Oral and vaginal microbiota in selected field mice of the genus Apodemus: a wild population study

. 2020 Aug 06 ; 10 (1) : 13246. [epub] 20200806

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid32764739
Odkazy

PubMed 32764739
PubMed Central PMC7413396
DOI 10.1038/s41598-020-70249-x
PII: 10.1038/s41598-020-70249-x
Knihovny.cz E-zdroje

Animal-associated microbiota is expected to impose crucial effects on the host's fitness-related performance, including reproduction. Most research to date has focused on interactions between the host with its gut microbiota; however, there remain considerable gaps in knowledge regarding microbial consortia in other organs, including interspecific divergence, temporal stability, variation drivers, and their effects on the host. To fill these gaps, we examined oral and vaginal microbiota composition in four free-living mouse species of the genus Apodemus, each varying in the degree of female promiscuity. To assess temporal stability and microbiota resistance to environmental change, we exposed one of the species, Apodemus uralensis, to standardized captive conditions and analyzed longitudinal changes in its microbiota structure. Our results revealed the existence of a "core" oral microbiota that was not only shared among all four species but also persisted almost unchanged in captivity. On the other hand, vaginal microbiota appears to be more plastic in captive conditions and less species-specific in comparison with oral microbiota. This study is amongst the first to describe oral microbiota dynamics. Furthermore, the vaginal microbiota results are especially surprising in light of the well-known role of stable vaginal microbiota as a defense against pathogens. The results indicate the existence of diverse mechanisms that shape each microbiota. On the other hand, our data provides somewhat ambiguous support for the systematic effect of phylogeny and social system on both oral and vaginal microbiota structures.

Zobrazit více v PubMed

Knight R, et al. The microbiome and human biology. Annu. Rev. Genomics Hum. Genet. 2017;18(18):65–86. PubMed

Gould A, et al. Microbiome interactions shape host fitness. Proc. Natl. Acad. Sci. U.S.A. 2018;115(51):E11951–E11960. PubMed PMC

Suzuki T. Links between natural variation in the microbiome and host fitness in wild mammals. Integr. Comp. Biol. 2017;57(4):756–769. PubMed

James A, et al. Microbiological and biochemical origins of human axillary odour. FEMS Microbiol. Ecol. 2013;83(3):527–540. PubMed

Ravel J, et al. Vaginal microbiome of reproductive-age women. Proc. Natl. Acad. Sci. U.S.A. 2011;108:4680–4687. PubMed PMC

Sanford J, Gallo R. Functions of the skin microbiota in health and disease. Semin. Immunol. 2013;25(5):370–377. PubMed PMC

Sharon G, et al. Commensal bacteria play a role in mating preference of Drosophilamelanogaster. Proc. Natl. Acad. Sci. U.S.A. 2010;107(46):20051–20056. PubMed PMC

Shropshire J, Bordenstein S. Speciation by symbiosis: the microbiome and behavior. Mbio. 2016;7(2):e01785–15. PubMed PMC

Foster J, Neufeld K. Gut-brain axis: how the microbiome influences anxiety and depression. Int. J. Neuropsychopharmacol. 2014;17:27–27. PubMed

Round J, Mazmanian S. The gut microbiota shapes intestinal immune responses during health and disease. Nat. Rev. Immunol. 2009;9(5):313–323. PubMed PMC

Cerna M, et al. Differential regulation of vaginal lipocalins (OBP, MUP) during the estrous cycle of the house mouse. Sci. Rep. 2017;7:11674. PubMed PMC

Stopkova R, et al. On the tear proteome of the house mouse (Musmusculusmusculus) in relation to chemical signalling. Peerj. 2017;5:e3541. PubMed PMC

Kuntova B, Stopkova R, Stopka P. Transcriptomic and proteomic profiling revealed high proportions of odorant binding and antimicrobial defense proteins in olfactory tissues of the house mouse. Front. Genet. 2018;9:26. PubMed PMC

Stopka P, et al. On the saliva proteome of the Eastern European house mouse (Musmusculusmusculus) focusing on sexual signalling and immunity. Sci. Rep. 2016;6:32481. PubMed PMC

Linnenbrink M, et al. The role of biogeography in shaping diversity of the intestinal microbiota in house mice. Mol. Ecol. 2013;22(7):1904–1916. PubMed

van Leeuwen P, et al. Effects of captivity, diet, and relocation on the gut bacterial communities of white-footed mice. Evol. Ecol. 2020 doi: 10.1002/ece3.6221. PubMed DOI PMC

Kohl K, et al. Gut microbial ecology of lizards: insights into diversity in the wild, effects of captivity, variation across gut regions and transmission. Mol. Ecol. 2017;26(4):1175–1189. PubMed

Moeller A, et al. Cospeciation of gut microbiota with hominids. Science. 2016;353(6297):380–382. PubMed PMC

Kropackova L, et al. Codiversification of gastrointestinal microbiota and phylogeny in passerines is not explained by ecological divergence. Mol. Ecol. 2017;26(19):5292–5304. PubMed

Bryja J, et al. Varying levels of female promiscuity in four Apodemus mice species. Behav. Ecol. Sociobiol. 2008;63(2):251–260.

Johnson P, et al. Rapid sperm acrosome reaction in the absence of acrosomal CD46 expression in promiscuous field mice (Apodemus) Reproduction. 2007;134(6):739–747. PubMed

Clift L, et al. Absence of spermatozoal CD46 protein expression and associated rapid acrosome reaction rate in striped field mice (Apodemusagrarius) Reprod. Biol. Endocrinol. 2009;7:29. PubMed PMC

Stopka P, Macdonald D. The market effect in the wood mouse, Apodemussylvaticus: selling information on reproductive status. Ethology. 1999;105(11):969–982.

Stopka P, Graciasova R. Conditional allogrooming in the herb-field mouse. Behav. Ecol. 2001;12(5):584–589.

Klindworth A, et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 2013;41(1):e1. PubMed PMC

Jiang H, et al. Skewer: a fast and accurate adapter trimmer for next-generation sequencing paired-end reads. BMC Bioinform. 2014;15:182. PubMed PMC

Callahan B, et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods. 2016;13(7):581. PubMed PMC

Edgar R, et al. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics. 2011;27(16):2194–2200. PubMed PMC

Wang Q, et al. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 2007;73(16):5261–5267. PubMed PMC

Quast C, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41(D1):D590–D596. PubMed PMC

Gao X, et al. A Bayesian taxonomic classification method for 16S rRNA gene sequences with improved species-level accuracy. BMC Bioinform. 2017;18:247. PubMed PMC

Caporaso J, et al. PyNAST: a flexible tool for aligning sequences to a template alignment. Bioinformatics. 2010;26(2):266–267. PubMed PMC

Price M, Dehal P, Arkin A. FastTree 2-approximately maximum-likelihood trees for large alignments. PLoS ONE. 2010;5(3):e9490. PubMed PMC

Pafco B, et al. Metabarcoding analysis of strongylid nematode diversity in two sympatric primate species. Sci. Rep. 2018 doi: 10.1038/s41598-018-24126-3. PubMed DOI PMC

Davis N, et al. Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. Microbiome. 2018 doi: 10.1186/s40168-018-0605-2. PubMed DOI PMC

McMurdie P, Holmes S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE. 2013;8(4):e61217. PubMed PMC

Hui F. Boral–Bayesian ordination and regression analysis of multivariate abundance data in r. Methods Ecol. Evol. 2016;7(6):744–750.

Rognes T, et al. VSEARCH: a versatile open source tool for metagenomics. Peerj. 2016 doi: 10.7717/peerj.2584. PubMed DOI PMC

Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30(9):1312–1313. PubMed PMC

Katoh K, et al. MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Res. 2005;33(2):511–518. PubMed PMC

Theis K, et al. Getting the hologenome concept right: an eco-evolutionary framework for hosts and their microbiomes. Msystems. 2016 doi: 10.1128/mSystems.00028-16. PubMed DOI PMC

Estep D, Lanier D, Dewsbury D. Copulatory behavior and nest building behavior of wild house mice (Musmusculus) Anim. Learn. Behav. 1975;3:329–336. PubMed

Lloyd-Price J, Abu-Ali G, Huttenhower C. The healthy human microbiome. Genome Med. 2016 doi: 10.1186/s13073-016-0307-y. PubMed DOI PMC

Dewhirst F, et al. The canine oral microbiome. PLoS ONE. 2012;7(4):e36067. PubMed PMC

Hyde E, et al. Characterization of the rat oral microbiome and the effects of dietary nitrate. Free Radic. Biol. Med. 2014;77:249–257. PubMed

Takehara S, et al. Characterization of oral microbiota in marmosets: feasibility of using the marmoset as a human oral disease model. PLoS ONE. 2019;14(2):e0207560. PubMed PMC

Suzuki T, Nachman M. Spatial heterogeneity of gut microbial composition along the gastrointestinal tract in natural populations of house mice. PLoS ONE. 2016;11(9):e0163720. PubMed PMC

Clemmons B, et al. Vaginal and uterine bacterial communities in postpartum lactating cows. Front. Microbiol. 2017;8:1047. PubMed PMC

Vrbanac A, et al. The murine vaginal microbiota and its perturbation by the human pathogen group B Streptococcus. BMC Microbiol. 2018;18:197. PubMed PMC

Miller E, et al. Ovarian cycling and reproductive state shape the vaginal microbiota in wild baboons. Microbiome. 2017;5:8. PubMed PMC

Miller E, et al. Lactobacilli dominance and vaginal pH: why is the human vaginal microbiome unique? Front. Microbiol. 2016;7:1936. PubMed PMC

Shetty S, et al. Intestinal microbiome landscaping: insight in community assemblage and implications for microbial modulation strategies. FEMS Microbiol. Rev. 2017;41(2):182–199. PubMed PMC

Liu Y, Nascimento M, Burne R. Progress toward understanding the contribution of alkali generation in dental biofilms to inhibition of dental caries. Int. J. Oral Sci. 2012;4(3):135–140. PubMed PMC

Lamont R, Koo H, Hajishengallis G. The oral microbiota: dynamic communities and host interactions. Nat. Rev. Microbiol. 2018;16(12):745–759. PubMed PMC

Smith S, Ravel J. The vaginal microbiota, host defence and reproductive physiology. J. Physiol. Lond. 2017;595(2):451–463. PubMed PMC

Younes J, et al. Women and their microbes: the unexpected friendship. Trends Microbiol. 2018;26(1):16–32. PubMed

Ley R, et al. Evolution of mammals and their gut microbes. Science. 2008;320(5883):1647–1651. PubMed PMC

Song S, et al. Cohabiting family members share microbiota with one another and with their dogs. Elife. 2013;2:e00458. PubMed PMC

Grosser S, et al. Fur seal microbiota are shaped by the social and physical environment, show mother-offspring similarities and are associated with host genetic quality. Mol. Ecol. 2019;28(9):2406–2422. PubMed

MacManes M. Promiscuity in mice is associated with increased vaginal bacterial diversity. Naturwissenschaften. 2011;98(11):951–960. PubMed PMC

Butet A, Delettre Y. Diet differentiation between European arvicoline and murine rodents. Acta Theriol. 2011;56(4):297–304.

Gliwicz J. Niche segregation in a rodent community of African dry savanna. J. Mammal. 1987;68(1):169–172.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...