.1021/acs.jpcc.6b00901. DOI

Kočišek J. Pysanenko A. Fárník M. Fedor J. J. Phys. Chem. Lett. 2016;7:3401–3405. doi: 10.1021/acs.jpclett.6b01601. PubMed DOI

Vinklárek I. S. Pysanenko A. Pluhařová E. Fárník M. J. Phys. Chem. Lett. 2022;13:3781–3788. doi: 10.1021/acs.jpclett.2c00835. PubMed DOI PMC

Kočišek J. Grygoryeva K. Lengyel J. Fárník M. Fedor J. Eur. Phys. J. D. 2016;70:98. doi: 10.1140/epjd/e2016-70074-0. DOI

Lengyel J. Ončák M. Fedor J. Kočišek J. Pysanenko A. Beyer M. K. Fárník M. Phys. Chem. Chem. Phys. 2017;19:11753–11758. doi: 10.1039/C7CP01205E. PubMed DOI PMC

Ram N. B. Krishnakumar E. J. Chem. Phys. 2012;136:164308. doi: 10.1063/1.4705358. PubMed DOI

Wei S. Q. Castleman A. W. Int. J. Mass Spectrom. Ion Processes. 1994;131:233–264. doi: 10.1016/0168-1176(93)03886-Q. DOI

Belau L. Wilson K. R. Leone S. R. Ahmed M. J. Phys. Chem. A. 2007;111:10075–10083. doi: 10.1021/jp075263v. PubMed DOI

Greer J. C. Ahlrichs R. Hertel I. V. Chem. Phys. 1989;133:191–197. doi: 10.1016/0301-0104(89)80200-9. DOI

Fárník M. Pysanenko A. Moriová K. Ballauf L. Scheier P. Chalabala J. Slavíček P. J. Phys. Chem. A. 2018;122:8458–8468. doi: 10.1021/acs.jpca.8b07974. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...