On the saliva proteome of the Eastern European house mouse (Mus musculus musculus) focusing on sexual signalling and immunity

. 2016 Aug 31 ; 6 () : 32481. [epub] 20160831

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid27577013

Chemical communication is mediated by sex-biased signals abundantly present in the urine, saliva and tears. Because most studies concentrated on the urinary signals, we aimed to determine the saliva proteome in wild Mus musculus musculus, to extend the knowledge on potential roles of saliva in chemical communication. We performed the gel-free quantitative LC-MS/MS analyses of saliva and identified 633 proteins with 134 (21%) of them being sexually dimorphic. They include proteins that protect and transport volatile organic compounds in their beta barrel including LCN lipocalins, major urinary proteins (MUPs), and odorant binding proteins (OBPs). To our surprise, the saliva proteome contains one MUP that is female biased (MUP8) and the two protein pheromones MUP20 (or 'Darcin') and ESP1 in individuals of both sex. Thus, contrary to previous assumptions, our findings reveal that these proteins cannot function as male-unique signals. Our study also demonstrates that many olfactory proteins (e.g. LCNs, and OBPs) are not expressed by submandibular glands but are produced elsewhere-in nasal and lacrimal tissues, and potentially also in other oro-facial glands. We have also detected abundant proteins that are involved in wound healing, immune and non-immune responses to pathogens, thus corroborating that saliva has important protective roles.

Zobrazit více v PubMed

Mouse Genome Sequencing C. et al.. Initial sequencing and comparative analysis of the mouse genome. Nature 420, 520–562, doi:10.1038/nature01262 (2002). PubMed DOI

Blanchard A. A. et al.. Towards further defining the proteome of mouse saliva. Proteome science 13, 10, doi:10.1186/s12953-015-0068-3 (2015). PubMed DOI PMC

Nelson A. C., Cunningham C. B., Ruff J. S. & Potts W. K. Protein pheromone expression levels predict and respond to the formation of social dominance networks. Journal of Evolutionary Biology 28, 1213–1224, doi:10.1111/jeb.12643 (2015). PubMed DOI PMC

Cunningham C. B., Nelson A. C., Ruff J. S. & Potts W. K. MUP expression is linked with sociality not competitive ability in male house mice. Integr Comp Biol 53, E46–E46 (2013).

Novotny M. V. Pheromones, binding proteins and receptor responses in rodents. Biochemical Society 31, 117–122 (2003). PubMed

Timm D. E., Baker L. J., Mueller H., Zidek L. & Novotny M. V. Structural basis of pheromone binding to mouse major urinary protein (MUP-I). Protein Science 10, 997–1004 (2001). PubMed PMC

Novotny M. V., Ma W., Wiesler D. & Zídek L. Positive identification of the puberty-accelerating pheromone of the house mouse: the volatile ligands associating with the major urinary protein. Proc. R. Soc. Lond. B. 266, 2017–2022 (1999). PubMed PMC

Shahan K., Denaro M., Gilmartin M., Shi Y. & Derman E. Expression of six mouse major urinary protein genes in the mammary, parotid, sublingual, submaxillary, and lachrymal glands and in the liver. Mol. Cell. Biol. 7, 1947–1954 (1987). PubMed PMC

Stopková R., Stopka P., Janotová K. & Jedelsky P. L. Species-specific expression of major urinary proteins in the house mice (Mus musculus musculus and Mus musculus domesticus). J Chem Ecol 33, 861–869 (2007). PubMed

Sharrow S. D., Vaughn J. L., Žídek L., Novotny M. V. & Stone M. J. Pheromone binding by polymorphic mouse major urinary proteins. Protein Science 11, 2247–2256 (2002). PubMed PMC

Zidek L. et al.. NMR Mapping of the Recombinant Mouse Major Urinary Protein I Binding site Occupied by the Pheromone 2-sec-Butyl-4,5-dihydrothiazole. Biochemistry 38, 9850–9861 (1999). PubMed

Hurst J. L. & Beynon R. J. Scent wars: the chemobiology of competitive signalling in mice. BioEssays 26, 1288–1298 (2004). PubMed

Hurst J. L. et al.. Individual recognition in mice mediated by major urinary proteins. Nature 414, 631–634 (2001). PubMed

Mucignat-Caretta C. & Caretta A. In Advances in Chemical Communication in Vertebrates (eds Johnston R. E., Muller-Schwarze D. & Sorensen P.) 359–364 (Plenum Press, 1999).

Novotny M. V., Harvey S., Jemiolo B. & Alberts J. Synthetic pheromones that promote inter-male aggression in mice. Proc. Natl. Acad. Sci. USA 82, 2059–2061 (1985). PubMed PMC

Smadja C. & Ganem G. Subspecies recognition in the house mouse: a study of two populations from the border of a hybrid zone. Behav. Ecol. 13, 312–320 (2002).

Smadja C. & Ganem G. Divergence of odorant signals within and between the two European subspecies of the house mouse. Behavioral Ecology 19, 223–230 (2008).

Bímová B., Albrecht T., Macholán M. & Piálek J. Signalling components of mate recognition system in the house mouse. Behavioural Processes 80, 20–27 (2009). PubMed

Mucignat-Caretta C. et al.. Urinary volatile molecules vary in males of the 2 European subspecies of the house mouse and their hybrids. Chem Senses 35, 647–654, doi:10.1093/chemse/bjq049 (2010). PubMed DOI

Thonhauser K. E., Raveh S., Hettyey A., Beissmann H. & Penn D. J. Scent marking increases male reproductive success in wild house mice. Anim Behav 86, 1013–1021, doi:10.1016/j.anbehav.2013.09.004 (2013). PubMed DOI PMC

Janotova K. & Stopka P. The level of major urinary proteins is socially regulated in wild Mus musculus musculus. J Chem Ecol 37, 647–656, doi:10.1007/s10886-011-9966-8 (2011). PubMed DOI

Janotová K. & Stopka P. Mechanisms of chemical communication: the role of Major Urinary Proteins. Folia Zool. 58, 41–55 (2009).

Stopka P., Janotova K. & Heyrovsky D. The advertisement role of major urinary proteins in mice. Physiology & Behavior 91, 667–670 (2007). PubMed

Rusu A. S., Krackow S., Jedelsky P. L., Stopka P. & Konig B. A qualitative investigation of major urinary proteins in relation to the onset of aggressive behavior and dispersive motivation in male wild house mice (Mus musculus domesticus). Journal of Ethology 26, 127–135 (2008).

Logan D. W., Marton T. F. & Stowers L. Species Specificity in Major Urinary Proteins by Parallel Evolution. PLoS ONE 3, doi:10.1371/journal.pone.0003280 (2008). PubMed DOI PMC

Mudge J. M. et al.. Dynamic instability of the major urinary protein gene family revealed by genomic and phenotypic comparisons between C57 and 129 strain mice. Genome Biol 9, R91, doi:10.1186/gb-2008-9-5-r91 (2008). PubMed DOI PMC

Stopková R., Hladovcová D., Kokavec J., Vyoral D. & Stopka P. Multiple roles of secretory lipocalins (MUP, OBP) in mice. Folia Zool. 58, 29–40 (2009).

Thoß M., Luzynski K., Ante M., Miller I. & Penn D. J. Major urinary protein (MUP) profiles show dynamic changes rather than individual ‘barcode’ signatures. Frontiers in Ecology and Evolution 3, doi:10.3389/fevo.2015.00071 (2015). PubMed DOI PMC

Utsumi M. et al.. Expression of major urinary protein genes in the nasal glands associated with general olfaction. Journal of Neurobiology 39, 227–236 (1999). PubMed

Cavaggioni A., Mucignat C. & Tirindelli R. Pheromone signalling in the mouse: role of urinary proteins and vomeronasal organ. Archives Italiennes de Biologie 137, 193–200 (1999). PubMed

Stopkova R. et al.. Mouse lipocalins (MUP, OBP, LCN) are co-expressed in tissues involved in chemical communication. Frontiers in Ecology and Evolution 4, doi:10.3389/fevo.2016.00047 (2016). DOI

Pes D., Dal Monte M., Ganni M. & Pelosi P. Isolation of two odorant-binding proteins from mouse nasal tissue. Comp. Biochem. Physiol. 103B, 1011–1017 (1992). PubMed

Stopkova R., Dudkova B., Hajkova P. & Stopka P. Complementary roles of mouse lipocalins in chemical communication and immunity. Biochem Soc T 42, 893–898, doi: 10.1042/Bst20140053 (2014). PubMed DOI

Stopkova R. et al.. Novel OBP genes similar to hamster Aphrodisin in the bank vole, Myodes glareolus. BMC Genomics 11, 45, doi:10.1186/1471-2164-11-45 (2010). PubMed DOI PMC

Felicioli A., Ganni M., Garibotti M. & Pelosi P. Multiple types and forms of odorant-binding proteins in the Old-World porcupine Hystrix cristata. Comparative biochemistry and physiology. B, Comparative biochemistry 105, 775–784 (1993). PubMed

Lazar J., Greenwood d. R., Rasmussen L. E. L. & Prestwich G. D. Molecular and Functional Characterization of an Odorant Binding Protein of the Asian Elephant, Elephas maximus: Implications for the Role of Lipocalins in Mammalian Olfaction. Biochemistry 41, 11786–11794 (2002). PubMed

Bignetti E. et al.. Purification and characterisation of an odorant-binding protein from cow nasal tissue. Eur. J. Biochem. 149, 227–231 (1985). PubMed

Spinelli S. et al.. The Structure of the Monomeric Porcine Odorant Binding Protein Sheds Light on the Domain Swapping Mechanism. Biochemistry 37, 7913–7918 (1998). PubMed

Nagnan-Le Meillour P., Vercoutter-Edouart A. S., Hilliou F., Le Danvic C. & Levy F. Proteomic Analysis of Pig (Sus scrofa) Olfactory Soluble Proteome Reveals O-Linked-N-Acetylglucosaminylation of Secreted Odorant-Binding Proteins. Frontiers in endocrinology 5, 202, doi:10.3389/fendo.2014.00202 (2014). PubMed DOI PMC

Marchese S., Pes D., Scaloni A., Carbone V. & Pelosi P. Lipocalins of boar salivary glands binding odours and pheromones. Eur J Biochem 252, 563–568 (1998). PubMed

Macrides F., Clancy A. N., Singer A. G. & Agosta W. C. Male hamster investigatory and copulatory responses to vaginal discharge: An attempt to impart sexual significance to an arbitrary chemosensory stimulus. Physiology & Behavior 33, 627–632 (1984). PubMed

Kwak J., Strasser E., Luzynski K., Thoss M. & Penn D. J. Are MUPs a Toxic Waste Disposal System? PLoS One 11, e0151474, doi:10.1371/journal.pone.0151474 (2016). PubMed DOI PMC

Cox J. et al.. Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol Cell Proteomics 13, 2513–2526, doi:10.1074/mcp.M113.031591 (2014). PubMed DOI PMC

Mi H., Poudel S., Muruganujan A., Casagrande J. T. & Thomas P. D. PANTHER version 10: expanded protein families and functions, and analysis tools. Nucleic acids research 44, D336–D342, doi:10.1093/nar/gkv1194 (2016). PubMed DOI PMC

Jones D. T., Taylor W. R. & Thornton J. M. The rapid generation of mutation data matrices from protein sequences. Computer applications in the biosciences: CABIOS 8, 275–282 (1992). PubMed

Tamura K. et al.. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28, 2731–2739, doi:10.1093/molbev/msr121 (2011). PubMed DOI PMC

Pavelka N. et al.. A power law global error model for the identification of differentially expressed genes in microarray data. BMC Bioinformatics 5, 203, doi:10.1186/1471-2105-5-203 (2004). PubMed DOI PMC

Khew-Goodall Y. et al.. Vomeromodulin, a putative pheromone transporter: cloning, characterization, and cellular localization of a novel glycoprotein of lateral nasal gland. FASEB J 5, 2976–2982 (1991). PubMed

Laukaitis C. M., Dlouhy S. R., Emes R. D., Ponting P. C. & Karn R. C. Diverse spatial, temporal, and sexual expression of recently duplicated androgen-binding protein genes in Mus musculus. BMC Evolutionary Biology 5, 1–16 (2005). PubMed PMC

Yamasaki K. et al.. Kallikrein-mediated proteolysis regulates the antimicrobial effects of cathelicidins in skin. FASEB J 20, 2068–2080, doi:10.1096/fj.06-6075com (2006). PubMed DOI

LeClair E. E. Four reasons to consider a novel class of innate immune molecules in the oral epithelium. J Dent Res 82, 944–950 (2003). PubMed

Leclair E. E. Four BPI (bactericidal/permeability-increasing protein)-like genes expressed in the mouse nasal, oral, airway and digestive epithelia. Biochem Soc Trans 31, 801–805, doi:10.1042/ (2003) . PubMed

Musa M. et al.. Differential localisation of BPIFA1 (SPLUNC1) and BPIFB1 (LPLUNC1) in the nasal and oral cavities of mice. Cell Tissue Res 350, 455–464, doi:10.1007/s00441-012-1490-9 (2012). PubMed DOI PMC

Luo M., Fee M. S. & Katz L. C. Encoding pheromonal signals in the accessory olfactory bulb of behaving mice. Science 299, 1196–1201, doi:10.1126/science.1082133 (2003). PubMed DOI

Berry R. J. & Bronson F. H. Life-History and Bioeconomy of the House Mouse. Biological Reviews 67, 519–550, doi:10.1111/j.1469-185X.1992.tb01192.x (1992). PubMed DOI

Roberts S. A. et al.. Darcin: a male pheromone that stimulates female memory and sexual attraction to an individual male’s odour. BMC Biol. 8, doi:10.1186/1741-7007-1188-1175 (2010). PubMed DOI PMC

Roberts S. A., Davidson A. J., McLean L., Beynon R. J. & Hurst J. L. Pheromonal induction of spatial learning in mice. Science 338, 1462–1465, doi:10.1126/science.1225638 (2012). PubMed DOI

Lopes P. C. & Konig B. Choosing a healthy mate: sexually attractive traits as reliable indicators of current disease status in house mice. Animal Behaviour 111, 119–126, doi:10.1016/j.anbehav.2015.10.011 (2016). DOI

Kimoto H. et al.. Sex- and strain-specific expression and vomeronasal activity of mouse ESP family peptides. Current biology: CB 17, 1879–1884, doi:10.1016/j.cub.2007.09.042 (2007). PubMed DOI

Kimoto H., Haga S., Sato K. & Touhara K. Sex-specific peptides from exocrine glands stimulate mouse vomeronasal sensory neurons. Nature 437, 898–901 (2005). PubMed

Gallo R. L. et al.. Identification of CRAMP, a cathelin-related antimicrobial peptide expressed in the embryonic and adult mouse. J Biol Chem 272, 13088–13093 (1997). PubMed

Laukaitis C. M., Critser E. S. & Karn R. C. Salivary androgen-binding protein (ABP) mediates sexual isolation in Mus musculus. Evolution 51, 2000–2005 (1997). PubMed

Jackson B. C. et al.. Update of the human secretoglobin (SCGB) gene superfamily and an example of ‘evolutionary bloom’ of androgen-binding protein genes within the mouse Scgb gene superfamily. Hum Genomics 5, 691–702 (2011). PubMed PMC

Porcheron G., Garenaux A., Proulx J., Sabri M. & Dozois C. M. Iron, copper, zinc, and manganese transport and regulation in pathogenic Enterobacteria: correlations between strains, site of infection and the relative importance of the different metal transport systems for virulence. Frontiers in cellular and infection microbiology 3, 90, doi:10.3389/fcimb.2013.00090 (2013). PubMed DOI PMC

Goetz D. H. et al.. The Neutrophil Lipocalin NGAL is a Bacteriostatic Agent that Interferes with Siderophore-Mediated Iron Acquisition. Molecular Cell 10, 1033–1043 (2002). PubMed

Flo T. H. et al.. Lipocalin 2 mediates an innate immune response to bacterial infection by sequestrating iron. Nature 432, 917–921, doi:10.1038/nature03104 (2004). PubMed DOI

Klein S. L. The effects of hormones on sex differences in infection: from genes to behavior. Neurosci Biobehav Rev 24, 627–638 (2000). PubMed

Thonhauser K. E., Raveh S., Thoss M. & Penn D. J. Does multiple paternity influence offspring disease-resistance? J Evol Biol, doi:10.1111/jeb.12854 (2016). PubMed DOI PMC

Lee B., Bowden G. H. W. & Myal Y. Identification of mouse submaxillary gland protein in mouse saliva and its binding to mouse oral bacteria. Arch Oral Biol 47, 327–332 (2002). PubMed

Lundwall A. Old genes and new genes: the evolution of the kallikrein locus. Thromb Haemost 110, 469–475, doi:10.1160/TH12-11-0851 (2013). PubMed DOI

Karn R. C. & Laukaitis C. M. Positive selection shaped the convergent evolution of independently expanded kallikrein subfamilies expressed in mouse and rat saliva proteomes. PLoS One 6, e20979, doi:10.1371/journal.pone.0020979 (2011). PubMed DOI PMC

Kwak J. et al.. Butylated hydroxytoluene is a ligand of urinary proteins derived from female mice. Chem Senses 36, 443–452, doi:10.1093/chemse/bjr015 (2011). PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Microbial, proteomic, and metabolomic profiling of the estrous cycle in wild house mice

. 2024 Feb 06 ; 12 (2) : e0203723. [epub] 20240103

The Expansion of House Mouse Major Urinary Protein Genes Likely Did Not Facilitate Commensalism with Humans

. 2023 Nov 17 ; 14 (11) : . [epub] 20231117

Variation in mouse chemical signals is genetically controlled and environmentally modulated

. 2023 May 26 ; 13 (1) : 8573. [epub] 20230526

Biological Roles of Lipocalins in Chemical Communication, Reproduction, and Regulation of Microbiota

. 2021 ; 12 () : 740006. [epub] 20210914

Oral and vaginal microbiota in selected field mice of the genus Apodemus: a wild population study

. 2020 Aug 06 ; 10 (1) : 13246. [epub] 20200806

Transcriptomic and Proteomic Profiling Revealed High Proportions of Odorant Binding and Antimicrobial Defense Proteins in Olfactory Tissues of the House Mouse

. 2018 ; 9 () : 26. [epub] 20180205

Differential regulation of vaginal lipocalins (OBP, MUP) during the estrous cycle of the house mouse

. 2017 Sep 15 ; 7 (1) : 11674. [epub] 20170915

On the tear proteome of the house mouse (Mus musculus musculus) in relation to chemical signalling

. 2017 ; 5 () : e3541. [epub] 20170707

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...