On the saliva proteome of the Eastern European house mouse (Mus musculus musculus) focusing on sexual signalling and immunity
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
27577013
PubMed Central
PMC5006050
DOI
10.1038/srep32481
PII: srep32481
Knihovny.cz E-zdroje
- MeSH
- druhová specificita MeSH
- imunita genetika MeSH
- myši MeSH
- pohlavní dimorfismus * MeSH
- proteiny genetika MeSH
- proteom genetika MeSH
- sliny chemie MeSH
- tandemová hmotnostní spektrometrie MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- major urinary proteins MeSH Prohlížeč
- proteiny MeSH
- proteom MeSH
Chemical communication is mediated by sex-biased signals abundantly present in the urine, saliva and tears. Because most studies concentrated on the urinary signals, we aimed to determine the saliva proteome in wild Mus musculus musculus, to extend the knowledge on potential roles of saliva in chemical communication. We performed the gel-free quantitative LC-MS/MS analyses of saliva and identified 633 proteins with 134 (21%) of them being sexually dimorphic. They include proteins that protect and transport volatile organic compounds in their beta barrel including LCN lipocalins, major urinary proteins (MUPs), and odorant binding proteins (OBPs). To our surprise, the saliva proteome contains one MUP that is female biased (MUP8) and the two protein pheromones MUP20 (or 'Darcin') and ESP1 in individuals of both sex. Thus, contrary to previous assumptions, our findings reveal that these proteins cannot function as male-unique signals. Our study also demonstrates that many olfactory proteins (e.g. LCNs, and OBPs) are not expressed by submandibular glands but are produced elsewhere-in nasal and lacrimal tissues, and potentially also in other oro-facial glands. We have also detected abundant proteins that are involved in wound healing, immune and non-immune responses to pathogens, thus corroborating that saliva has important protective roles.
Zobrazit více v PubMed
Mouse Genome Sequencing C. et al.. Initial sequencing and comparative analysis of the mouse genome. Nature 420, 520–562, doi:10.1038/nature01262 (2002). PubMed DOI
Blanchard A. A. et al.. Towards further defining the proteome of mouse saliva. Proteome science 13, 10, doi:10.1186/s12953-015-0068-3 (2015). PubMed DOI PMC
Nelson A. C., Cunningham C. B., Ruff J. S. & Potts W. K. Protein pheromone expression levels predict and respond to the formation of social dominance networks. Journal of Evolutionary Biology 28, 1213–1224, doi:10.1111/jeb.12643 (2015). PubMed DOI PMC
Cunningham C. B., Nelson A. C., Ruff J. S. & Potts W. K. MUP expression is linked with sociality not competitive ability in male house mice. Integr Comp Biol 53, E46–E46 (2013).
Novotny M. V. Pheromones, binding proteins and receptor responses in rodents. Biochemical Society 31, 117–122 (2003). PubMed
Timm D. E., Baker L. J., Mueller H., Zidek L. & Novotny M. V. Structural basis of pheromone binding to mouse major urinary protein (MUP-I). Protein Science 10, 997–1004 (2001). PubMed PMC
Novotny M. V., Ma W., Wiesler D. & Zídek L. Positive identification of the puberty-accelerating pheromone of the house mouse: the volatile ligands associating with the major urinary protein. Proc. R. Soc. Lond. B. 266, 2017–2022 (1999). PubMed PMC
Shahan K., Denaro M., Gilmartin M., Shi Y. & Derman E. Expression of six mouse major urinary protein genes in the mammary, parotid, sublingual, submaxillary, and lachrymal glands and in the liver. Mol. Cell. Biol. 7, 1947–1954 (1987). PubMed PMC
Stopková R., Stopka P., Janotová K. & Jedelsky P. L. Species-specific expression of major urinary proteins in the house mice (Mus musculus musculus and Mus musculus domesticus). J Chem Ecol 33, 861–869 (2007). PubMed
Sharrow S. D., Vaughn J. L., Žídek L., Novotny M. V. & Stone M. J. Pheromone binding by polymorphic mouse major urinary proteins. Protein Science 11, 2247–2256 (2002). PubMed PMC
Zidek L. et al.. NMR Mapping of the Recombinant Mouse Major Urinary Protein I Binding site Occupied by the Pheromone 2-sec-Butyl-4,5-dihydrothiazole. Biochemistry 38, 9850–9861 (1999). PubMed
Hurst J. L. & Beynon R. J. Scent wars: the chemobiology of competitive signalling in mice. BioEssays 26, 1288–1298 (2004). PubMed
Hurst J. L. et al.. Individual recognition in mice mediated by major urinary proteins. Nature 414, 631–634 (2001). PubMed
Mucignat-Caretta C. & Caretta A. In Advances in Chemical Communication in Vertebrates (eds Johnston R. E., Muller-Schwarze D. & Sorensen P.) 359–364 (Plenum Press, 1999).
Novotny M. V., Harvey S., Jemiolo B. & Alberts J. Synthetic pheromones that promote inter-male aggression in mice. Proc. Natl. Acad. Sci. USA 82, 2059–2061 (1985). PubMed PMC
Smadja C. & Ganem G. Subspecies recognition in the house mouse: a study of two populations from the border of a hybrid zone. Behav. Ecol. 13, 312–320 (2002).
Smadja C. & Ganem G. Divergence of odorant signals within and between the two European subspecies of the house mouse. Behavioral Ecology 19, 223–230 (2008).
Bímová B., Albrecht T., Macholán M. & Piálek J. Signalling components of mate recognition system in the house mouse. Behavioural Processes 80, 20–27 (2009). PubMed
Mucignat-Caretta C. et al.. Urinary volatile molecules vary in males of the 2 European subspecies of the house mouse and their hybrids. Chem Senses 35, 647–654, doi:10.1093/chemse/bjq049 (2010). PubMed DOI
Thonhauser K. E., Raveh S., Hettyey A., Beissmann H. & Penn D. J. Scent marking increases male reproductive success in wild house mice. Anim Behav 86, 1013–1021, doi:10.1016/j.anbehav.2013.09.004 (2013). PubMed DOI PMC
Janotova K. & Stopka P. The level of major urinary proteins is socially regulated in wild Mus musculus musculus. J Chem Ecol 37, 647–656, doi:10.1007/s10886-011-9966-8 (2011). PubMed DOI
Janotová K. & Stopka P. Mechanisms of chemical communication: the role of Major Urinary Proteins. Folia Zool. 58, 41–55 (2009).
Stopka P., Janotova K. & Heyrovsky D. The advertisement role of major urinary proteins in mice. Physiology & Behavior 91, 667–670 (2007). PubMed
Rusu A. S., Krackow S., Jedelsky P. L., Stopka P. & Konig B. A qualitative investigation of major urinary proteins in relation to the onset of aggressive behavior and dispersive motivation in male wild house mice (Mus musculus domesticus). Journal of Ethology 26, 127–135 (2008).
Logan D. W., Marton T. F. & Stowers L. Species Specificity in Major Urinary Proteins by Parallel Evolution. PLoS ONE 3, doi:10.1371/journal.pone.0003280 (2008). PubMed DOI PMC
Mudge J. M. et al.. Dynamic instability of the major urinary protein gene family revealed by genomic and phenotypic comparisons between C57 and 129 strain mice. Genome Biol 9, R91, doi:10.1186/gb-2008-9-5-r91 (2008). PubMed DOI PMC
Stopková R., Hladovcová D., Kokavec J., Vyoral D. & Stopka P. Multiple roles of secretory lipocalins (MUP, OBP) in mice. Folia Zool. 58, 29–40 (2009).
Thoß M., Luzynski K., Ante M., Miller I. & Penn D. J. Major urinary protein (MUP) profiles show dynamic changes rather than individual ‘barcode’ signatures. Frontiers in Ecology and Evolution 3, doi:10.3389/fevo.2015.00071 (2015). PubMed DOI PMC
Utsumi M. et al.. Expression of major urinary protein genes in the nasal glands associated with general olfaction. Journal of Neurobiology 39, 227–236 (1999). PubMed
Cavaggioni A., Mucignat C. & Tirindelli R. Pheromone signalling in the mouse: role of urinary proteins and vomeronasal organ. Archives Italiennes de Biologie 137, 193–200 (1999). PubMed
Stopkova R. et al.. Mouse lipocalins (MUP, OBP, LCN) are co-expressed in tissues involved in chemical communication. Frontiers in Ecology and Evolution 4, doi:10.3389/fevo.2016.00047 (2016). DOI
Pes D., Dal Monte M., Ganni M. & Pelosi P. Isolation of two odorant-binding proteins from mouse nasal tissue. Comp. Biochem. Physiol. 103B, 1011–1017 (1992). PubMed
Stopkova R., Dudkova B., Hajkova P. & Stopka P. Complementary roles of mouse lipocalins in chemical communication and immunity. Biochem Soc T 42, 893–898, doi: 10.1042/Bst20140053 (2014). PubMed DOI
Stopkova R. et al.. Novel OBP genes similar to hamster Aphrodisin in the bank vole, Myodes glareolus. BMC Genomics 11, 45, doi:10.1186/1471-2164-11-45 (2010). PubMed DOI PMC
Felicioli A., Ganni M., Garibotti M. & Pelosi P. Multiple types and forms of odorant-binding proteins in the Old-World porcupine Hystrix cristata. Comparative biochemistry and physiology. B, Comparative biochemistry 105, 775–784 (1993). PubMed
Lazar J., Greenwood d. R., Rasmussen L. E. L. & Prestwich G. D. Molecular and Functional Characterization of an Odorant Binding Protein of the Asian Elephant, Elephas maximus: Implications for the Role of Lipocalins in Mammalian Olfaction. Biochemistry 41, 11786–11794 (2002). PubMed
Bignetti E. et al.. Purification and characterisation of an odorant-binding protein from cow nasal tissue. Eur. J. Biochem. 149, 227–231 (1985). PubMed
Spinelli S. et al.. The Structure of the Monomeric Porcine Odorant Binding Protein Sheds Light on the Domain Swapping Mechanism. Biochemistry 37, 7913–7918 (1998). PubMed
Nagnan-Le Meillour P., Vercoutter-Edouart A. S., Hilliou F., Le Danvic C. & Levy F. Proteomic Analysis of Pig (Sus scrofa) Olfactory Soluble Proteome Reveals O-Linked-N-Acetylglucosaminylation of Secreted Odorant-Binding Proteins. Frontiers in endocrinology 5, 202, doi:10.3389/fendo.2014.00202 (2014). PubMed DOI PMC
Marchese S., Pes D., Scaloni A., Carbone V. & Pelosi P. Lipocalins of boar salivary glands binding odours and pheromones. Eur J Biochem 252, 563–568 (1998). PubMed
Macrides F., Clancy A. N., Singer A. G. & Agosta W. C. Male hamster investigatory and copulatory responses to vaginal discharge: An attempt to impart sexual significance to an arbitrary chemosensory stimulus. Physiology & Behavior 33, 627–632 (1984). PubMed
Kwak J., Strasser E., Luzynski K., Thoss M. & Penn D. J. Are MUPs a Toxic Waste Disposal System? PLoS One 11, e0151474, doi:10.1371/journal.pone.0151474 (2016). PubMed DOI PMC
Cox J. et al.. Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol Cell Proteomics 13, 2513–2526, doi:10.1074/mcp.M113.031591 (2014). PubMed DOI PMC
Mi H., Poudel S., Muruganujan A., Casagrande J. T. & Thomas P. D. PANTHER version 10: expanded protein families and functions, and analysis tools. Nucleic acids research 44, D336–D342, doi:10.1093/nar/gkv1194 (2016). PubMed DOI PMC
Jones D. T., Taylor W. R. & Thornton J. M. The rapid generation of mutation data matrices from protein sequences. Computer applications in the biosciences: CABIOS 8, 275–282 (1992). PubMed
Tamura K. et al.. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28, 2731–2739, doi:10.1093/molbev/msr121 (2011). PubMed DOI PMC
Pavelka N. et al.. A power law global error model for the identification of differentially expressed genes in microarray data. BMC Bioinformatics 5, 203, doi:10.1186/1471-2105-5-203 (2004). PubMed DOI PMC
Khew-Goodall Y. et al.. Vomeromodulin, a putative pheromone transporter: cloning, characterization, and cellular localization of a novel glycoprotein of lateral nasal gland. FASEB J 5, 2976–2982 (1991). PubMed
Laukaitis C. M., Dlouhy S. R., Emes R. D., Ponting P. C. & Karn R. C. Diverse spatial, temporal, and sexual expression of recently duplicated androgen-binding protein genes in Mus musculus. BMC Evolutionary Biology 5, 1–16 (2005). PubMed PMC
Yamasaki K. et al.. Kallikrein-mediated proteolysis regulates the antimicrobial effects of cathelicidins in skin. FASEB J 20, 2068–2080, doi:10.1096/fj.06-6075com (2006). PubMed DOI
LeClair E. E. Four reasons to consider a novel class of innate immune molecules in the oral epithelium. J Dent Res 82, 944–950 (2003). PubMed
Leclair E. E. Four BPI (bactericidal/permeability-increasing protein)-like genes expressed in the mouse nasal, oral, airway and digestive epithelia. Biochem Soc Trans 31, 801–805, doi:10.1042/ (2003) . PubMed
Musa M. et al.. Differential localisation of BPIFA1 (SPLUNC1) and BPIFB1 (LPLUNC1) in the nasal and oral cavities of mice. Cell Tissue Res 350, 455–464, doi:10.1007/s00441-012-1490-9 (2012). PubMed DOI PMC
Luo M., Fee M. S. & Katz L. C. Encoding pheromonal signals in the accessory olfactory bulb of behaving mice. Science 299, 1196–1201, doi:10.1126/science.1082133 (2003). PubMed DOI
Berry R. J. & Bronson F. H. Life-History and Bioeconomy of the House Mouse. Biological Reviews 67, 519–550, doi:10.1111/j.1469-185X.1992.tb01192.x (1992). PubMed DOI
Roberts S. A. et al.. Darcin: a male pheromone that stimulates female memory and sexual attraction to an individual male’s odour. BMC Biol. 8, doi:10.1186/1741-7007-1188-1175 (2010). PubMed DOI PMC
Roberts S. A., Davidson A. J., McLean L., Beynon R. J. & Hurst J. L. Pheromonal induction of spatial learning in mice. Science 338, 1462–1465, doi:10.1126/science.1225638 (2012). PubMed DOI
Lopes P. C. & Konig B. Choosing a healthy mate: sexually attractive traits as reliable indicators of current disease status in house mice. Animal Behaviour 111, 119–126, doi:10.1016/j.anbehav.2015.10.011 (2016). DOI
Kimoto H. et al.. Sex- and strain-specific expression and vomeronasal activity of mouse ESP family peptides. Current biology: CB 17, 1879–1884, doi:10.1016/j.cub.2007.09.042 (2007). PubMed DOI
Kimoto H., Haga S., Sato K. & Touhara K. Sex-specific peptides from exocrine glands stimulate mouse vomeronasal sensory neurons. Nature 437, 898–901 (2005). PubMed
Gallo R. L. et al.. Identification of CRAMP, a cathelin-related antimicrobial peptide expressed in the embryonic and adult mouse. J Biol Chem 272, 13088–13093 (1997). PubMed
Laukaitis C. M., Critser E. S. & Karn R. C. Salivary androgen-binding protein (ABP) mediates sexual isolation in Mus musculus. Evolution 51, 2000–2005 (1997). PubMed
Jackson B. C. et al.. Update of the human secretoglobin (SCGB) gene superfamily and an example of ‘evolutionary bloom’ of androgen-binding protein genes within the mouse Scgb gene superfamily. Hum Genomics 5, 691–702 (2011). PubMed PMC
Porcheron G., Garenaux A., Proulx J., Sabri M. & Dozois C. M. Iron, copper, zinc, and manganese transport and regulation in pathogenic Enterobacteria: correlations between strains, site of infection and the relative importance of the different metal transport systems for virulence. Frontiers in cellular and infection microbiology 3, 90, doi:10.3389/fcimb.2013.00090 (2013). PubMed DOI PMC
Goetz D. H. et al.. The Neutrophil Lipocalin NGAL is a Bacteriostatic Agent that Interferes with Siderophore-Mediated Iron Acquisition. Molecular Cell 10, 1033–1043 (2002). PubMed
Flo T. H. et al.. Lipocalin 2 mediates an innate immune response to bacterial infection by sequestrating iron. Nature 432, 917–921, doi:10.1038/nature03104 (2004). PubMed DOI
Klein S. L. The effects of hormones on sex differences in infection: from genes to behavior. Neurosci Biobehav Rev 24, 627–638 (2000). PubMed
Thonhauser K. E., Raveh S., Thoss M. & Penn D. J. Does multiple paternity influence offspring disease-resistance? J Evol Biol, doi:10.1111/jeb.12854 (2016). PubMed DOI PMC
Lee B., Bowden G. H. W. & Myal Y. Identification of mouse submaxillary gland protein in mouse saliva and its binding to mouse oral bacteria. Arch Oral Biol 47, 327–332 (2002). PubMed
Lundwall A. Old genes and new genes: the evolution of the kallikrein locus. Thromb Haemost 110, 469–475, doi:10.1160/TH12-11-0851 (2013). PubMed DOI
Karn R. C. & Laukaitis C. M. Positive selection shaped the convergent evolution of independently expanded kallikrein subfamilies expressed in mouse and rat saliva proteomes. PLoS One 6, e20979, doi:10.1371/journal.pone.0020979 (2011). PubMed DOI PMC
Kwak J. et al.. Butylated hydroxytoluene is a ligand of urinary proteins derived from female mice. Chem Senses 36, 443–452, doi:10.1093/chemse/bjr015 (2011). PubMed DOI
Microbial, proteomic, and metabolomic profiling of the estrous cycle in wild house mice
Variation in mouse chemical signals is genetically controlled and environmentally modulated
Biological Roles of Lipocalins in Chemical Communication, Reproduction, and Regulation of Microbiota
Oral and vaginal microbiota in selected field mice of the genus Apodemus: a wild population study
Differential regulation of vaginal lipocalins (OBP, MUP) during the estrous cycle of the house mouse
On the tear proteome of the house mouse (Mus musculus musculus) in relation to chemical signalling