PI(4,5)P2 controls plasma membrane PI4P and PS levels via ORP5/8 recruitment to ER-PM contact sites
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, Research Support, N.I.H., Intramural, práce podpořená grantem
Grantová podpora
R35 GM119412
NIGMS NIH HHS - United States
MOP-133656
CIHR - Canada
PubMed
29472386
PubMed Central
PMC5940310
DOI
10.1083/jcb.201710095
PII: jcb.201710095
Knihovny.cz E-zdroje
- MeSH
- biologický transport MeSH
- buněčná membrána metabolismus MeSH
- endoplazmatické retikulum metabolismus MeSH
- fosfatidylinositol-4,5-difosfát metabolismus MeSH
- fosfatidylinositolfosfáty metabolismus MeSH
- fosfatidylseriny metabolismus MeSH
- fosfotransferasy s alkoholovou skupinou jako akceptorem metabolismus MeSH
- HEK293 buňky MeSH
- krysa rodu Rattus MeSH
- lidé MeSH
- proteinové domény MeSH
- steroidní receptory chemie metabolismus MeSH
- substrátová specifita MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, N.I.H., Intramural MeSH
- Názvy látek
- fosfatidylinositol-4,5-difosfát MeSH
- fosfatidylinositolfosfáty MeSH
- fosfatidylseriny MeSH
- fosfotransferasy s alkoholovou skupinou jako akceptorem MeSH
- Oxysterol Binding Proteins MeSH
- phosphatidylinositol 4-phosphate MeSH Prohlížeč
- steroidní receptory MeSH
Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) is a critically important regulatory lipid of the plasma membrane (PM); however, little is known about how cells regulate PM PI(4,5)P2 levels. Here, we show that the phosphatidylinositol 4-phosphate (PI4P)/phosphatidylserine (PS) transfer activity of the endoplasmic reticulum (ER)-resident ORP5 and ORP8 is regulated by both PM PI4P and PI(4,5)P2 Dynamic control of ORP5/8 recruitment to the PM occurs through interactions with the N-terminal Pleckstrin homology domains and adjacent basic residues of ORP5/8 with both PI4P and PI(4,5)P2 Although ORP5 activity requires normal levels of these inositides, ORP8 is called on only when PI(4,5)P2 levels are increased. Regulation of the ORP5/8 attachment to the PM by both phosphoinositides provides a powerful means to determine the relative flux of PI4P toward the ER for PS transport and Sac1-mediated dephosphorylation and PIP 5-kinase-mediated conversion to PI(4,5)P2 Using this rheostat, cells can maintain PI(4,5)P2 levels by adjusting the availability of PI4P in the PM.
Department of Cell Biology University of Pittsburgh School of Medicine Pittsburgh PA
Keenan Research Centre for Biomedical Science St Michael's Hospital Toronto ON Canada
Zobrazit více v PubMed
Balla T. 2013. Phosphoinositides: Tiny lipids with giant impact on cell regulation. Physiol. Rev. 93:1019–1137. 10.1152/physrev.00028.2012 PubMed DOI PMC
Balla A., Kim Y.J., Varnai P., Szentpetery Z., Knight Z., Shokat K.M., and Balla T.. 2008. Maintenance of hormone-sensitive phosphoinositide pools in the plasma membrane requires phosphatidylinositol 4-kinase IIIalpha. Mol. Biol. Cell. 19:711–721. 10.1091/mbc.E07-07-0713 PubMed DOI PMC
Baskin J.M., Wu X., Christiano R., Oh M.S., Schauder C.M., Gazzerro E., Messa M., Baldassari S., Assereto S., Biancheri R., et al. . 2016. The leukodystrophy protein FAM126A (hyccin) regulates PtdIns(4)P synthesis at the plasma membrane. Nat. Cell Biol. 18:132–138. 10.1038/ncb3271 PubMed DOI PMC
Bojjireddy N., Botyanszki J., Hammond G., Creech D., Peterson R., Kemp D.C., Snead M., Brown R., Morrison A., Wilson S., et al. . 2014. Pharmacological and genetic targeting of the PI4KA enzyme reveals its important role in maintaining plasma membrane phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate levels. J. Biol. Chem. 289:6120–6132. 10.1074/jbc.M113.531426 PubMed DOI PMC
Boura E., and Nencka R.. 2015. Phosphatidylinositol 4-kinases: Function, structure, and inhibition. Exp. Cell Res. 337:136–145. 10.1016/j.yexcr.2015.03.028 PubMed DOI
Chen Y.J., Chang C.L., Lee W.R., and Liou J.. 2017. RASSF4 controls SOCE and ER–PM junctions through regulation of PI(4,5)P2. J. Cell Biol. 216:2011–2025. 10.1083/jcb.201606047 PubMed DOI PMC
Chung J., Torta F., Masai K., Lucast L., Czapla H., Tanner L.B., Narayanaswamy P., Wenk M.R., Nakatsu F., and De Camilli P.. 2015. PI4P/phosphatidylserine countertransport at ORP5- and ORP8-mediated ER-plasma membrane contacts. Science. 349:428–432. 10.1126/science.aab1370 PubMed DOI PMC
Dickson E.J., Jensen J.B., Vivas O., Kruse M., Traynor-Kaplan A.E., and Hille B.. 2016. Dynamic formation of ER-PM junctions presents a lipid phosphatase to regulate phosphoinositides. J. Cell Biol. 213:33–48. 10.1083/jcb.201508106 PubMed DOI PMC
Ghai R., Du X., Wang H., Dong J., Ferguson C., Brown A.J., Parton R.G., Wu J.W., and Yang H.. 2017. ORP5 and ORP8 bind phosphatidylinositol-4, 5-biphosphate (PtdIns(4,5)P 2) and regulate its level at the plasma membrane. Nat. Commun. 8:757 10.1038/s41467-017-00861-5 PubMed DOI PMC
Giordano F., Saheki Y., Idevall-Hagren O., Colombo S.F., Pirruccello M., Milosevic I., Gracheva E.O., Bagriantsev S.N., Borgese N., and De Camilli P.. 2013. PI(4,5)P(2)-dependent and Ca(2+)-regulated ER-PM interactions mediated by the extended synaptotagmins. Cell. 153:1494–1509. 10.1016/j.cell.2013.05.026 PubMed DOI PMC
Hammond G.R., Fischer M.J., Anderson K.E., Holdich J., Koteci A., Balla T., and Irvine R.F.. 2012. PI4P and PI(4,5)P2 are essential but independent lipid determinants of membrane identity. Science. 337:727–730. 10.1126/science.1222483 PubMed DOI PMC
Hammond G.R., Machner M.P., and Balla T.. 2014. A novel probe for phosphatidylinositol 4-phosphate reveals multiple pools beyond the Golgi. J. Cell Biol. 205:113–126. 10.1083/jcb.201312072 PubMed DOI PMC
Inoue T., Heo W.D., Grimley J.S., Wandless T.J., and Meyer T.. 2005. An inducible translocation strategy to rapidly activate and inhibit small GTPase signaling pathways. Nat. Methods. 2:415–418. 10.1038/nmeth763 PubMed DOI PMC
Klima M., Tóth D.J., Hexnerova R., Baumlova A., Chalupska D., Tykvart J., Rezabkova L., Sengupta N., Man P., Dubankova A., et al. . 2016. Structural insights and in vitro reconstitution of membrane targeting and activation of human PI4KB by the ACBD3 protein. Sci. Rep. 6:23641 10.1038/srep23641 PubMed DOI PMC
Krieger E., and Vriend G.. 2014. YASARA View—molecular graphics for all devices—from smartphones to workstations. Bioinformatics. 30:2981–2982. 10.1093/bioinformatics/btu426 PubMed DOI PMC
Lacalle R.A., de Karam J.C., Martínez-Muñoz L., Artetxe I., Peregil R.M., Sot J., Rojas A.M., Goñi F.M., Mellado M., and Mañes S.. 2015. Type I phosphatidylinositol 4-phosphate 5-kinase homo- and heterodimerization determines its membrane localization and activity. FASEB J. 29:2371–2385. 10.1096/fj.14-264606 PubMed DOI
Maeda K., Anand K., Chiapparino A., Kumar A., Poletto M., Kaksonen M., and Gavin A.C.. 2013. Interactome map uncovers phosphatidylserine transport by oxysterol-binding proteins. Nature. 501:257–261. 10.1038/nature12430 PubMed DOI
Maekawa M., and Fairn G.D.. 2015. Complementary probes reveal that phosphatidylserine is required for the proper transbilayer distribution of cholesterol. J. Cell Sci. 128:1422–1433. 10.1242/jcs.164715 PubMed DOI
Moser von Filseck J., Čopič A., Delfosse V., Vanni S., Jackson C.L., Bourguet W., and Drin G.. 2015. Phosphatidylserine transport by ORP/Osh proteins is driven by phosphatidylinositol 4-phosphate. Science. 349:432–436. 10.1126/science.aab1346 PubMed DOI
Nakatsu F., Baskin J.M., Chung J., Tanner L.B., Shui G., Lee S.Y., Pirruccello M., Hao M., Ingolia N.T., Wenk M.R., and De Camilli P.. 2012. PtdIns4P synthesis by PI4KIIIα at the plasma membrane and its impact on plasma membrane identity. J. Cell Biol. 199:1003–1016. 10.1083/jcb.201206095 PubMed DOI PMC
Olkkonen V.M., and Li S.. 2013. Oxysterol-binding proteins: Sterol and phosphoinositide sensors coordinating transport, signaling and metabolism. Prog. Lipid Res. 52:529–538. 10.1016/j.plipres.2013.06.004 PubMed DOI
Renshaw P.S., Veverka V., Kelly G., Frenkiel T.A., Williamson R.A., Gordon S.V., Hewinson R.G., and Carr M.D.. 2004. Sequence-specific assignment and secondary structure determination of the 195-residue complex formed by the Mycobacterium tuberculosis proteins CFP-10 and ESAT-6. J. Biomol. NMR. 30:225–226. 10.1023/B:JNMR.0000048852.40853.5c PubMed DOI
Rozelle A.L., Machesky L.M., Yamamoto M., Driessens M.H., Insall R.H., Roth M.G., Luby-Phelps K., Marriott G., Hall A., and Yin H.L.. 2000. Phosphatidylinositol 4,5-bisphosphate induces actin-based movement of raft-enriched vesicles through WASP-Arp2/3. Curr. Biol. 10:311–320. 10.1016/S0960-9822(00)00384-5 PubMed DOI
Schanda P., and Brutscher B.. 2005. Very fast two-dimensional NMR spectroscopy for real-time investigation of dynamic events in proteins on the time scale of seconds. J. Am. Chem. Soc. 127:8014–8015. 10.1021/ja051306e PubMed DOI
Sohn M., Ivanova P., Brown H.A., Toth D.J., Varnai P., Kim Y.J., and Balla T.. 2016. Lenz-Majewski mutations in PTDSS1 affect phosphatidylinositol 4-phosphate metabolism at ER-PM and ER-Golgi junctions. Proc. Natl. Acad. Sci. USA. 113:4314–4319. 10.1073/pnas.1525719113 PubMed DOI PMC
Stefan C.J., Manford A.G., Baird D., Yamada-Hanff J., Mao Y., and Emr S.D.. 2011. Osh proteins regulate phosphoinositide metabolism at ER-plasma membrane contact sites. Cell. 144:389–401. 10.1016/j.cell.2010.12.034 PubMed DOI
Suh B.C., Inoue T., Meyer T., and Hille B.. 2006. Rapid chemically induced changes of PtdIns(4,5)P2 gate KCNQ ion channels. Science. 314:1454–1457. 10.1126/science.1131163 PubMed DOI PMC
Tóth J.T., Gulyás G., Tóth D.J., Balla A., Hammond G.R., Hunyady L., Balla T., and Várnai P.. 2016. BRET-monitoring of the dynamic changes of inositol lipid pools in living cells reveals a PKC-dependent PtdIns4P increase upon EGF and M3 receptor activation. Biochim. Biophys. Acta. 1861:177–187. 10.1016/j.bbalip.2015.12.005 PubMed DOI PMC
Varnai P., Thyagarajan B., Rohacs T., and Balla T.. 2006. Rapidly inducible changes in phosphatidylinositol 4,5-bisphosphate levels influence multiple regulatory functions of the lipid in intact living cells. J. Cell Biol. 175:377–382. 10.1083/jcb.200607116 PubMed DOI PMC
Várnai P., and Balla T.. 1998. Visualization of phosphoinositides that bind pleckstrin homology domains: Calcium- and agonist-induced dynamic changes and relationship to myo-[3H]inositol-labeled phosphoinositide pools. J. Cell Biol. 143:501–510. 10.1083/jcb.143.2.501 PubMed DOI PMC
Várnai P., Gulyás G., Tóth D.J., Sohn M., Sengupta N., and Balla T.. 2017. Quantifying lipid changes in various membrane compartments using lipid binding protein domains. Cell Calcium. 64:72–82. 10.1016/j.ceca.2016.12.008 PubMed DOI PMC
Veverka V., Lennie G., Crabbe T., Bird I., Taylor R.J., and Carr M.D.. 2006. NMR assignment of the mTOR domain responsible for rapamycin binding. J. Biomol. NMR. 36(S1, Suppl 1):3 10.1007/s10858-005-4324-1 PubMed DOI
Yeung T., Gilbert G.E., Shi J., Silvius J., Kapus A., and Grinstein S.. 2008. Membrane phosphatidylserine regulates surface charge and protein localization. Science. 319:210–213. 10.1126/science.1152066 PubMed DOI