Microbial, proteomic, and metabolomic profiling of the estrous cycle in wild house mice
Language English Country United States Media print-electronic
Document type Journal Article
Grant support
19-19307S
Grantová Agentura České Republiky (GAČR)
e-INFRA LM2018140
e-infrastruktura CZ
PubMed
38171017
PubMed Central
PMC10846187
DOI
10.1128/spectrum.02037-23
Knihovny.cz E-resources
- Keywords
- 16S RNA sequencing, Mus musculus, Pasteurellaceae, estrous cycle, estrus, microbiome, oral, proteome, saliva, vaginal,
- MeSH
- Bacteria genetics MeSH
- Estrous Cycle MeSH
- Mice MeSH
- Intermediate Filament Proteins MeSH
- Calcium-Binding Proteins MeSH
- Proteome * MeSH
- Proteomics * MeSH
- RNA, Ribosomal, 16S genetics MeSH
- Reproduction MeSH
- Mammals MeSH
- Vagina microbiology MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Hrnr protein, mouse MeSH Browser
- Intermediate Filament Proteins MeSH
- Calcium-Binding Proteins MeSH
- Proteome * MeSH
- RNA, Ribosomal, 16S MeSH
Symbiotic microbial communities affect the host immune system and produce molecules contributing to the odor of an individual. In many mammalian species, saliva and vaginal fluids are important sources of chemical signals that originate from bacterial metabolism and may act as honest signals of health and reproductive status. In this study, we aimed to define oral and vaginal microbiomes and their dynamics throughout the estrous cycle in wild house mice. In addition, we analyzed a subset of vaginal proteomes and metabolomes to detect potential interactions with microbiomes. 16S rRNA sequencing revealed that both saliva and vagina are dominated by Firmicutes and Proteobacteria but differ at the genus level. The oral microbiome is more stable during the estrous cycle and most abundant bacteria belong to the genera Gemella and Streptococcus, while the vaginal microbiome shows higher bacterial diversity and dynamics during the reproductive cycle and is characterized by the dominance of Muribacter and Rodentibacter. These two genera cover around 50% of the bacterial community during estrus. Proteomic profiling of vaginal fluids revealed specific protein patterns associated with different estrous phases. Highly expressed proteins in estrus involve the keratinization process thus providing estrus markers (e.g., Hrnr) while some proteins are downregulated such as immune-related proteins that limit bacterial growth (Camp, Clu, Elane, Lyz2, and Ngp). The vaginal metabolome contains volatile compounds potentially involved in chemical communication, for example, ketones, aldehydes, and esters of carboxylic acids. Data integration of all three OMICs data sets revealed high correlations, thus providing evidence that microbiomes, host proteomes, and metabolomes may interact.IMPORTANCEOur data revealed dynamic changes in vaginal, but not salivary, microbiome composition during the reproductive cycle of wild mice. With multiple OMICs platforms, we provide evidence that changes in microbiota in the vaginal environment are accompanied by changes in the proteomic and metabolomics profiles of the host. This study describes the natural microbiota of wild mice and may contribute to a better understanding of microbiome-host immune system interactions during the hormonal and cellular changes in the female reproductive tract. Moreover, analysis of volatiles in the vaginal fluid shows particular substances that can be involved in chemical communication and reproductive behavior.
See more in PubMed
Levy M, Blacher E, Elinav E. 2017. Microbiome, metabolites and host immunity. Curr Opin Microbiol 35:8–15. doi:10.1016/j.mib.2016.10.003 PubMed DOI
Hamilton SE, Griffith TS. 2019. A wild microbiome improves mouse modeling of the human immune response. Lab Anim (NY) 48:337–338. doi:10.1038/s41684-019-0421-8 PubMed DOI
Eichmiller JJ, Hamilton MJ, Staley C, Sadowsky MJ, Sorensen PW. 2016. Environment shapes the fecal microbiome of invasive carp species. Microbiome 4:44. doi:10.1186/s40168-016-0190-1 PubMed DOI PMC
Kreisinger J, Cížková D, Vohánka J, Piálek J. 2014. Gastrointestinal microbiota of wild and inbred individuals of two house mouse subspecies assessed using high-throughput parallel pyrosequencing. Mol Ecol 23:5048–5060. doi:10.1111/mec.12909 PubMed DOI
Schmidt E, Mykytczuk N, Schulte-Hostedde AI. 2019. Effects of the captive and wild environment on diversity of the gut microbiome of deer mice (Peromyscus maniculatus). ISME J 13:1293–1305. doi:10.1038/s41396-019-0345-8 PubMed DOI PMC
Rosshart SP, Herz J, Vassallo BG, Hunter A, Wall MK, Badger JH, McCulloch JA, Anastasakis DG, Sarshad AA, Leonardi I, et al. . 2019. Laboratory mice born to wild mice have natural microbiota and model human immune responses. Science 365:eaaw4361. doi:10.1126/science.aaw4361 PubMed DOI PMC
Cora MC, Kooistra L, Travlos G. 2015. Vaginal cytology of the laboratory rat and mouse: review and criteria for the staging of the estrous cycle using stained vaginal smears. Toxicol Pathol 43:776–793. doi:10.1177/0192623315570339 PubMed DOI PMC
Byers SL, Wiles MV, Dunn SL, Taft RA. 2012. Mouse estrous cycle identification tool and images. PLoS One 7:e35538. doi:10.1371/journal.pone.0035538 PubMed DOI PMC
Stopka P, Macdonald D. 1998. Signal interchange during mating in the wood mouse (Apodemus sylvaticus): the concept of active and passive signalling. Behav 135:231–249. doi:10.1163/156853998793066339 DOI
Goldman JM, Murr AS, Cooper RL. 2007. The rodent estrous cycle: characterization of vaginal cytology and its utility in toxicological studies. Birth Defects Res B Dev Reprod Toxicol 80:84–97. doi:10.1002/bdrb.20106 PubMed DOI
Gajer P, Brotman RM, Bai G, Sakamoto J, Schütte UME, Zhong X, Koenig SSK, Fu L, Ma ZS, Zhou X, Abdo Z, Forney LJ, Ravel J. 2012. Temporal dynamics of the human vaginal microbiota. Sci Transl Med 4:132ra52. doi:10.1126/scitranslmed.3003605 PubMed DOI PMC
Miller EA, Livermore JA, Alberts SC, Tung J, Archie EA. 2017. Ovarian cycling and reproductive state shape the vaginal microbiota in wild baboons. Microbiome 5:8. doi:10.1186/s40168-017-0228-z PubMed DOI PMC
Muthukumar S, Rajesh D, Saibaba G, Alagesan A, Rengarajan RL, Archunan G. 2013. Urinary lipocalin protein in a female rodent with correlation to phases in the estrous cycle: an experimental study accompanied by in silico analysis. PLoS One 8:e71357. doi:10.1371/journal.pone.0071357 PubMed DOI PMC
Černá M, Kuntová B, Talacko P, Stopková R, Stopka P. 2017. Differential regulation of vaginal lipocalins (OBP, MUP) during the estrous cycle of the house mouse. Sci Rep 7:11674. doi:10.1038/s41598-017-12021-2 PubMed DOI PMC
Yip KS, Suvorov A, Connerney J, Lodato NJ, Waxman DJ. 2013. Changes in mouse uterine transcriptome in estrus and proestrus. Biol Reprod 89:13. doi:10.1095/biolreprod.112.107334 PubMed DOI PMC
Heil BA, Paccamonti DL, Sones JL. 2019. Role for the mammalian female reproductive tract microbiome in pregnancy outcomes. Physiol Genomics 51:390–399. doi:10.1152/physiolgenomics.00045.2019 PubMed DOI
Yildirim S, Yeoman CJ, Janga SC, Thomas SM, Ho M, Leigh SR, White BA, Wilson BA, Stumpf RM, Primate Microbiome Consortium . 2014. Primate vaginal microbiomes exhibit species specificity without universal Lactobacillus dominance. ISME J 8:2431–2444. doi:10.1038/ismej.2014.90 PubMed DOI PMC
Matějková T, Hájková P, Stopková R, Stanko M, Martin JF, Kreisinger J, Stopka P. 2020. Oral and vaginal microbiota in selected field mice of the genus Apodemus: a wild population study. Sci Rep 10:13246. doi:10.1038/s41598-020-70249-x PubMed DOI PMC
Neuendorf E, Gajer P, Bowlin AK, Marques PX, Ma B, Yang H, Fu L, Humphrys MS, Forney LJ, Myers GSA, Bavoil PM, Rank RG, Ravel J. 2015. Chlamydia caviae infection alters abundance but not composition of the guinea pig vaginal microbiota. Pathog Dis 73:ftv019. doi:10.1093/femspd/ftv019 PubMed DOI PMC
Guilford T, Dawkins MS. 1993. Receiver psychology and the design of animal signals. Trends Neurosci 16:430–436. doi:10.1016/0166-2236(93)90068-w PubMed DOI
Vrbanac A, Riestra AM, Coady A, Knight R, Nizet V, Patras KA. 2018. The murine vaginal microbiota and its perturbation by the human pathogen group B Streptococcus. BMC Microbiol 18:197. doi:10.1186/s12866-018-1341-2 PubMed DOI PMC
Levy M, Bassis CM, Kennedy E, Yoest KE, Becker JB, Bell J, Berger MB, Bruns TM. 2020. The rodent vaginal microbiome across the estrous cycle and the effect of genital nerve electrical stimulation. PLoS One 15:e0230170. doi:10.1371/journal.pone.0230170 PubMed DOI PMC
Aleti G, Baker JL, Tang X, Alvarez R, Dinis M, Tran NC, Melnik AV, Zhong C, Ernst M, Dorrestein PC, Edlund A. 2019. Identification of the bacterial biosynthetic gene clusters of the oral microbiome Illuminates the unexplored social language of bacteria during health and disease. mBio 10:e00321-19. doi:10.1128/mBio.00321-19 PubMed DOI PMC
Stopka P, Macdonald DW. 1999. The market effect in the wood mouse, Apodemus sylvaticus: selling information on reproductive status. Ethology 105:969–982. doi:10.1046/j.1439-0310.1999.00485.x DOI
Sia AK, Allred BE, Raymond KN. 2013. Siderocalins: siderophore binding proteins evolved for primary pathogen host defense. Curr Opin Chem Biol 17:150–157. doi:10.1016/j.cbpa.2012.11.014 PubMed DOI PMC
Wira CR, Patel MV, Ghosh M, Mukura L, Fahey JV. 2011. Innate immunity in the human female reproductive tract: endocrine regulation of endogenous antimicrobial protection against HIV and other sexually transmitted infections. Am J Reprod Immunol 65:196–211. doi:10.1111/j.1600-0897.2011.00970.x PubMed DOI PMC
Hickey DK, Fahey JV, Wira CR. 2013. Mouse estrous cycle regulation of vaginal versus uterine cytokines, chemokines, α-/β-defensins and TLRs. Innate Immun 19:121–131. doi:10.1177/1753425912454026 PubMed DOI PMC
Amjadi F, Salehi E, Mehdizadeh M, Aflatoonian R. 2014. Role of the innate immunity in female reproductive tract. Adv Biomed Res 3:1. doi:10.4103/2277-9175.124626 PubMed DOI PMC
Soleilhavoup C, Riou C, Tsikis G, Labas V, Harichaux G, Kohnke P, Reynaud K, de Graaf SP, Gerard N, Druart X. 2016. Proteomes of the female genital tract during the oestrous cycle. Mol Cell Proteom 15:93–108. doi:10.1074/mcp.M115.052332 PubMed DOI PMC
Muthukumar S, Rajkumar R, Karthikeyan K, Liao C-C, Singh D, Akbarsha MA, Archunan G. 2014. Buffalo cervico-vaginal fluid proteomics with special reference to estrous cycle: heat shock protein (Hsp)-70 appears to be an estrus indicator. Biol Reprod 90:97. doi:10.1095/biolreprod.113.113852 PubMed DOI
Elliott RMA, Lloyd RE, Fazeli A, Sostaric E, Georgiou AS, Satake N, Watson PF, Holt WV. 2009. Effects of HSPA8, an evolutionarily conserved oviductal protein, on boar and bull spermatozoa. Reproduction 137:191–203. doi:10.1530/REP-08-0298 PubMed DOI
Noguchi K, Tsukumi K, Urano T. 2003. Qualitative and quantitative differences in normal vaginal flora of conventionally reared mice, rats, hamsters, rabbits, and dogs. Comp Med 53:404–412. PubMed
Hahn S, Hasler P, Vokalova L, van Breda SV, Lapaire O, Than NG, Hoesli I, Rossi SW. 2019. The role of neutrophil activation in determining the outcome of pregnancy and modulation by hormones and/or cytokines. Clin Exp Immunol 198:24–36. doi:10.1111/cei.13278 PubMed DOI PMC
Rees CA, Burklund A, Stefanuto P-H, Schwartzman JD, Hill JE. 2018. Comprehensive volatile metabolic fingerprinting of bacterial and fungal pathogen groups. J Breath Res 12:026001. doi:10.1088/1752-7163/aa8f7f PubMed DOI PMC
Theis KR, Venkataraman A, Dycus JA, Koonter KD, Schmitt-Matzen EN, Wagner AP, Holekamp KE, Schmidt TM. 2013. Symbiotic bacteria appear to mediate hyena social odors. Proc Natl Acad Sci U S A 110:19832–19837. doi:10.1073/pnas.1306477110 PubMed DOI PMC
Carthey AJR, Gillings MR, Blumstein DT. 2018. The extended genotype: microbially mediated olfactory communication. Trends Ecol Evol 33:885–894. doi:10.1016/j.tree.2018.08.010 PubMed DOI
Sin YW, Buesching CD, Burke T, Macdonald DW. 2012. Molecular characterization of the microbial communities in the subcaudal gland secretion of the European badger (Meles meles). FEMS Microbiol Ecol 81:648–659. doi:10.1111/j.1574-6941.2012.01396.x PubMed DOI
Brunetti AE, Lyra ML, Melo WGP, Andrade LE, Palacios-Rodríguez P, Prado BM, Haddad CFB, Pupo MT, Lopes NP. 2019. Symbiotic skin bacteria as a source for sex-specific scents in frogs. Proc Natl Acad Sci U S A 116:2124–2129. doi:10.1073/pnas.1806834116 PubMed DOI PMC
Stopková R, Matějková T, Dodoková A, Talacko P, Zacek P, Sedlacek R, Piálek J, Stopka P. 2023. Variation in mouse chemical signals is genetically controlled and environmentally modulated. Sci Rep 13:8573. doi:10.1038/s41598-023-35450-8 PubMed DOI PMC
Bansal R, Nagel M, Stopkova R, Sofer Y, Kimchi T, Stopka P, Spehr M, Ben-Shaul Y. 2021. Do all mice smell the same? chemosensory cues from inbred and wild mouse strains elicit stereotypic sensory representations in the accessory olfactory bulb. BMC Biol 19:133. doi:10.1186/s12915-021-01064-7 PubMed DOI PMC
Ben-Shaul Y, Katz LC, Mooney R, Dulac C. 2010. In vivo vomeronasal stimulation reveals sensory encoding of conspecific and allospecific cues by the mouse accessory olfactory bulb. Proc Natl Acad Sci U S A 107:5172–5177. doi:10.1073/pnas.0915147107 PubMed DOI PMC
Thoß M, Luzynski KC, Enk VM, Razzazi-Fazeli E, Kwak J, Ortner I, Penn DJ. 2019. Regulation of volatile and non-volatile pheromone attractants depends upon male social status. Sci Rep 9:6185. doi:10.1038/s41598-019-41666-4 PubMed DOI PMC
Luzynski KC, Nicolakis D, Marconi MA, Zala SM, Kwak J, Penn DJ. 2021. Pheromones that correlate with reproductive success in competitive conditions. Sci Rep 11:21970. doi:10.1038/s41598-021-01507-9 PubMed DOI PMC
Stopka P, Graciasova R. 2001. Conditional allogrooming in the herb-field mouse. Behav Ecol. 12:584–589. doi:10.1093/beheco/12.5.584 DOI
Sillen-Tullberg B, Moller AP. 1993. The relationship between concealed ovulation and mating systems in anthropoid primates: a phylogenetic analysis. Am Nat 141:1–25. doi:10.1086/285458 PubMed DOI
Zaneveld JR, McMinds R, Vega Thurber R. 2017. Stress and stability: applying the Anna Karenina principle to animal microbiomes. Nat Microbiol 2:17121. doi:10.1038/nmicrobiol.2017.121 PubMed DOI
Prochazkova P, Roubalova R, Dvorak J, Kreisinger J, Hill M, Tlaskalova-Hogenova H, Tomasova P, Pelantova H, Cermakova M, Kuzma M, Bulant J, Bilej M, Smitka K, Lambertova A, Holanova P, Papezova H. 2021. The intestinal microbiota and metabolites in patients with anorexia nervosa. Gut Microbes 13:1–25. doi:10.1080/19490976.2021.1902771 PubMed DOI PMC
Simard JC, Simon MM, Tessier PA, Girard D. 2011. Damage-associated molecular pattern S100A9 increases bactericidal activity of human neutrophils by enhancing phagocytosis. J Immunol 186:3622–3631. doi:10.4049/jimmunol.1002956 PubMed DOI
Schwende FJ, Wiesler D, Novotny M. 1984. Volatile compounds associated with estrus in mouse urine: potential pheromones. Experientia 40:213–215. doi:10.1007/BF01963606 PubMed DOI
Mishor E, Amir D, Weiss T, Honigstein D, Weissbrod A, Livne E, Gorodisky L, Karagach S, Ravia A, Snitz K, Karawani D, Zirler R, Weissgross R, Soroka T, Endevelt-Shapira Y, Agron S, Rozenkrantz L, Reshef N, Furman-Haran E, Breer H, Strotmann J, Uebi T, Ozaki M, Sobel N. 2021. Sniffing the human body volatile hexadecanal blocks aggression in men but triggers aggression in women. Sci Adv 7:eabg1530. doi:10.1126/sciadv.abg1530 PubMed DOI PMC
Lin DY, Zhang S-Z, Block E, Katz LC. 2005. Encoding social signals in the mouse main olfactory bulb. Nature 434:470–477. doi:10.1038/nature03414 PubMed DOI
Zhang H, Zhu Y, Liu Z, Peng Y, Peng W, Tong L, Wang J, Liu Q, Wang P, Cheng G. 2022. A volatile from the skin microbiota of flavivirus-infected hosts promotes mosquito attractiveness. Cell 185:2510–2522. doi:10.1016/j.cell.2022.05.016 PubMed DOI
MacManes MD. 2011. Promiscuity in mice is associated with increased vaginal bacterial diversity. Naturwissenschaften 98:951–960. doi:10.1007/s00114-011-0848-2 PubMed DOI PMC
Ganesan M, Kadalmani B. 2016. Phase dependent discrepancy in murine vaginal micro-environment: a correlative analysis of pH, glycogen and serum estrogen upon exposure to lapatinib ditosylate. Int J Pharm Pharm Sci 8:404–407.
Hussin AM. 2010. The theory of keratinization. Kufa J Vet Med Sci 1:219–229. doi:10.36326/kjvs/2010/v1i14216 DOI
Croley TE, Miers C. 1978. Epithelial changes in the oral mucosa resulting from a variation in hormone stimulus. J Oral Med 33:86–89. PubMed
Joseph S, Aduse-Opoku J, Hashim A, Hanski E, Streich R, Knowles SCL, Pedersen AB, Wade WG, Curtis MA, Segata N. 2021. A 16S rRNA gene and draft genome database for the murine oral bacterial community. mSystems 6:e01222-20. doi:10.1128/mSystems.01222-20 PubMed DOI PMC
Nugeyre M-T, Tchitchek N, Adapen C, Cannou C, Contreras V, Benjelloun F, Ravel J, Le Grand R, Marlin R, Menu E. 2019. Dynamics of vaginal and rectal microbiota over several menstrual cycles in female cynomolgus macaques. Front Cell Infect Microbiol 9:188. doi:10.3389/fcimb.2019.00188 PubMed DOI PMC
Fornefett J, Krause J, Klose K, Fingas F, Hassert R, Benga L, Grunwald T, Müller U, Schrödl W, Baums CG. 2018. Comparative analysis of humoral immune responses and pathologies of BALB/c and C57BL/6 wildtype mice experimentally infected with a highly virulent Rodentibacter pneumotropicus (Pasteurella pneumotropica) strain. BMC Microbiol 18:45. doi:10.1186/s12866-018-1186-8 PubMed DOI PMC
Mähler Convenor M, Berard M, Feinstein R, Gallagher A, Illgen-Wilcke B, Pritchett-Corning K, Raspa M. 2014. FELASA recommendations for the health monitoring of mouse, rat, hamster, guinea pig and rabbit colonies in breeding and experimental units. Lab Anim 48:178–192. doi:10.1177/0023677213516312 PubMed DOI
Dafni H, Greenfeld L, Oren R, Harmelin A. 2019. The likelihood of misidentifying rodent Pasteurellaceae by using results from a single PCR assay. J Am Assoc Lab Anim Sci 58:201–207. doi:10.30802/AALAS-JAALAS-18-000049 PubMed DOI PMC
Kähl S, Fornefett J, Fingas F, Klose K, Benga L, Grunwald T, Baums CG. 2019. A Rodentibacter heylii strain lacking all known RTX toxin genes is highly virulent in C57Bl/6 and BALB/c mice in contrast to Muribacter muris. Res sq. doi:10.21203/rs.2.14825/v1 DOI
Moudra A, Niederlova V, Novotny J, Schmiedova L, Kubovciak J, Matejkova T, Drobek A, Pribikova M, Stopkova R, Cizkova D, Neuwirth A, Michalik J, Krizova K, Hudcovic T, Kolar M, Kozakova H, Kreisinger J, Stopka P, Stepanek O. 2021. Phenotypic and clonal stability of antigen-inexperienced memory-like T cells across the genetic background, hygienic status, and aging. J Immunol 206:2109–2121. doi:10.4049/jimmunol.2001028 PubMed DOI PMC
Nunn KL, Forney LJ. 2016. Unraveling the dynamics of the human vaginal microbiome. Yale J Biol Med 89:331–337. PubMed PMC
Jašarević E, Howerton CL, Howard CD, Bale TL. 2015. Alterations in the vaginal microbiome by maternal stress are associated with metabolic reprogramming of the offspring gut and brain. Endocrinology 156:3265–3276. doi:10.1210/en.2015-1177 PubMed DOI PMC
Harlow K, Suarez-Trujillo A, Hedrick V, Sobreira T, Aryal UK, Stewart K, Casey T. 2019. Temporal analysis of vaginal proteome reveals developmental changes in lower reproductive tract of gilts across the first two weeks postnatal. Sci Rep 9:13241. doi:10.1038/s41598-019-49597-w PubMed DOI PMC
Lamy J, Labas V, Harichaux G, Tsikis G, Mermillod P, Saint-Dizier M. 2016. Regulation of the bovine oviductal fluid proteome. Reproduction 152:629–644. doi:10.1530/REP-16-0397 PubMed DOI
Birse KM, Burgener A, Westmacott GR, McCorrister S, Novak RM, Ball TB. 2013. Unbiased proteomics analysis demonstrates significant variability in mucosal immune factor expression depending on the site and method of collection. PLoS One 8:e79505. doi:10.1371/journal.pone.0079505 PubMed DOI PMC
Albone ES, Blazquez NB, French J, Long SE, Perry GC. 1986. Mammalian semiochemistry: issues and futures, with some examples from a study of chemical signalling in cattle, p 27–36. In Chemical signals in vertebrates 4. Springer.
Röck F, Mueller S, Weimar U, Rammensee H-G, Overath P. 2006. Comparative analysis of volatile constituents from mice and their urine. J Chem Ecol 32:1333–1346. doi:10.1007/s10886-006-9091-2 PubMed DOI
Sankar R, Archunan G, Habara Y. 2007. Detection of oestrous-related odour in bovine (Bos taurus) saliva: bioassay of identified compounds. Animal 1:1321–1327. doi:10.1017/S1751731107000614 PubMed DOI
Buck L, Axel R. 1991. A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell 65:175–187. doi:10.1016/0092-8674(91)90418-x PubMed DOI
Wachowiak M, Cohen LB. 2001. Representation of odorants by receptor neuron input to the mouse olfactory bulb. Neuron 32:723–735. doi:10.1016/s0896-6273(01)00506-2 PubMed DOI
Araneda RC, Kini AD, Firestein S. 2000. The molecular receptive range of an odorant receptor. Nat Neurosci 3:1248–1255. doi:10.1038/81774 PubMed DOI
Kaluza JF, Breer H. 2000. Responsiveness of olfactory neurons to distinct aliphatic aldehydes. J Exp Biol 203:927–933. doi:10.1242/jeb.203.5.927 PubMed DOI
Klein B, Bautze V, Maier A-M, Deussing J, Breer H, Strotmann J. 2015. Activation of the mouse odorant receptor 37 subsystem coincides with a reduction of novel environment-induced activity within the paraventricular nucleus of the hypothalamus. Eur J Neurosci 41:793–801. doi:10.1111/ejn.12838 PubMed DOI
Fujita A, Okuno T, Oda M, Kato K. 2020. Urinary volatilome analysis in a mouse model of anxiety and depression. PLoS One 15:e0229269. doi:10.1371/journal.pone.0229269 PubMed DOI PMC
Woollam M, Teli M, Angarita-Rivera P, Liu S, Siegel AP, Yokota H, Agarwal M. 2019. Detection of volatile organic compounds (VOCs) in urine via gas chromatography-mass spectrometry QTOF to differentiate between localized and metastatic models of breast cancer. Sci Rep 9:2526. doi:10.1038/s41598-019-38920-0 PubMed DOI PMC
Pluta K, Jones PRH, Drabińska N, Ratcliffe N, Carrington SD, Lonergan P, Evans ACO. 2021. The potential of volatile organic compound analysis in cervicovaginal mucus to predict estrus and ovulation in estrus-synchronized heifers. J Dairy Sci 104:1087–1098. doi:10.3168/jds.2020-19024 PubMed DOI
Greene LK, Wallen TW, Moresco A, Goodwin TE, Drea CM. 2016. Reproductive endocrine patterns and volatile urinary compounds of Arctictis binturong: discovering why bearcats smell like popcorn. Sci Nat 103:37. doi:10.1007/s00114-016-1361-4 PubMed DOI
Hartmann C, Triller A, Spehr M, Dittrich R, Hatt H, Buettner A. 2013. Sperm-activating odorous substances in human follicular fluid and vaginal secretion: identification by gas chromatography-olfactometry and Ca2+ imaging. Chempluschem 78:695–702. doi:10.1002/cplu.201300008 PubMed DOI
Novotny M, Jemiolo B, Harvey S, Wiesler D, Marchlewska-Koj A. 1986. Adrenal-mediated endogenous metabolites inhibit puberty in female mice. Science 231:722–725. doi:10.1126/science.3945805 PubMed DOI
Blum MS. 1969. Alarm pheromones. Annu Rev Entomol. 14:57–80. doi:10.1146/annurev.en.14.010169.000421 DOI
Chan HK, Hersperger F, Marachlian E, Smith BH, Locatelli F, Szyszka P, Nowotny T. 2018. Odorant mixtures elicit less variable and faster responses than pure odorants. PLoS Comput Biol 14:e1006536. doi:10.1371/journal.pcbi.1006536 PubMed DOI PMC
Rospars J-P, Lansky P, Chaput M, Duchamp-Viret P. 2008. Competitive and noncompetitive odorant interactions in the early neural coding of odorant mixtures. J Neurosci 28:2659–2666. doi:10.1523/JNEUROSCI.4670-07.2008 PubMed DOI PMC
Jiang H, Lei R, Ding S-W, Zhu S. 2014. Skewer: a fast and accurate adapter trimmer for next-generation sequencing paired-end reads. BMC Bioinformatics 15:182. doi:10.1186/1471-2105-15-182 PubMed DOI PMC
Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. 2016. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods 13:581–583. doi:10.1038/nmeth.3869 PubMed DOI PMC
Rognes T, Flouri T, Nichols B, Quince C, Mahé F. 2016. VSEARCH: a versatile open source tool for metagenomics. PeerJ 4:e2584. doi:10.7717/peerj.2584 PubMed DOI PMC
Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R. 2011. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200. doi:10.1093/bioinformatics/btr381 PubMed DOI PMC
Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO. 2013. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41:D590–D596. doi:10.1093/nar/gks1219 PubMed DOI PMC
McMurdie PJ, Holmes S. 2013. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8:e61217. doi:10.1371/journal.pone.0061217 PubMed DOI PMC
Davis NM, Proctor DM, Holmes SP, Relman DA, Callahan BJ. 2018. Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. Microbiome 6:226. doi:10.1186/s40168-018-0605-2 PubMed DOI PMC
McArtor DB, Lubke GH, Bergeman CS. 2017. Extending multivariate distance matrix regression with an effect size measure and the asymptotic null distribution of the test statistic. Psychometrika 82:1052–1077. doi:10.1007/s11336-016-9527-8 PubMed DOI PMC
Mandal S, Van Treuren W, White RA, Eggesbø M, Knight R, Peddada SD. 2015. Analysis of composition of microbiomes: a novel method for studying microbial composition. Microb Ecol Health Dis 26:27663. doi:10.3402/mehd.v26.27663 PubMed DOI PMC
Chong J, Liu P, Zhou G, Xia J. 2020. Using MicrobiomeAnalyst for comprehensive statistical, functional, and meta-analysis of microbiome data. Nat Protoc 15:799–821. doi:10.1038/s41596-019-0264-1 PubMed DOI
Kuntová B, Stopková R, Stopka P. 2018. Transcriptomic and proteomic profiling revealed high proportions of odorant binding and antimicrobial defense proteins in olfactory tissues of the house mouse. Front Genet 9:26. doi:10.3389/fgene.2018.00026 PubMed DOI PMC
Stopkova R, Klempt P, Kuntova B, Stopka P. 2017. On the tear proteome of the house mouse (Mus musculus musculus) in relation to chemical signalling. PeerJ 5:e3541. doi:10.7717/peerj.3541 PubMed DOI PMC
Stopka P, Kuntová B, Klempt P, Havrdová L, Černá M, Stopková R. 2016a. On the saliva proteome of the Eastern European house mouse (Mus musculus musculus) focusing on sexual signalling and immunity. Sci Rep 6:32481. doi:10.1038/srep32481 PubMed DOI PMC
Cox J, Hein MY, Luber CA, Paron I, Nagaraj N, Mann M. 2014. Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol Cell Proteomics 13:2513–2526. doi:10.1074/mcp.M113.031591 PubMed DOI PMC
Stopková R, Vinkler D, Kuntová B, Šedo O, Albrecht T, Suchan J, Dvořáková-Hortová K, Zdráhal Z, Stopka P. 2016. Mouse lipocalins (MUP, OBP, LCN) are co-expressed in tissues involved in chemical communication. Front Ecol Evol 4. doi:10.3389/fevo.2016.00047 DOI
Rodriguez J, Gupta N, Smith RD, Pevzner PA. 2008. Does trypsin cut before proline? J Proteome Res 7:300–305. doi:10.1021/pr0705035 PubMed DOI
Willforss J, Chawade A, Levander F. 2019. NormalyzerDE: online tool for improved normalization of omics expression data and high-sensitivity differential expression analysis. J Proteome Res 18:732–740. doi:10.1021/acs.jproteome.8b00523 PubMed DOI
Crawley MJ. 2012. The R book. John Wiley & Sons.
Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, Ellis B, Gautier L, Ge Y, Gentry J, Hornik K, Hothorn T, Huber W, Iacus S, Irizarry R, Leisch F, Li C, Maechler M, Rossini AJ, Sawitzki G, Smith C, Smyth G, Tierney L, Yang JYH, Zhang J. 2004. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol. 5:1–16. doi:10.1186/gb-2004-5-10-r80 PubMed DOI PMC
Pavelka N, Pelizzola M, Vizzardelli C, Capozzoli M, Splendiani A, Granucci F, Ricciardi-Castagnoli P. 2004. A power law global error model for the identification of differentially expressed genes in microarray data. BMC Bioinformatics 5:203. doi:10.1186/1471-2105-5-203 PubMed DOI PMC
Breiman L. 2001. Random forests. Mach Learn 45:5–32. doi:10.1023/A:1010933404324 DOI
Wickham H. 2016. Data analysis. Springer.
Perez-Riverol Y, Bai J, Bandla C, García-Seisdedos D, Hewapathirana S, Kamatchinathan S, Kundu DJ, Prakash A, Frericks-Zipper A, Eisenacher M, Walzer M, Wang S, Brazma A, Vizcaíno JA. 2022. The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res. 50:D543–D552. doi:10.1093/nar/gkab1038 PubMed DOI PMC