Wild rodents harbour high diversity of Arthroderma

. 2023 Jun ; 50 () : 27-47. [epub] 20230201

Status PubMed-not-MEDLINE Jazyk angličtina Země Nizozemsko Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38567260

Arthroderma is the most diverse genus of dermatophytes, and its natural reservoir is considered to be soil enriched by keratin sources. During a study on the diversity of dermatophytes in wild small rodents in the Czech Republic, we isolated several strains of Arthroderma. To explore the diversity and ecological significance of these isolates from rodents (n = 29), we characterised the strains genetically (i.e., sequenced ITS, tubb and tef1α), morphologically, physiologically, and by conducting mating experiments. We then compared the rodent-derived strains to existing ITS sequence data from GenBank and the GlobalFungi Database to further investigate biogeography and the association of Arthroderma species with different types of environments. In total, eight Arthroderma species were isolated from rodents, including four previously described species (A. crocatum, A. cuniculi, A. curreyi, A. quadrifidum) and four new species proposed herein, i.e., A. rodenticum, A. simile, A. zoogenum and A. psychrophilum. The geographical distribution of these newly described species was not restricted to the Czech Republic nor rodents. Additional isolates were obtained from bats and other mammals, reptiles, and soil from Europe, North America, and Asia. Data mining showed that the genus has a diverse ecology, with some lineages occurring relatively frequently in soil, whereas others appeared to be more closely associated with live animals, as we observed in A. rodenticum. Low numbers of sequence reads ascribed to Arthroderma in soil show that the genus is rare in this environment, which supports the hypothesis that Arthroderma spp. are not soil generalists but rather strongly associated with animals and keratin debris. This is the first study to utilise existing metabarcoding data to assess biogeographical, ecological, and diversity patterns in dermatophytes. Citation: Moulíková Š, Kolařík M, Lorch JM, et al. 2022. Wild rodents harbour high diversity of Arthroderma. Persoonia 50: 27- 47. https://doi.org/10.3767/persoonia.2023.50.02.

Zobrazit více v PubMed

Alteras I. 1966. Human dermatophyte infections from laboratory animals. Sabouraudia: Journal of Medical and Veterinary Mycology 4: 143–145. PubMed

Anthony M, Frey S, Stinson K. 2017. Fungal community homogenization, shift in dominant trophic guild, and appearance of novel taxa with biotic invasion. Ecosphere 8: e01951.

Bahram M, Netherway T, Hildebrand F. et al. 2020. Plant nutrient-acquisition strategies drive topsoil microbiome structure and function. New Phytologist 227: 1189–1199. PubMed

Baldrian P, Zrůstová P, Tláskal V. et al. 2016. Fungi associated with decomposing deadwood in a natural beech-dominated forest. Fungal Ecology 23: 109–122.

Brasch J, Beck-Jendroschek V, Voss K. et al. 2019. Arthroderma chiloniense sp. nov. isolated from human stratum corneum: description of a new Arthroderma species. Mycoses 62: 73–80. PubMed

Brasch J, Beck-Jendroschek V, Voss K. et al. 2021. Arthroderma crocatum auf menschlicher Haut. Der Hautarzt 72: 267–270. PubMed

Brasch J, Gräser Y. 2005. Trichophyton eboreum sp. nov. isolated from human skin. Journal of Clinical Microbiology 43: 5230–5237. PubMed PMC

Chabasse D. 1988. Taxonomic study of keratinophilic fungi isolated from soil and some mammals in France. Mycopathologia 101: 133–140. PubMed

Chabasse D, Guiguen C, Couatarmanac’h A. et al. 1987. Contribution à la connaissance de la flore fongique kératinophile isolée des petits mammifères sauvages et du lapin de garenne en France-Discussion sur les espèces fongiques rencontrées. Annales de Parasitologie Humaine et Comparée 62: 357–368. PubMed

Chmel L, Buchvald J, Kleibl K. 1967. Die Rolle der Naturfaktoren bei Entstehung der Naturherde der Dermatomykosen. Mycoses 10: 263–270. PubMed

Chmel L, Buchvald J, Valentova M. 1975. Spread of Trichophyton mentagrophytes var. gran. infection to man. International Journal of Dermatology 14: 269–272. PubMed

Chollet A, Cattin V, Fratti M. et al. 2015. Which fungus originally was Trichophyton mentagrophytes? Historical review and illustration by a clinical case. Mycopathologia 180: 1–5. PubMed

Čmoková A, Kolařík M, Dobiáš R. et al. 2020. Resolving the taxonomy of emerging zoonotic pathogens in the Trichophyton benhamiae complex. Fungal Diversity 104: 333–387.

Čmoková A, Rezaei-Matehkolaei A, Kuklová I. et al. 2021. Discovery of new Trichophyton members, T. persicum and T. spiraliforme spp. nov., as a cause of highly inflammatory tinea cases in Iran and Czechia. Microbiology Spectrum 9: e00284–00221. PubMed PMC

Cook JA, Runck AM, Conroy CJ. 2004. Historical biogeography at the crossroads of the northern continents: molecular phylogenetics of red-backed voles (Rodentia: Arvicolinae). Molecular Phylogenetics and Evolution 30: 767–777. PubMed

Crous PW, Wingfield MJ, Guarro J. et al. 2013. Fungal Planet description sheets: 154-213. Persoonia 31: 188–296. PubMed PMC

Currah R, Abbott SP, Sigler L. 1996. Arthroderma silverae sp. nov. and Chrysosporium vallenarense, keratinophilic fungi from arctic and montane habitats. Mycological Research 100: 195–198.

Dawson CO. 1963. Two new species of Arthroderma isolated from soil from rabbit burrows. Sabouraudia: Journal of Medical and Veterinary Mycology 2: 185–191.

De Hoog GS, Dukik K, Monod M. et al. 2017. Toward a novel multilocus phylogenetic taxonomy for the dermatophytes. Mycopathologia 182: 5–31. PubMed PMC

De Respinis S, Tonolla M, Pranghofer S. et al. 2013. Identification of dermatophytes by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Sabouraudia: Journal of Medical and Veterinary Mycology 51: 514–521. PubMed

De Vroey C. 1964. Formes sexuées des dermatophytes. Production de cleistothèces de Microsporum gypseum (Bodin) Guiart et Grigorakis sur divers milieux stériles. Annales de la Société Belge de Médecine Tropicale 44: 831–840. PubMed

Drouot S, Mignon B, Fratti M. et al. 2009. Pets as the main source of two zoonotic species of the Trichophyton mentagrophytes complex in Switzerland, Arthroderma vanbreuseghemii and Arthroderma benhamiae. Veterinary Dermatology 20: 13–18. PubMed

Evolceanu R, Alteraş I. 1967. Eine keratinophile Chrysosporium-Art mit ausgesprochen dermatophytischen, immunbiologischen Eigenschaften aus Guano von einer Grotte in Rumänien (unvollkommenes Stadium von Arthroderma multifidum-Dawson 1963?) (Erste Mitteilung). Mycoses 10: 489–492. PubMed

Farrer EC, Porazinska DL, Spasojevic MJ. et al. 2019. Soil microbial networks shift across a high-elevation successional gradient. Frontiers in Microbiology 10: 2887. PubMed PMC

Flowerdew JR, Shore RF, Poulton SM. et al. 2004. Live trapping to monitor small mammals in Britain. Mammal Review 34: 31–50.

Frøslev TG, Kjøller R, Bruun HH. et al. 2019. Man against machine: Do fungal fruitbodies and eDNA give similar biodiversity assessments across broad environmental gradients? Biological Conservation 233: 201–212.

Gallo MG, Lanfranchi P, Poglayen G. et al. 2005. Seasonal 4-year investigation into the role of the alpine marmot (Marmota marmota) as a carrier of zoophilic dermatophytes. Medical Mycology 43: 373–379. PubMed

Gams W. 2007. Biodiversity of soil-inhabiting fungi. Biodiversity and Conservation 16: 69–72.

Gardes M, Bruns TD. 1993. ITS primers with enhanced specificity for basidiomycetes-application to the identification of mycorrhizae and rusts. Molecular Ecology 2: 113–118. PubMed

Geml J. 2019. Soil fungal communities reflect aspect-driven environmental structuring and vegetation types in a Pannonian forest landscape. Fungal Ecology 39: 63–79.

Glass NL, Donaldson GC. 1995. Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Applied and Environmental Microbiology 61: 1323–1330. PubMed PMC

Gnat S, Łagowski D, Dyląg M. et al. 2022. European hedgehogs (Erinaceus europaeus L.) as a reservoir of dermatophytes in Poland. Microbial Ecology 84: 363–375. PubMed PMC

Gräser Y, De Hoog S, Summerbell R. 2006. Dermatophytes: recognizing species of clonal fungi. Medical Mycology 44: 199–209. PubMed

Gregory M, English MP. 1975. Arthroderma benhamiae infection in the central African hedgehog, Erinaceus albiventris, and a report of a human case. Mycopathologia 55: 143–147. PubMed

Gregory M, Stockdale PM, English MP. 1978. Ringworm of the African hedge- hog (Erinaceus albiventris) in the Ivory Coast due to Arthroderma benhamiae. Mycopathologia 66: 125–126. PubMed

Grin E, Ožegović L. 1963. Influence of the soil on certain dermatophytes and their evolutional trend. Mycopathologia et Mycologia Applicata 21: 23–28. PubMed

Guindon S, Delsuc F, Dufayard J-F. et al. 2009. Estimating maximum likelihood phylogenies with PhyML. Methods in Molecular Biology 537: 113–137. PubMed

Hainsworth S, Hubka V, Lawrie AC. et al. 2020. Predominance of Trichophyton interdigitale revealed in podiatric nail dust collections in Eastern Australia. Mycopathologia 185: 175–185. PubMed

Hainsworth S, Kučerová I, Sharma R. et al. 2021. Three-gene phylogeny of the genus Arthroderma: basis for future taxonomic studies. Medical Mycology 59: 355–365. PubMed

Hall T. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41: 95–98.

Hamm PS, Mueller RC, Kuske CR. et al. 2020. Keratinophilic fungi: Specialized fungal communities in a desert ecosystem identified using cultured-based and Illumina sequencing approaches. Microbiological Research 239: 126530. PubMed

Hammer Ø, Harper DA, Ryan PD. 2001. PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4: 9.

Houin R, Rouget-Campana Y, Le Fichoux Y. et al. 1972. Isolement de Trichophyton mentagrophytes (Robin) Blanchard 1896, Nannizia persicolor Stockdale 1967 et Trichophyton terrestre Durie et Frey 1957, du pelage de Rongeurs-Essai d’interprétation écologique. Annales de Parasitologie Humaine et Comparée 47: 421–429. PubMed

Hubálek Z. 1970. Trichophyton georgiae Varsavsky et Ajello, from birds in Czechoslovakia and Yugoslavia. Sabouraudia: Journal of Medical and Veterinary Mycology 8: 1–3. PubMed

Hubálek Z. 2000. Keratinophilic fungi associated with free-living mammals and birds. In: Kushawaha RKS, Guarro J. (eds), Biology of dermatophytes and other keratinophilic fungi: 86–92. Revista Iberoamericana de Micología, Bilbao, Spain.

Hubálek Z, Rosický B, Otčenášek M. 1979. Fungi on the hair of small wild mammals in Czechoslovakia and Yugoslavia. Česká Mykologie 33: 81–93.

Hubka V, Dobiasova S, Lyskova P. et al. 2013. Auxarthron ostraviense sp. nov., and A. umbrinum associated with non-dermatophytic onychomycosis. Medical Mycology 51: 614–624. PubMed

Hubka V, Mallátová N, Hamal P. et al. 2014a. Molekulární epidemiologie dermatofytóz v České republice: výsledky dvouleté studie. Česko-Slovenská Dermatologie 89: 167–174.

Hubka V, Nissen CV, Jensen RH. et al. 2015. Discovery of a sexual stage in Trichophyton onychocola, a presumed geophilic dermatophyte isolated from toenails of patients with a history of T. rubrum onychomycosis. Medical Mycology 53: 798–809. PubMed

Hubka V, Peano A, Čmoková A. et al. 2018. Common and emerging dermatophytoses in animals: well-known and new threats. In: Seyedmousavi S, De Hoog GS, Guillot J. et al. (eds), Emerging and epizootic fungal infections in animals. Springer, Switzerland: 31–79.

Hubka V, Větrovský T, Dobiášová S. et al. 2014b. Molekulární epidemiologie dermatofytóz v České republice – výsledky dvouleté studie. Česko-Slovenská Dermatologie 89: 167–174.

Ibbotson R, Pugh G. 1975. Use of the fluorescent antibody technique for the evaluation of Arthroderma uncinatum in soil. Mycopathologia 56: 119–123.

Kajihiro ES. 1965. Occurrence of dermatophytes in fresh bat guano. Applied Microbiology 13: 720–724. PubMed PMC

Katoh K, Rozewicki J, Yamada KD. 2019. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Briefings in Bioinformatics 20: 1160–1166. PubMed PMC

Knudtson WU, Robertstad GW. 1970. The isolation of keratinophilic fungi from soil and wild animals in South Dakota. Mycopathologia et Mycologia Applicata 40: 309–323. PubMed

Kornerup A, Wanscher J. 1978. Methuen handbook of colour. 3rd edn, Eyre Methuen. United Kingdom.

Krebs CJ. 1989. Ecological methodology. Harper & Row, New York, NY, USA.

Kuehn HH. 1960. Observations on Gymnoascaceae. VIII. A new species of Arthroderma. Mycopathologia et Mycologia Applicata 13: 189–197. PubMed

Kupsch C, Berlin M, Gräser Y. 2017. Dermophytes and guinea pigs: An underestimated danger? Der Hautarzt 68: 827–830. PubMed

L’Ollivier C, Cassagne C, Normand A-C. et al. 2013. A MALDI-TOF MS procedure for clinical dermatophyte species identification in the routine laboratory. Medical Mycology 51: 713–720. PubMed

Lanfear R, Frandsen PB, Wright AM. et al. 2017. PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Molecular Biology and Evolution 34: 772–773. PubMed

Le Barzic C, Čmoková A, Denaes C. et al. 2021. Detection and control of dermatophytosis in wild European hedgehogs (Erinaceus europaeus) admitted to a French wildlife rehabilitation centre. Journal of Fungi 7: 74. PubMed PMC

Lorch JM, Lindner DL, Gargas A. et al. 2013. A culture-based survey of fungi in soil from bat hibernacula in the eastern United States and its implications for detection of Geomyces destructans, the causal agent of bat white-nose syndrome. Mycologia 105: 237–252. PubMed

Lorch JM, Meteyer CU, Behr MJ. et al. 2011. Experimental infection of bats with Geomyces destructans causes white-nose syndrome. Nature 480: 376–378. PubMed

Lorch JM, Minnis AM, Meteyer CU. et al. 2015. The fungus Trichophyton redellii sp. nov. causes skin infections that resemble white-nose syndrome of hibernating bats. Journal of Wildlife Diseases 51: 36–47. PubMed

Lysková P, Dobiáš R, Čmoková A. et al. 2021. An outbreak of Trichophyton quinckeanum zoonotic infections in the Czech Republic transmitted from cats and dogs. Journal of Fungi 7: 684. PubMed PMC

Mantovani A. 1978. The role of animals in the epidemiology of the mycoses. Mycopathologia 65: 61–66. PubMed

Mantovani A, Morganti L, Battelli G. et al. 1982. The role of wild animals in the ecology of dermatophytes and related fungi. Folia Parasitologica 29: 279–284. PubMed

Mašínová T, Bahnmann BD, Větrovský T. et al. 2017. Drivers of yeast com- munity composition in the litter and soil of a temperate forest. FEMS Microbiology Ecology 93: fiw223. PubMed

Matějková T, Hájková P, Stopková R. et al. 2020. Oral and vaginal microbiota in selected field mice of the genus Apodemus: a wild population study. Scientific Reports 10: 1–11. PubMed PMC

McKeever S, Menges R, Kaplan W. et al. 1958. Ringworm fungi of feral rodents in southwestern Georgia. American Journal of Veterinary Research 19: 969–972. PubMed

Menges RW, Love GJ, Smith WW. et al. 1957. Ringworm in wild animals in southwestern Georgia. American Journal of Veterinary Research 18: 672–677. PubMed

Merges D, Bálint M, Schmitt I. et al. 2018. Spatial patterns of pathogenic and mutualistic fungi across the elevational range of a host plant. Journal of Ecology 106: 1545–1557.

Mirhendi H, Makimura K, De Hoog GS. et al. 2015. Translation elongation factor 1-α gene as a potential taxonomic and identification marker in dermatophytes. Medical Mycology 53: 215–224. PubMed

Moretti A, Agnetti F, Mancianti F. et al. 2013. Dermatophytosis in animals: epidemiological, clinical and zoonotic aspects. Giornale Italiano di Dermatologia e Venereologia 148: 563–572. PubMed

Morris P, English MP. 1969. Trichophyton mentagrophytes var. erinacei in British hedgehogs. Sabouraudia: Journal of Medical and Veterinary Mycology 7: 122–128. PubMed

Moudra A, Niederlova V, Novotny J. et al. 2021. Phenotypic and clonal stability of antigen-inexperienced memory-like T cells across the genetic background, hygienic status, and aging. The Journal of Immunology 206: 2109–2121. PubMed PMC

Needle DB, Gibson R, Hollingshead NA. et al. 2019. Atypical dermatophytosis in 12 North American porcupines (Erethizon dorsatum) from the northeastern United States 2010–2017. Pathogens 8: 171. PubMed PMC

Nenoff P, Erhard M, Simon JC. et al. 2013. MALDI-TOF mass spectrometry-a rapid method for the identification of dermatophyte species. Medical Mycology 51: 17–24. PubMed

Nenoff P, Winter I, Krueger C. et al. 2014. Trichophyton thuringiense H.A. Koch 1969. Ein seltener geophiler Dermatophyt, erstmals vom Menschen isoliert (Trichophyton thuringiense H.A. Koch 1969. A rare geophilic dermatophyte – now isolated for the first time from man). Hautarzt 65: 221–228. PubMed

Nguyen L-T, Schmidt HA, Von Haeseler A. et al. 2015. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution 32: 268–274. PubMed PMC

Nilsson RH, Larsson K-H, Taylor AFS. et al. 2019. The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucleic Acids Research 47: D259–D264. PubMed PMC

Nováková A, Šimonovičová A, Kubátová A. 2012. List of cultivable micro- fungi recorded from soils, soil related substrates and underground environment of the Czech and Slovak Republics. Mycotaxon 119: 1–186.

O’Donnell K. 1993. Fusarium and its near relatives. In: Reynolds DR, Taylor JW. (eds), The fungal holomorph: mitotic, meiotic and pleomorphic speciation in fungal systematics. CAB International, UK.

Oja J, Vahtra J, Bahram M. et al. 2017. Local-scale spatial structure and community composition of orchid mycorrhizal fungi in semi-natural grasslands. Mycorrhiza 27: 355–367. PubMed

Otčenášek M, Hudec K, Hubálek Z. et al. 1967. Keratinophilic fungi from the nests of birds in Czechoslovakia. Sabouraudia: Journal of Medical and Veterinary Mycology 5: 350–354. PubMed

Papini R, Nardoni S, Ricchi R. et al. 2008. Dermatophytes and other keratinophilic fungi from coypus (Myocastor coypus) and brown rats (Rattus norvegicus). European Journal of Wildlife Research 54: 455–459.

Porazinska DL, Farrer EC, Spasojevic MJ. et al. 2018. Plant diversity and density predict belowground diversity and function in an early successional alpine ecosystem. Ecology 99: 1942–1952. PubMed

Prada-Salcedo LD, Goldmann K, Heintz-Buschart A. et al. 2021. Fungal guilds and soil functionality respond to tree community traits rather than to tree diversity in European forests. Molecular Ecology 30: 572–591. PubMed

Pugh G. 1964. Dispersal of Arthroderma curreyi by birds, and its role in the soil. Sabouraudia: Journal of Medical and Veterinary Mycology 3: 275–278. PubMed

Purahong W, Wubet T, Lentendu G. et al. 2018. Determinants of deadwood-inhabiting fungal communities in temperate forests: molecular evidence from a large scale deadwood decomposition experiment. Frontiers in Microbiology 9: 2120. PubMed PMC

Rambaut A. 2020. FigTree v. 1.4. 4. 2018. http://tree.bio.ed.ac.uk/software/figtree/ accessed February 2021.

Rambaut A, Drummond AJ, Xie D. et al. 2018. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Systematic Biology 67: 901–904. PubMed PMC

R Core Team. 2020. R: A language and environment for statistical computing. (4.0.5). R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/ accessed January 2021.

Réblová M, Kolařík M, Nekvindová J. et al. 2021a. Phylogeny, global biogeography and pleomorphism of Zanclospora. Microorganisms 9: 706. PubMed PMC

Réblová M, Kolařík M, Nekvindová J. et al. 2021b. Phylogenetic reassessment, taxonomy, and biogeography of Codinaea and similar fungi. Journal of Fungi 7: 1097. PubMed PMC

Robert VA, Casadevall A. 2009. Vertebrate endothermy restricts most fungi as potential pathogens. The Journal of Infectious Diseases 200: 1623–1626. PubMed

Ronquist F, Teslenko M, Van Der Mark P. et al. 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61: 539–542. PubMed PMC

Sayers EW, Cavanaugh M, Clark K. et al. 2019. GenBank. Nucleic Acids Research 47: D94–D99. PubMed PMC

Sklenář F, Jurjević Ž, Houbraken J. et al. 2021. Re-examination of species limits in Aspergillus section Flavipedes using advanced species delimitation methods and description of four new species. Studies in Mycology 99: 100120. PubMed PMC

Smith J, Marples MJ. 1964. Trichophyton mentagrophytes var. erinacei. Sabouraudia: Journal of Medical and Veterinary Mycology 3: 1–10. PubMed

Smith JM, Rush-Munro F, McCarthy M. 1969. Animals as a reservoir of human ringworm in New Zealand. Australasian Journal of Dermatology 10: 169–182. PubMed

Sukdeo N, Teen E, Rutherford PM. et al. 2018. Selecting fungal disturbance indicators to compare forest soil profile re-construction regimes. Ecological Indicators 84: 662–682.

Symoens F, Jousson O, Packeu A. et al. 2013. The dermatophyte species Arthroderma benhamiae: intraspecies variability and mating behaviour. Journal of Medical Microbiology 62: 377–385. PubMed

Uhrlaß S, Schroedl W, Mehlhorn C. et al. 2018. Molecular epidemiology of Trichophyton quinckeanum – a zoophilic dermatophyte on the rise. JDDG: Journal der Deutschen Dermatologischen Gesellschaft 16: 21–32. PubMed

Umnova I, Fomenko V. 1960. Trikhofitija poljovijkh miskei, vizvavshaja zarazenih ljudjeji (Trichophytosis in field mice causing infection in man). Vestnik Dermatologii i Venerologii 11: 36–38.

Větrovský T, Baldrian P, Morais D. 2018. SEED 2: a user-friendly platform for amplicon high-throughput sequencing data analyses. Bioinformatics 34: 2292–2294. PubMed PMC

Větrovský T, Kohout P, Kopecký M. et al. 2019. A meta-analysis of global fungal distribution reveals climate-driven patterns. Nature Communications 10: 1–9. PubMed PMC

Větrovský T, Morais D, Kohout P. et al. 2020. GlobalFungi, a global database of fungal occurrences from high-throughput-sequencing metabarcoding studies. Scientific Data 7: 1–14. PubMed PMC

Villesen P. 2007. FaBox: an online toolbox for fasta sequences. Molecular Ecology Notes 7: 965–968.

Weitzman I, Summerbell RC. 1995. The dermatophytes. Clinical Microbiology Reviews 8: 240–259. PubMed PMC

White TJ, Burns T, Lee S. et al. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ. et al. (eds), PCR protocols: a guide to methods and applications: 282–287. Academic Press, USA.

Zeller L. 1970. Arthroderma species from the ‘Baradla’ cave in Aggtelek (Biospeologica Hungarica XXXI.). Annales of the University of Sciences Budapest, Section Biology 5: 273–280.

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

First Step on the Way to Identify Dermatophytes Using Odour Fingerprints

. 2025 Jan 07 ; 190 (1) : 10. [epub] 20250107

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...