An Outbreak of Trichophyton quinckeanum Zoonotic Infections in the Czech Republic Transmitted from Cats and Dogs
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
NU21-05-00681
Ministerstvo Zdravotnictví Ceské Republiky
Charles University Research Centre program no. 204069
Univerzita Karlova v Praze
RVO: 61388971
Akademie Věd České Republiky
PubMed
34575722
PubMed Central
PMC8465542
DOI
10.3390/jof7090684
PII: jof7090684
Knihovny.cz E-zdroje
- Klíčová slova
- EUCAST, MALDI-TOF mass spectrometry, antifungal susceptibility testing, terbinafine, tinea capitis, tinea corporis, zoonotic infections, zoophilic dermatophytes,
- Publikační typ
- časopisecké články MeSH
Trichophyton quinckeanum, a zoophilic dermatophyte mostly known as the causative agent of rodent favus, is relatively rarely reported to cause human infections. Indeed, no infections were detected in Czechia between 2012 and 2015 despite routine verification of species identification by ITS rDNA sequencing. By contrast, 25 human and 11 animal cases of infection were documented from December 2016 to December 2020 and the rates tended to grow every following year. Interestingly, most of the cases were reported in the Olomouc region, suggesting a local outbreak. We bring the evidence that human T. quinckeanum infections are most commonly contracted from infected cats or, less frequently, dogs. Although rodents or contaminated soil and environment could be the source of infection to cats and dogs, the occurrence of infections in multiple animals in the same household suggests direct transmission among animals. Confirmation of the identification by molecular methods is highly recommended due to morphological similarity with T. mentagrophytes/T. interdigitale. Antifungal susceptibility testing of isolates to eight antifungals was performed using EUCAST methodology (E.Def 11.0). Among the tested antifungals, terbinafine, amorolfine, ciclopirox and efinaconazole were most potent in vitro and elevated minimum inhibitory concentrations were obtained for fluconazole and ketoconazole.
Department of Botany Faculty of Science Charles University 128 01 Prague Czech Republic
Department of Clinical Microbiology Pardubice Regional Hospital 53 203 Pardubice Czech Republic
Department of Dermatology Přerov Hospital 751 52 Přerov Czech Republic
Department of Microbiology University Hospital Olomouc 775 15 Olomouc Czech Republic
Department of Skin and Venereal Diseases University Hospital Olomouc 775 15 Olomouc Czech Republic
Dermatology Center 757 01 Valašské Meziříčí Czech Republic
Dermatology Center DERMI s r o 639 00 Brno Czech Republic
Dermatology Center Hranice Hospital 753 22 Hranice Czech Republic
Dr Drlik Dermatovenereology 789 85 Mohelnice Czech Republic
Veterinární Klinika MVDr Vlastimil Pospíšil 68 201 Vyškov Czech Republic
Zobrazit více v PubMed
Dvořák J., Otčenášek M. Mycological Diagnosis of Animal Dermatophytoses. Springer; Dordrecht, The Netherlands: 1969. Zoophilic dermatophytes commonly attacking man; pp. 69–84.
Ajello L., Bostick L., Cheng S.-L. The relationship of Trichophyton quinckeanum to Trichophyton mentagrophytes. Mycologia. 1968;60:1185–1189. doi: 10.1080/00275514.1968.12018685. PubMed DOI
Beguin H., Pyck N., Hendrickx M., Planard C., Stubbe D., Detandt M. The taxonomic status of Trichophyton quinckeanum and T. interdigitale revisited: A multigene phylogenetic approach. Med. Mycol. 2012;50:871–882. doi: 10.3109/13693786.2012.684153. PubMed DOI
De Hoog G.S., Dukik K., Monod M., Packeu A., Stubbe D., Hendrickx M., Kupsch C., Stielow J.B., Freeke J., Göker M. Toward a novel multilocus phylogenetic taxonomy for the dermatophytes. Mycopathologia. 2017;182:5–31. doi: 10.1007/s11046-016-0073-9. PubMed DOI PMC
Uhrlaß S., Schroedl W., Mehlhorn C., Krüger C., Hubka V., Maier T., Gräser Y., Paasch U., Nenoff P. Molecular epidemiology of Trichophyton quinckeanum—A zoophilic dermatophyte on the rise. J. Dtsch. Dermatol. Ges. 2018;16:21–32. doi: 10.1111/ddg.13408. PubMed DOI
Garcia-Sanchez M., Pereiro M., Jr., Pereiro M., Toribio J. Favus due to Trichophyton mentagrophytes var. quinckeanum. Dermatology. 1997;194:177–179. doi: 10.1159/000246092. PubMed DOI
Hubka V., Čmoková A., Peano A., Větrovský T., Dobiáš R., Mallátová N., Lysková P., Mencl K., Janouškovcová H., Stará J., et al. Zoonotic dermatophytoses: Clinical manifestation, diagnosis, etiology, treatment, epidemiological situation in the Czech Republic. Čes-Slov. Derm. 2018;93:208–235.
Hubka V., Větrovský T., Dobiášová S., Skořepová M., Lysková P., Mencl K., Mallátová N., Janouškovcová H., Hanzlíčková J., Dobiáš R., et al. Molecular epidemiology of dermatophytoses in the Czech Republic—Two-year-study results. Čes-Slov. Derm. 2014;89:167–174.
Pihet M., Le Govic Y. Reappraisal of conventional diagnosis for dermatophytes. Mycopathologia. 2017;182:169–180. doi: 10.1007/s11046-016-0071-y. PubMed DOI
Kelly K.L. Inter-Society Color Council—National Bureau of Standards Color Name Charts Illustrated with Centroid Colors. US Government Printing Office; Washington, DC, USA: 1964.
Hubka V., Nissen C., Jensen R., Arendrup M., Cmokova A., Kubatova A., Skorepova M. Discovery of a sexual stage in Trichophyton onychocola, a presumed geophilic dermatophyte isolated from toenails of patients with a history of T. rubrum onychomycosis. Med. Mycol. 2015;53:798–809. doi: 10.1093/mmy/myv044. PubMed DOI
Georg L.K., Camp L.B. Routine nutritional tests for the identification of dermatophytes. J. Bacteriol. 1957;74:113–121. doi: 10.1128/jb.74.2.113-121.1957. PubMed DOI PMC
Gräser Y., Kuijpers A.F.A., Presber W., De Hoog G.S. Molecular taxonomy of Trichophyton mentagrophytes and T. tonsurans. Med. Mycol. 1999;37:315–330. doi: 10.1046/j.1365-280X.1999.00234.x. PubMed DOI
Gardes M., Bruns T.D. ITS primers with enhanced specificity for basidiomycetes-application to the identification of mycorrhizae and rusts. Mol. Ecol. 1993;2:113–118. doi: 10.1111/j.1365-294X.1993.tb00005.x. PubMed DOI
White T.J., Bruns T., Lee S., Taylor J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis M.A., Gelfand D.H., Sninsky J.J., White T.J., editors. PCR Protocols: A Guide to Methods and Applications. Academic Press; San Diego, CA, USA: 1990. pp. 315–322.
Hubka V., Nováková A., Jurjević Ž., Sklenář F., Frisvad J.C., Houbraken J., Arendrup M.C., Jørgensen K.M., Siqueira J.P., Gené J., et al. Polyphasic data support the splitting of Aspergillus candidus into two species; proposal of Aspergillus dobrogensis sp. nov. Int. J. Syst. Evol. Microbiol. 2018;68:995–1011. doi: 10.1099/ijsem.0.002583. PubMed DOI
Sklenář F., Jurjević Ž., Houbraken J., Kolařík M., Arendrup M.C., Jørgensen K.M., Siqueira J.P.Z., Gené J., Yaguchi T., Ezekiel C.N., et al. Re-examination of species limits in Aspergillus section Flavipedes using advanced species delimitation methods and proposal of four new species. Stud. Mycol. 2021 doi: 10.1016/j.simyco.2021.100120. PubMed DOI PMC
Arendrup M.C., Jørgensen K.M., Guinea J., Lagrou K., Chryssanthou E., Hayette M.-P., Barchiesi F., Lass-Flörl C., Hamal P., Dannaoui E. Multicentre validation of a EUCAST method for the antifungal susceptibility testing of microconidia-forming dermatophytes. J. Antimicrob. Chemother. 2020;75:1807–1819. doi: 10.1093/jac/dkaa111. PubMed DOI
Čmoková A., Kolařík M., Dobiáš R., Hoyer L.L., Janouškovcová H., Kano R., Kuklová I., Lysková P., Machová L., Maier T., et al. Resolving the taxonomy of emerging zoonotic pathogens in the Trichophyton benhamiae complex. Fungal Divers. 2020;104:333–387. doi: 10.1007/s13225-020-00465-3. DOI
Lysková P., Hubka V., Petřičáková A., Dobiáš R., Čmoková A., Kolařík M. Equine dermatophytosis due to Trichophyton bullosum, a poorly known zoophilic dermatophyte masquerading as T. verrucosum. Mycopathologia. 2015;180:407–419. doi: 10.1007/s11046-015-9931-0. PubMed DOI
De Hoog G.S., Guarro J., Gené J., Figueras M.J. Atlas of Clinical Fungi. 3rd ed. CBS-KNAW Fungal Biodiversity Centre; Utrecht, The Netherlands: 2009. CD-ROM.
Besbes M., Cheikhrouhou F., Sellami H., Makni F., Bouassida S., Ayadi A. Favus due to Trichophyton mentagrophytes var. quinckeanum. Mycoses. 2003;46:358–360. PubMed
Nenoff P., Herrmann J., Gräser Y. Trichophyton mentagrophytes sive interdigitale? A dermatophyte in the course of time. J. Dtsch. Dermatol. Ges. 2007;5:198–202. doi: 10.1111/j.1610-0387.2007.06180.x. PubMed DOI
Hubálek Z. Keratinophilic fungi associated with free-living mammals and birds. In: Kushwaha R.K.S., Guarro J., editors. Biology of Dermatophytes. Revista Iberoamericana de Micología; Bilbao, Spain: 2000. pp. 93–103.
Skořepová M., Štork J., Hrabakova J. Tinea gladiatorum due to Trichophyton mentagrophytes. Mycoses. 2002;45:431–433. doi: 10.1046/j.1439-0507.2002.00758.x. PubMed DOI
La Touche C.J. Mouse favus due to Trichophyton quinckeanum (Zopf) MacLeod & Muende: A reappraisal in the light of recent investigations. Mycopathol. Mycol. Appl. 1959;11:257–276. PubMed
Chollet A., Cattin V., Fratti M., Mignon B., Monod M. Which fungus originally was Trichophyton mentagrophytes? Historical review and illustration by a clinical case. Mycopathologia. 2015;180:1–5. doi: 10.1007/s11046-015-9893-2. PubMed DOI
Jacob J., Imholt C., Caminero-Saldaña C., Couval G., Giraudoux P., Herrero-Cófreces S., Horváth G., Luque-Larena J.J., Tkadlec E., Wymenga E. Europe-wide outbreaks of common voles in 2019. J. Pest Sci. 2020;93:703–709. doi: 10.1007/s10340-020-01200-2. DOI
Suchomel J., Šipoš J., Heroldová M. Gradace hraboše polního (Microtus arvalis) v roce 2019 v řepařských výrobních oblastech a její význam z hlediska škod na řepné produkci. Listy Cukrov. Řepař. 2020;136:160–164.
Žárová Š. Master’s Thesis. Charles University; Prague, Czech Republic: 2020. Dermatophytes Isolated from the Hair of Free-Living Rodents.
Drouot S., Mignon B., Fratti M., Roosje P., Monod M. Pets as the main source of two zoonotic species of the Trichophyton mentagrophytes complex in Switzerland, Arthroderma vanbreuseghemii and Arthroderma benhamiae. Vet. Dermatol. 2009;20:13–18. doi: 10.1111/j.1365-3164.2008.00691.x. PubMed DOI
Nenoff P., Uhrlaß S., Krüger C., Erhard M., Hipler U.C., Seyfarth F., Herrmann J., Wetzig T., Schroedl W., Gräser Y. Trichophyton species von Arthroderma benhamiae—A new infectious agent in dermatology. J. Dtsch. Dermatol. Ges. 2014;12:571–582. PubMed
Abarca M., Castellá G., Martorell J., Cabañes F. Trichophyton erinacei in pet hedgehogs in Spain: Occurrence and revision of its taxonomic status. Med. Mycol. 2017;55:164–172. doi: 10.1093/mmy/myw057. PubMed DOI
Le Barzic C., Cmokova A., Denaes C., Arné P., Hubka V., Guillot J., Risco-Castillo V. Detection and control of dermatophytosis in wild European hedgehogs (Erinaceus europaeus) admitted to a french wildlife rehabilitation centre. J. Fungi. 2021;7:74. doi: 10.3390/jof7020074. PubMed DOI PMC
Hubka V., Peano A., Cmokova A., Guillot J. Common and emerging dermatophytoses in animals: Well-known and new threats. In: Seyedmousavi S., de Hoog G.S., Guillot J., Verweij P.E., editors. Emerging and Epizootic Fungal Infections in Animals. Springer; Cham, Switzerland: 2018. pp. 31–79.
Čmoková A., Rezaei-Matehkolaei A., Kuklová I., Kolařík M., Shamsizadeh F., Ansari S., Gharaghani M., Miňovká V., Najafzadeh M.J., Nouripour-Sisakht S., et al. Discovery of new Trichophyton members, T. persicum and T. spiraliforme spp. November, as a cause of highly inflammatory tinea cases in Iran and Czechia. Microbiol. Spectr. 2021;9:e00284-21. PubMed PMC
Kano R., Kimura U., Kakurai M., Hiruma J., Kamata H., Suga Y., Harada K. Trichophyton indotineae sp. nov.: A new highly terbinafine-resistant anthropophilic dermatophyte species. Mycopathologia. 2020;185:947–958. doi: 10.1007/s11046-020-00455-8. PubMed DOI
Packeu A., Hendrickx M., Beguin H., Martiny D., Vandenberg O., Detandt M. Identification of the Trichophyton mentagrophytes complex species using MALDI-TOF mass spectrometry. Med. Mycol. 2013;51:580–585. doi: 10.3109/13693786.2013.770605. PubMed DOI
Niewerth M., Splanemann V., Korting H.C., Ring J., Abeck D. Antimicrobial susceptibility testing of dermatophytes–comparison of the agar macrodilution and broth microdilution tests. Chemotherapy. 1998;44:31–35. doi: 10.1159/000007087. PubMed DOI
Bilek J., Baranova Z., Kozak M., Fialkovicova M., Weissova T., Sesztakova E. Trichophyton mentagrophytes var. quinckeanum as a cause of zoophilic dermatomycosis in a human family. Bratisl. Lek. Listy. 2005;106:383. PubMed
Gabrielová A., Mencl K., Suchánek M., Klimeš R., Hubka V., Kolařík M. The oomycete Pythium oligandrum can suppress and kill the causative agents of dermatophytoses. Mycopathologia. 2018;183:751–764. doi: 10.1007/s11046-018-0277-2. PubMed DOI PMC
Načeradská M., Fridrichová M., Kellnerová D., Peková S., Lány P. Antifungal effects of the biological agent Pythium oligandrum observed in vitro. J. Feline Med. Surg. 2017;19:817–823. doi: 10.1177/1098612X16658690. PubMed DOI PMC