Phylogenetic Reassessment, Taxonomy, and Biogeography of Codinaea and Similar Fungi
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
20-14840S
Czech Science Foundation
PubMed
34947079
PubMed Central
PMC8704094
DOI
10.3390/jof7121097
PII: jof7121097
Knihovny.cz E-zdroje
- Klíčová slova
- 37 new taxa, GlobalFungi, ancestral inference, appendages, barcodes, molecular systematics, morphology, phialidic conidiogenesis,
- Publikační typ
- časopisecké články MeSH
The genus Codinaea is a phialidic, dematiaceous hyphomycete known for its intriguing morphology and turbulent taxonomic history. This polyphasic study represents a new, comprehensive view on the taxonomy, systematics, and biogeography of Codinaea and its relatives. Phylogenetic analyses of three nuclear loci confirmed that Codinaea is polyphyletic. The generic concept was emended; it includes four morphotypes that contribute to its morphological complexity. Ancestral inference showed that the evolution of some traits is correlated and that these traits previously used to delimit taxa at the generic level occur in species that were shown to be congeneric. Five lineages of Codinaea-like fungi were recognized and introduced as new genera: Codinaeella, Nimesporella, Stilbochaeta, Tainosphaeriella, and Xyladelphia. Dual DNA barcoding facilitated identification at the species level. Codinaea and its segregates thrive on decaying plants, rarely occurring as endophytes or plant pathogens. Environmental ITS sequences indicate that they are common in bulk soil. The geographic distribution found using GlobalFungi database was consistent with known data. Most species are distributed in either the Holarctic realm or tropical geographic regions. The ancestral climatic zone was temperate, followed by transitions to the tropics; these fungi evolved primarily in Eurasia and Americas, with subsequent transitions to Africa and Australasia.
CEITEC Central European Institute of Technology Masaryk University 625 00 Brno Czech Republic
Illinois Natural History Survey University of Illinois Urbana Champaign Champaign IL 61820 USA
Westerdijk Fungal Biodiversity Institute 3508 AD Utrecht The Netherlands
Zobrazit více v PubMed
Maire R. Fungi Catalaunici: Series altera. Contributions a l’étude de la flore mycologique de la Catalogne. Publ. Inst. Bot. Barcelona. 1937;3:1–128.
Hughes S.J., Kendrick W.B. New Zealand fungi 12. Menispora, Codinaea, Menisporopsis. N. Z. J. Bot. 1968;6:323–375. doi: 10.1080/0028825X.1968.10428818. DOI
Agnihothrudu V. Notes on fungi from North-east India. XVII. Menisporella Assamica gen. et sp. nov. . Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 1962;56:97–102.
MycoBank Database. [(accessed on 1 September 2021)]. Available online: www.mycobank.org.
Matsushima T. Icones Microfungorum a Matsushima Lectorum. Matsushima; Kobe, Japan: 1975.
Shearer C.A., Crane J.L. Fungi of the Chesapeake Bay and its tributaries. I. Patuxent River. Mycologia. 1971;63:237–260. doi: 10.2307/3757758. DOI
Sutton B.C. Microfungi from Australian leaf litter. Proc. R. Soc. Qld. 1980;91:11–19.
Maggi O., Persiani A.M. Codinaea coffeae and Phialocephala xalapensis, two new Hyphomycetes from Mexico. Mycotaxon. 1984;20:251–258.
Granados M., Castañeda Ruiz R.F., Castro O., Minter D.W., Kendrick B. Microfungi from Costa Rica. A new species and a new combination of Codinaea. Mycotaxon. 2014;127:115–120. doi: 10.5248/127.115. DOI
Crous P.W., Wingfield M.J., Burgess T.I., Carnegie A.J., Hardy G.S.J., Smith D., Summerell B.A., Cano-Lira J.F., Guarro J., Houbraken J., et al. Fungal Planet description sheets: 625–715. Persoonia. 2017;39:270–467. doi: 10.3767/persoonia.2017.39.11. PubMed DOI PMC
Spegazzini C. Algunos hongos de Tierra del Fuego. Physis (Buenos Aires) 1923;7:9–23.
Réblová M., Nekvindová J., Kolařík M., Hernández-Restrepo M. Delimitation and phylogeny of Dictyochaeta, and introduction of Achrochaeta and Tubulicolla genera nova. Mycologia. 2021;113:390–433. doi: 10.1080/00275514.2020.1822095. PubMed DOI
Arambarri A.M., Cabello M.N. A numerical taxonomic study of some phialidic genera of Hyphomycetes: Cluster analysis. Mycotaxon. 1989;34:679–696.
Kuthubutheen A.J., Nawawi A. Key to Dictyochaeta and Codinaea species. Mycol. Res. 1991;95:1224–1229. doi: 10.1016/S0953-7562(09)80015-4. DOI
Réblová M., Winka K. Phylogeny of Chaetosphaeria and its anamorphs based on morphological and molecular data. Mycologia. 2000;92:939–954. doi: 10.2307/3761589. DOI
Seifert K.A., Morgan-Jones G., Gams W., Kendrick B. The Genera of Hyphomycetes. CBS-KNAW Fungal Biodiversity Centre; Utrecht, The Netherlands: 2011. CBS Biodiversity Series no. 9: 1–997.
Matsushima T. Microfungi of the Solomon Islands and Papua New Guinea. Matsushima; Kobe, Japan: 1971.
Matsushima T. Matsushima Mycological Memoirs. Matsushima Mycol. Mem. 1981;2:1–68.
Kuthubutheen A.J. Two new species of Dictyochaeta from Malaysia. Trans. Br. Mycol. Soc. 1987;89:353–358. doi: 10.1016/S0007-1536(87)80118-3. DOI
Kuthubutheen A.J. A new synnematous Dictyochaeta from Malaysia. Trans. Br. Mycol. Soc. 1987;89:411–414. doi: 10.1016/S0007-1536(87)80134-1. DOI
Kuthubutheen A.J., Nawawi A. Dictyochaeta hamata and D. pahangensis, two new species with lateral phialides. Mycol. Res. 1990;94:840–846. doi: 10.1016/S0953-7562(09)81389-0. DOI
Kuthubutheen A.J., Nawawi A. Three new species of Dictyochaeta with non-setose conidiophores and non-septate setulate conidia from Malaysia. Mycol. Res. 1991;95:104–107. doi: 10.1016/S0953-7562(09)81366-X. DOI
Kuthubutheen A.J., Nawawi A. Dictyochaeta macrospora sp. nov.: A litter-inhabiting hyphomycete from Malaysia. Mycol. Res. 1991;95:248–250. doi: 10.1016/S0953-7562(09)81022-8. DOI
Kuthubutheen A.J., Nawawi A. Eight new species of Dictyochaeta (Hyphomycetes) from Malaysia. Mycol. Res. 1991;95:1211–1219. doi: 10.1016/S0953-7562(09)80013-0. DOI
Kuthubutheen A.J., Nawawi A. Dictyochaeta guadalcanalensis comb. nov. and several new records of the genus in Malaysia. Mycol. Res. 1991;95:1220–1223. doi: 10.1016/S0953-7562(09)80014-2. DOI
Holubová-Jechová V. Lignicolous hyphomycetes from Czechoslovakia 7. Chalara, Exochalara, Fusiclalara and Dictyochaeta. Folia Geobot. Phytotax. 1984;19:387–438. doi: 10.1007/BF02853179. DOI
Hewings A.D., Crane J.L. The genus Codinaea. Three new species from the Americas. Mycotaxon. 1981;13:419–427.
Wei M.J., Zhang H., Dong W., Boonmee S., Zhang D. Introducing Dictyochaeta aquatica sp. nov. and two new species of Chloridium (Chaetosphaeriaceae Sordariomycetes) from aquatic habitats. Phytotaxa. 2018;362:187–199. doi: 10.11646/phytotaxa.362.2.5. DOI
Luo Z.L., Hyde K.D., Liu J.K., Maharachchikumbura S.S.N., Jeewon R., Bao D.F., Bhat D.J., Lin C.G., Li W.L., Yang J., et al. Freshwater Sordariomycetes. Fungal Divers. 2019;99:451–660. doi: 10.1007/s13225-019-00438-1. DOI
Lin C.G., McKenzie E.H.C., Liu J.K., Jones E.B.G., Hyde K.D. Hyaline-spored chaetosphaeriaceous hyphomycetes from Thailand and China, with a review of the family Chaetosphaeriaceae. Mycosphere. 2019;10:655–700. doi: 10.5943/mycosphere/10/1/14. DOI
Sutton B.C., Hodges C.S., Jr. Eucalyptus microfungi: Codinaea and Zanclospora species from Brazil. Nova Hedw. 1975;26:517–525.
Lunghini D., Rambelli A., Onofri S. New Codinaea species from tropical forest litter. Mycotaxon. 1982;14:116–124.
Castañeda-Ruíz R.F. Fungi Cubenses I. Instituto de Investigaciones Funfamentales en Agricultura Tropical ‘Alejandro de Humboldt’; Habana, Cuba: 1986.
Kirschner R., Chen C.-J. Dictyochaeta multifimbriata, a new species from Taiwan. Mycol. Prog. 2002;1:287–289. doi: 10.1007/s11557-006-0026-7. DOI
Rambelli A., Mulas B., Pasqualetti M. Comparative studies on microfungi in tropical ecosystems in Ivory Coast forest litter: Behaviour on different substrata. Mycol. Res. 2004;108:325–336. doi: 10.1017/S0953756204009396. PubMed DOI
Santos R.F., Sotão H.M.P., Monteiro J.S., Gusmão L.F.P., Gutiérrez A.H. Conidial fungi associated with leaf litter of red cedar (Cedrela odorata) in Belém, Pará (eastern Brazilian Amazon) Acta Amaz. 2018;48:230–238. doi: 10.1590/1809-4392201704411. DOI
Barbosa F.R., Raja H.A., Shearer C.A., Gusmão L.F.P. Some freshwater fungi from the Brazilian semi-arid region, including two new species of hyphomycetes. Cryptogam. Mycol. 2013;34:243–258. doi: 10.7872/crym.v34.iss2.2013.243. DOI
Crous P.W., Wingfield M.J., Schumacher R.K., Summerell B.A., Giraldo A., Gené J., Guarro J., Wanasinghe D.N., Hyde K.D., Camporesi E., et al. Fungal Planet Description Sheets: 281–319. Persoonia. 2014;33:212–289. doi: 10.3767/003158514X685680. PubMed DOI PMC
Link H.F. Observationes in ordines plantarum naturales. Dissertatio, I. Sber. Ges. naturf. Freunde Berl. 1809;3:3–42.
Nees von Esenbeck C.G.D., Nees von Esenbeck T.F.L. De plantis nonnullis e mycetoidearum regno tum nuper detectis, tum minus cognitis commentatio prior doctoris Nees ab Esenbeck et Friderici Nees fratrum. Nova Acta Phys.-Med. Acad. Caes. Leop.-Carol. Nat. Cur. 1818;9:226–262.
Persoon C.H. Mycologia Europaea 1: I-[ii], 1-356, [iii-iv], plates 1-12. J.J. Palmius; Erlangen, Germany: 1822.
Morgan-Jones G. Notes on Hyphomycetes. X. Codinaeopsis gen. nov. Mycotaxon. 1976;4:166–170.
Arambarri A.M., Cabello M.N. Considerations about Dictyochaeta, Codinaeopsis and a new genus, Dictyochaetopsis. Mycotaxon. 1990;38:11–14.
Whitton S.R., McKenzie E.H.C., Hyde K.D. Dictyochaeta and Dictyochaetopsis species from the Pandanaceae. Fungal Divers. 2000;4:133–158.
Samuels G.J., Müller E. Life-history studies of Brazilian Ascomycetes. 1. Two new genera of Sphaeriaceae having, respectively, Sporoschisma-like and Codinaea anamorphs. Sydowia. 1978;31:126–136.
Réblová M., Nekvindová J., Fournier J., Miller A.N. Delimitation, new species and teleomorph-anamorph relationships in Codinaea, Dendrophoma, Paragaeumannomyces and Striatosphaeria (Chaetosphaeriaceae) MycoKeys. 2020;74:17–74. doi: 10.3897/mycokeys.74.57824. PubMed DOI PMC
Liu J.K., Yang J., Maharachchikumbura S.S.N., McKenzie E.H.C., Jones E.B.G., Hyde K.D., Liu Z.Y. Novel chaetosphaeriaceous hyphomycetes from aquatic habitats. Mycol. Prog. 2016;15:1157–1167. doi: 10.1007/s11557-016-1237-1. DOI
Tibpromma S., Hyde K.D., McKenzie E.H.C., Bhat D.J., Phillips A.J.L., Wanasinghe D.N., Samarakoon M.C., Jayawardena R.S., Dissanayake A.J., Tennakoon D.S., et al. Fungal diversity notes 840–928: Micro-fungi associated with Pandanaceae. Fungal Divers. 2018;93:1–160. doi: 10.1007/s13225-018-0408-6. DOI
Réblová M., Nekvindová J., Hernández-Restrepo M. Reflections on Menisporopsis, Multiguttulispora and Tainosphaeria using molecular and morphological Data. J. Fungi. 2021;7:438. doi: 10.3390/jof7060438. PubMed DOI PMC
Zheng H., Wan Y., Li J., Castañeda-Ruiz R.F., Yu Z. Phialolunulospora vermispora (Chaetosphaeriaceae, Sordariomycetes), a novel asexual genus and species from freshwater in southern China. MycoKeys. 2020;76:17–30. doi: 10.3897/mycokeys.76.57410. PubMed DOI PMC
Toyazaki N., Udagawa S. An undescribed pleomorphic species of Codinaea. Mycotaxon. 1981;13:450–456.
MyCoPortal. [(accessed on 18 October 2021)]. Available online: http://mycoportal.org.
Crous P.W., Wingfield M.J., Guarro J., Hernández-Restrepo M., Sutton D.A., Acharya K., Barber P.A., Boekhout T., Dimitrov R.A., Dueñas M., et al. Fungal Planet description sheets: 320–370. Persoonia. 2015;34:167–266. doi: 10.3767/003158515X688433. PubMed DOI PMC
Menzies S.A. Root rot of clover caused by Codinaea fertilis. N. Z. J. Agric. Res. 1973;16:239–245. doi: 10.1080/00288233.1973.10421141. DOI
Morgan-Jones G. Notes on Hyphomycetes. XL. New species of Codinaea and Veronaea. Mycotaxon. 1982;14:175–180.
Skipp R.A., Christensen M.J. Fungi invading roots of perennial ryegrass (Lolium perenne L.) in pasture. N. Z. J. Agric. Res. 1989;32:423–431. doi: 10.1080/00288233.1989.10421762. DOI
Fernández F.A., Huhndorf S.M. New species of Chaetosphaeria, Melanopsammella and Tainosphaeria gen. nov. from the Americas. Fungal Divers. 2005;18:15–57.
Sayers E.W., Cavanaugh M., Clark K., Ostell J., Pruitt K.D., Karsch-Mizrachi I. GenBank. Nucleic Acids Res. 2019;47:D94–D99. doi: 10.1093/nar/gky989. PubMed DOI PMC
Nilsson R.H., Larsson K.-H., Taylor A.F.S., Bengtsson-Palme J., Jeppesen T.S., Schigel D., Kennedy P., Picard K., Glöckner F.O., Tedersoo L., et al. The UNITE database for molecular identification of fungi: Handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res. 2019;47:D259–D264. doi: 10.1093/nar/gky1022. PubMed DOI PMC
Větrovský T., Morais D., Kohout P., Lepinay C., Algora C., Hollá S.A., Bahnmann B.D., Bílohnědá K., Brabcová V., D’Alò F. GlobalFungi, a global database of fungal occurrences from high-throughput-sequencing metabarcoding studies. Sci. Data. 2020;7:1–14. doi: 10.1038/s41597-020-0567-7. PubMed DOI PMC
GlobalFungi Database. [(accessed on 25 October 2021)]. Available online: Globalfungi.com.
Malloch D. Moulds: Their Isolation, Cultivation and Identification. University of Toronto Press; Toronto, ON, Canada: 1981.
Crous P.W., Verkley G.J.M., Groenewald J.Z., Houbraken J. Fungal Biodiversity. CBS Laboratory Manual Series 1. CBS-KNAW Fungal Biodiversity Centre; Utrecht, The Netherlands: 2019.
de Hoog G.S., Weenink X.O., Gerrits van den Ende A.H.G. Taxonomy of the Phialophora verrucosa complex with the description of two new species. Stud. Mycol. 1999;43:107–121.
Vilgalys Mycology Lab—Duke University Conserved Primer Sequences for PCR Amplification of Fungal rDNA. [(accessed on 3 January 2017)]. Available online: https://sites.duke.edu/vilgalyslab/rdna_primers_for_fungi.
Rehner S., Buckley E. A Beauveria phylogeny inferred from nuclear ITS and EF1-alpha sequences: Evidence for cryptic diversification and links to Cordyceps teleomorphs. Mycologia. 2005;97:84–98. doi: 10.3852/mycologia.97.1.84. PubMed DOI
Vilgalys R., Hester M. Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J. Bacteriol. 1990;172:4238–4246. doi: 10.1128/jb.172.8.4238-4246.1990. PubMed DOI PMC
White T.J., Bruns T., Lee S., Taylor J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis M.A., Gelfand D.H., Sninsky J.J., White T.J., editors. PCR Protocols: A Guide to Methods and Applications. Academic Press; San Diego, CA, USA: 1990. pp. 315–322.
Landvik S. Neolecta, a fruit-body-producing genus of the basal ascomycetes, as shown by SSU and LSU DNA sequences. Mycol. Res. 1996;100:199–202. doi: 10.1016/S0953-7562(96)80122-5. DOI
Huhndorf S.M., Fernández F.A. Teleomorph-anamorph connections: Chaetosphaeria raciborskii and related species, and their Craspedodidymum-like anamorphs. Fungal Divers. 2005;19:23–49.
Fernández F.A., Miller A.N., Huhndorf S.M., Lutzoni F.M., Zoller S. Systematics of the genus Chaetosphaeria and its allied genera: Morphological and phylogenetic diversity in north temperate and neotropical taxa. Mycologia. 2006;98:121–130. doi: 10.3852/mycologia.98.1.121. PubMed DOI
Atkinson T.J., Miller A.N., Huhndorf S.M., Orlovich D.A. Unusual new Chaetosphaeria species from New Zealand: Intrafamilial diversity and elucidations of the Chaetosphaeriaceae—Lasiosphaeriaceae relationship (Sordariomycetes, Ascomycotina) N. Z. J. Bot. 2007;45:685–706. doi: 10.1080/00288250709509744. DOI
Somrithipol S., Sakayaroj J., Rungjindamai N., Plaingam N., Jones E.B.G. Phylogenetic relationship of the coelomycete genus Infundibulomyces based on nuclear rDNA data. Mycologia. 2008;100:735–741. doi: 10.3852/07-040. PubMed DOI
Prabhugaonkar A., Bhat D.J. Rattania setulifera, an undescribed endophytic hyphomycete on rattans from Western Ghats, India. Mycotaxon. 2009;108:217–222. doi: 10.5248/108.217. DOI
Crous P.W., Verkley G.J.M., Christensen M., Castañeda-Ruíz R.F., Groenewald J.Z. How important are conidial appendages? Persoonia. 2012;28:126–137. doi: 10.3767/003158512X652624. PubMed DOI PMC
Hashimoto A., Sato G., Matsuda T., Matsumura M., Hatakeyama S., Harada Y., Ikeda H., Tanaka K. Taxonomic revision of Pseudolachnea and Pseudolachnella, and establishment of Neopseudolachnella and Pseudodinemasporium genera nova. Mycologia. 2015;107:383–408. doi: 10.3852/14-171. PubMed DOI
Lu Y.Z., Liu K.J., Hyde K.D., Bhat D.J., Xiao Y.P., Tian Q., Wen T.C., Boonmee S., Kang J.C. Brunneodinemasporium jonesii and Tainosphaeria jonesii spp. nov. (Chaetosphaeriaceae, Chaetosphaeriales) from southern China. Mycosphere. 2016;7:1322–1331. doi: 10.5943/mycosphere/7/9/6. DOI
Ma Y.-R., Xia J.-W., Gao J.-M., Li Z., Zhang X.-G. Anacacumisporium, a new genus based on morphology and molecular analyses from Hainan, China. Cryptogam. Mycol. 2016;37:45–59. doi: 10.7872/crym/v37.iss1.2016.45. DOI
Magyar D., Shoemaker R.A., Bobvos J., Crous P.W., Groenewald J.Z. Pyrigemmula, a novel hyphomycete genus on grapevine and tree bark from Hungary. Mycol. Prog. 2011;10:307–314. doi: 10.1007/s11557-010-0703-4. DOI
Hernández-Restrepo M., Schumacher R.K., Wingfield M.J., Ahmad I., Cai L., Duong T.A., Edwards J., Gené J., Groenewald J.Z., Jabeen S., et al. Fungal Systematics and Evolution: FUSE 2. Sydowia. 2016;68:193–230. doi: 10.12905/0380.SYDOWIA68-2016-0193. DOI
Hernández-Restrepo M., Gené J., Castañeda-Ruíz R.F., Mena-Portales J., Crous P.W., Guarro J. Phylogeny of saprobic microfungi from Southern Europe. Stud. Mycol. 2017;86:53–97. doi: 10.1016/j.simyco.2017.05.002. PubMed DOI PMC
Crous P.W., Schumacher R.K., Wingfield M.J., Akulov A.Y., Denman S., Roux J., Braun U., Burgess T.I., Carnegie A.J., Váczy K.Z., et al. New and Interesting Fungi. 1. FUSE. 2018;1:169–215. doi: 10.3114/fuse.2018.01.08. PubMed DOI PMC
Yang J., Liu N.G., Liu J.K., Hyde K.D., Jones E.B.G., Liu Z.Y. Phylogenetic placement of Cryptophiale, Cryptophialoidea, Nawawia, Neonawawia gen. nov. and Phialosporostilbe. Mycosphere. 2018;9:1132–1150. doi: 10.5943/mycosphere/9/6/5. DOI
Vu D., Groenewald M., de Vries M., Gehrmann T., Stielow B., Eberhardt U., Al-Hatmi A., Groenewald J.Z., Cardinali G., Houbraken J., et al. Large-scale generation and analysis of filamentous fungal DNA barcodes boosts coverage for kingdom fungi and reveals thresholds for fungal species and higher taxon delimitation. Stud. Mycol. 2019;92:135–154. doi: 10.1016/j.simyco.2018.05.001. PubMed DOI PMC
Réblová M., Nekvindová J., Miller A.N. Phylogeny and taxonomy of Catenularia and similar fungi with catenate conidia. MycoKeys. 2021;81:1–44. doi: 10.3897/mycokeys.81.67785. PubMed DOI PMC
Réblová M., Kolařík M., Nekvindová J., Miller A.N., Hernández-Restrepo M. Phylogeny, global biogeography and pleomorphism of Zanclospora. Microorganisms. 2021;9:706. doi: 10.3390/microorganisms9040706. PubMed DOI PMC
Katoh K., Standley D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013;30:772–780. doi: 10.1093/molbev/mst010. PubMed DOI PMC
Miller M.A., Pfeiffer W., Schwartz T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees; Proceedings of the Gateway Computing Environments Workshop (GCE); New Orleans, LA, USA. 14 November 2010; pp. 1–8.
CIPRES Science Gateway. [(accessed on 19 October 2021)]. Available online: www.phylo.org.
Hall T.A. BioEdit 5.0.9: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 1999;41:95–98.
Gutell R.R., Gray M.W., Schnare M.N. A compilation of large subunit (23S and 23 S-like) ribosomal RNA structures. Nucleic Acids Res. 1993;21:3055–3074. doi: 10.1093/nar/21.13.3055. PubMed DOI PMC
Nylander J.A.A. MrModeltest v2. Program Distributed by the Author. Evolutionary Biology Centre. Uppsala University; Uppsala, Sweden: 2004.
Stamatakis A. RAxML Version 8: A tool for Phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–1313. doi: 10.1093/bioinformatics/btu033. PubMed DOI PMC
Ronquist F., Teslenko M., van der Mark P., Ayres D.L., Darling A., Höhna S., Larget B., Liu L., Suchard M.A., Huelsenbeck J.P. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 2012;61:539–542. doi: 10.1093/sysbio/sys029. PubMed DOI PMC
Kumar S., Stecher G., Li M., Knyaz C., Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol. Biol. Evol. 2018;35:1547–1549. doi: 10.1093/molbev/msy096. PubMed DOI PMC
Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 1980;16:111–120. doi: 10.1007/BF01731581. PubMed DOI
Sükösd Z., Knudsen B., Kjems J., Pedersen C.N.S. PPfold 3.0: Fast RNA secondary structure prediction using phylogeny and auxiliary data. Bioinformatics. 2012;28:2691–2692. doi: 10.1093/bioinformatics/bts488. PubMed DOI
Markham N.R., Zuker M. UNAFold: Software for Nucleic Acid Folding and Hybridization. Methods Mol. Biol. 2008;453:3–31. doi: 10.1007/978-1-60327-429-6_1. PubMed DOI
UNAfold Web Server. [(accessed on 29 July 2021)]. Available online: www.unafold.org.
Zuker M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 2003;31:3406–3415. doi: 10.1093/nar/gkg595. PubMed DOI PMC
Darty K., Denise A., Ponty Y. VARNA: Interactive drawing and editing of the RNA secondary structure. Bioinformatics. 2009;25:1974–1975. doi: 10.1093/bioinformatics/btp250. PubMed DOI PMC
Wolf M., Friedrich J., Dandekar T., Müller T. CBC Analyzer: Inferring phylogenies based on compensatory base changes in RNA secondary structures. Silico Biol. 2005;5:0027. PubMed
Coleman A.W., Mai J.C. Ribosomal DNA ITS-1 and ITS-2 sequence comparisons as a tool for predicting genetic relatedness. J. Mol. Evol. 1997;45:168–177. doi: 10.1007/PL00006217. PubMed DOI
Coleman A.W. The significance of a coincidence between evolutionary landmarks found in mating affinity and a DNA sequence. Protist. 2000;151:1–9. doi: 10.1078/1434-4610-00002. PubMed DOI
Coleman A.W. Pan-eukaryote ITS2 homologies revealed by RNA secondary structure. Nucleic Acids Res. 2007;35:3322–3329. doi: 10.1093/nar/gkm233. PubMed DOI PMC
Coleman A.W. Is there a molecular key to the level of “biological species” in eukaryotes? A DNA guide. Mol. Phyl. Evol. 2009;50:197–203. doi: 10.1016/j.ympev.2008.10.008. PubMed DOI
Coleman A.W., Vacquier V.D. Exploring the phylogenetic utility of ITS sequences for animals: A test case for abalone (Haliotis) J. Mol. Evol. 2002;54:246–257. doi: 10.1007/s00239-001-0006-0. PubMed DOI
Müller T., Philippi N., Dandekar T., Schultz J., Wolf M. Distinguishing species. RNA. 2007;13:1469–1472. doi: 10.1261/rna.617107. PubMed DOI PMC
Leontis N.B., Stombaugh J., Westhof E. The non-Watson-Crick base pairs and their associated isostericity matrices. Nucleic Acids Res. 2002;30:3497–3531. doi: 10.1093/nar/gkf481. PubMed DOI PMC
Yu Y., Blair C., He X.J. RASP (Reconstruct Ancestral State in Phylogenies): A tool for historical biogeography. Mol. Biol. Evol. 2020;37:604–606. doi: 10.1093/molbev/msz257. PubMed DOI
Posada D. jModelTest: Phylogenetic model averaging. Mol. Biol. Evol. 2008;25:1253–1256. doi: 10.1093/molbev/msn083. PubMed DOI
Zhang Z., Schwartz S., Wagner L., Miller W. A greedy algorithm for aligning DNA sequences. J. Comput. Biol. 2000;7:203–214. doi: 10.1089/10665270050081478. PubMed DOI
Bengtsson-Palme J., Ryberg M., Hartmann M., Branco S., Wang Z., Godhe A., Wit P., Sánchez-García M., Ebersberger I., Sousa F. Improved software detection and extraction of ITS1 and ITS2 from ribosomal ITS sequences of fungi and other eukaryotes for analysis of environmental sequencing data. Methods Ecol. Evol. 2013;4:914–919. doi: 10.1111/2041-210X.12073. DOI
Beck H.E., Zimmermann N.E., McVicar T.R., Vergopolan N., Berg A., Wood E.F. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci. Data. 2018;5:1–12. doi: 10.1038/sdata.2018.214. PubMed DOI PMC
Bayranvand M., Akbarinia M., Salehi Jouzani G., Gharechahi J., Kooch Y., Baldrian P. Composition of soil bacterial and fungal communities in relation to vegetation composition and soil characteristics along an altitudinal gradient. FEMS Microb. Ecol. 2020;97:fiaa201. doi: 10.1093/femsec/fiaa201. PubMed DOI
Peay K.G., Baraloto C., Fine P.V. Strong coupling of plant and fungal community structure across western Amazonian rainforests. ISME J. 2013;7:1852–1861. doi: 10.1038/ismej.2013.66. PubMed DOI PMC
Tedersoo L., Bahram M., Põlme S. Global diversity and geography of soil fungi. Science. 2014;346:1256688. doi: 10.1126/science.1256688. PubMed DOI
Urbina H., Scofield D.G., Cafaro M., Rosling A. DNA-metabarcoding uncovers the diversity of soil-inhabiting fungi in the tropical island of Puerto Rico. Mycoscience. 2016;57:217–227. doi: 10.1016/j.myc.2016.02.001. DOI
Zhou J.Z., Deng Y., Shen L.N., Wen C.Q., Yan Q.Y., Ning D.L., Qin Y.J., Xue K., Wu L.Y., He Z.L., et al. Temperature mediates continental-scale diversity of microbes in forest soils. Nat. Commun. 2016;7:12083. doi: 10.1038/ncomms12083. PubMed DOI PMC
Subramanian C.V., Bhat D.J. Bahusutrabeeja, a new genus of the Hyphomycetes. Can. J. Bot. 1977;55:2202–2206. doi: 10.1139/b77-249. DOI
da Cruz A.C.R., Leão-Ferreira S.M., Barbosa F.R., Gusmão L.F.P. Conidial fungi from semi-arid Caatinga biome of Brazil. New and interesting Dictyochaeta species. Mycotaxon. 2008;106:15–27.
Goh T.K., Hyde K.D. Fungi on submerged wood and bamboo in the Plover Cove Reservoir, Hong Kong. Fungal Divers. 1999;3:57–85.
Bhat D.J., Sutton B.C. Some phialidic Hyphomycetes from Ethiopia. Trans. Br. Mycol. Soc. 1985;84:723–730. doi: 10.1016/S0007-1536(85)80130-3. DOI
Oliveira M.S., Malosso E., Castañeda-Ruíz R.F. A new species and a new combination in Codinaea from Brazil. Mycotaxon. 2015;130:1045–1049. doi: 10.5248/130.1045. DOI
Barbosa M.A., Costa P.M.O., Malosso E., Castañeda-Ruíz R.F. Codinaea leomaiae sp. nov. from the Brazilian Atlantic Forest. Mycotaxon. 2016;131:423–428. doi: 10.5248/131.423. DOI
Bhat D.J., Kendrick W.B. Twenty-five new conidial fungi from the Western Ghats and the Andaman Islands (India) Mycotaxon. 1993;49:19–90.
Castañeda-Ruíz R.F., Gusmão L.F.P., Guarro J., Stchigel A.M., Stadler M., Saikawa M., Leão-Ferreira S.M. Two new anamorphic fungi from Brazil: Dictyochaetopsis polysetosa and Myrothecium compactum. Mycotaxon. 2008;103:1–8.
Matsushima T. Matsushima mycological memoirs. Matsushima Mycol. Mem. 1993;7:1–141.
Castañeda-Ruíz R.F., Guarro J., Velázquez-Noa S., Gené J. A new species of Minimelanolocus and some hyphomycete records from rain forests in Brazil. Mycotaxon. 2003;85:231–239.
Czeczuga B., Orłowska M. Hyphomycetes in rain water, melting snow and ice. Acta Mycol. 1999;34:181–200. doi: 10.5586/am.1999.014. DOI
Calve J.G., editor. Icones Fungorum Hucusque Cognitorum 3. Prague, Czech Republic: 1839. [(accessed on 1 November 2021)]. Available online: https://bibdigital.rjb.csic.es/
Hughes S.J., Kendrick W.B. Microfungi. IX. Menispora Persoon. Canadian J. Bot. 1963;41:693–718. doi: 10.1139/b63-058. DOI
Réblová M., Seifert K.A., White G.P. Chaetosphaeria tortuosa, the newly discovered teleomorph of Menispora tortuosa, with a key to known Menispora species. Mycol. Res. 2006;110:104–109. doi: 10.1016/j.mycres.2005.09.003. PubMed DOI
Minter D.W., Rodríguez Hernández M., Mena-Portales J. Fungi of the Caribbean: An Annotated Checklist. PDMS Publishing; Isleworth, Middlesex, UK: 2001.
Pratibha J., Raghukumar S., Bhat D.J. Diversity of litter degrading microfungi from the forests of Western Ghats, India. In: BijuKumar A., Nayar M.P., Varma R.V., Peethambaran C.K., editors. Biodiversity and Taxonomy. Narendra Publishing House; New Delhi, India: 2012. pp. 195–210.
Gomes S.I., Merckx V.S., Saavedra S. Fungal-host diversity among mycoheterotrophic plants increases proportionally to their fungal-host overlap. Ecol. Evol. 2017;7:3623–3630. doi: 10.1002/ece3.2974. PubMed DOI PMC
Tsui C.K.M., Goh T.K., Hyde K.D., Hodgkiss I.J. New species or records of Cacumisporium, Helicosporium, Monotosporella and Bahusutrabeeja on submerged wood in Hong Kong streams. Mycologia. 2001;93:389–397. doi: 10.2307/3761660. DOI
Wu W.P., McKenzie E.H.C. Obeliospora minima sp. nov. and four other hyphomycetes with conidia bearing appendages. Fungal Divers. 2003;12:223–234.
McKenzie E.H.C. Bahusutrabeeja bunyensis sp. nov. (Hyphomycetes) from Queensland, Australia, and a new name for Chalara australis McKenzie. Mycotaxon. 1997;61:303–306.
Rao V.G., de Hoog G.S. New or critical Hyphomycetes from India. Stud. Mycol. 1986;28:1–84.
Marvanová L. New or noteworthy aquatic hyphomycetes. Trans. Br. Mycol. Soc. 1980;75:221–231. doi: 10.1016/S0007-1536(80)80083-0. DOI
Grandi R.A.P. Hyphomycetes decompositores 1. Espécies associadas às raízes de Calathea stromata (horticultural) Rev. Brasil. Biol. 1989;50:123–132.
Grandi R.A.P. Hyphomycetes decompositores 2. Táxons associados às raízes de Maranta bicolor Ker. Rev. Bras. Biol. 1991;51:133–141.
Grandi R.A.P. Hyphomycetes decompositores 3. Espécies associadas às raízes de Stromanthe sanguinea Sond. Rev. Bras. Biol. 1992;52:275–282.
McKenzie E.H.C., Buchanan P.K., Johnston P.R. Checklist of fungi on Nothofagus species in New Zealand. N. Z. J. Bot. 2000;38:635–720. doi: 10.1080/0028825X.2000.9512711. DOI
Marques M.F.O., Gusmão L.F.P., Maia L.C. Riqueza de espécies de fungos conidiais em duas áreas de Mata Atlântica no Morro da Pioneira, Serra da Jibóia, BA, Brasil. Acta Bot. Brasilica. 2008;22:954–961. doi: 10.1590/S0102-33062008000400006. DOI
Santa Izabel T.S., Gusmão L.F.P. Fungal succession on plant debris in three humid forests enclaves in the Caatinga biome of Brazil. Braz. J. Bot. 2016;39:1065–1076. doi: 10.1007/s40415-016-0305-8. DOI
Monteiro J.S., Sarmento P.S.M., Sotão H.M.P. Saprobic conidial fungi associated with palm leaf litter in eastern Amazon, Brazil. An. Acad. Bras. Cienc. 2019;91:e20180545. doi: 10.1590/0001-3675201920180545. PubMed DOI
Campbell C.L. Root rot of ladino clover induced by Codinaea fertlis. Plant Dis. 1980;64:9659–9960. doi: 10.1094/PD-64-959. DOI
Campbell C.L. Cultural characteristics and host range of Codinaea fertilis. Phytopathology. 1982;72:501–504. doi: 10.1094/Phyto-72-501. DOI
Lim L.L., Cole A.L.J. Infection and colonisation of white clover seedling roots by fungi. N. Z. J. Agric. Res. 1984;27:459–465. doi: 10.1080/00288233.1984.10430650. DOI
Tubaki K. Descriptive catalogue of IFO fungus collection IV. IFO Res. Commun. 1975;7:113–142.
Barbosa F.R., Gusmão L.F.P. Conidial fungi from semi-arid Caatinga Biome of Brazil. Rare freshwater hyphomycetes and other new records. Mycosphere. 2011;4:475–485.
Walker D.M., Lawrence B.R., Esterline D., Graham S.P., Edelbrock M.A., Wooten J.A. A metagenomics-based approach to the top-down effect on the detritivore food web: A salamanders influence on fungal communities within a deciduous forest. Ecol. Evol. 2014;4:4106–4116. doi: 10.1002/ece3.1259. PubMed DOI PMC
Park K.H., Oh S.Y., Yoo S., Fong J.J., Kim C.S., Jo J.W., Lim Y.W. Influence of Season and Soil Properties on Fungal Communities of Neighboring Climax Forests (Carpinus cordata and Fraxinus rhynchophylla) Front. Microbiol. 2020;11:572706. doi: 10.3389/fmicb.2020.572706. PubMed DOI PMC
Tu B., Domene X., Yao M., Li C., Zhang S., Kou Y., Wang Y., Li X. Microbial diversity in Chinese temperate steppe: Unveiling the most influential environmental drivers. FEMS Microbiol. Ecol. 2017;93:fix031. doi: 10.1093/femsec/fix031. PubMed DOI
Schroeder J.W., Martin J.T., Angulo D.F., Arias-Del Razo I., Barbosa J.M., Perea R., Sebastián-González E., Dirzo R. Host plant phylogeny and abundance predict root-associated fungal community composition and diversity of mutualists and pathogens. J. Ecol. 2019;107:1557–1566. doi: 10.1111/1365-2745.13166. DOI
Kerfahi D., Tripathi B.M., Dong K., Go R., Adams J.M. Rainforest Conversion to Rubber Plantation May Not Result in Lower Soil Diversity of Bacteria, Fungi, and Nematodes. Microb. Ecol. 2016;72:359–371. doi: 10.1007/s00248-016-0790-0. PubMed DOI
David A.S., May G., Schmidt D., Seabloom E.W. Beachgrass invasion in coastal dunes is mediated by soil microbes and lack of disturbance dependence. Ecosphere. 2016;11:e01527. doi: 10.1002/ecs2.1527. DOI
Johnson J., Evans C., Brown N., Skeates S., Watkinson S., Bass D. Molecular analysis shows that soil fungi from ancient semi-natural woodland exist in sites converted to non-native conifer plantations. Forestry. 2014;87:705–717. doi: 10.1093/forestry/cpu031. DOI
Guo J., Ling N., Chen Z., Xue C., Li L., Liu L., Gao L., Wang M., Ruan J., Guo S., et al. Soil fungal assemblage complexity is dependent on soil fertility and dominated by deterministic processes. New Phytol. 2019;226:232–243. doi: 10.1111/nph.16345. PubMed DOI
Song H., Singh D., Tomlinson K.W., Yang X., Ogwu M.C., Slik J.F., Adams J.M. Tropical forest conversion to rubber plantation in southwest China results in lower fungal beta diversity and reduced network complexity. FEMS Microbiol. Ecol. 2019;95:fiz092. doi: 10.1093/femsec/fiz092. PubMed DOI
Arambarri A., Cabello M., Mengascini A. New hyphomycetes from Santiago River (Buenos Aires Province, Argentina) Mycotaxon. 1987;29:29–35.
Reddy S.M., Reddy S.S. A new species of Codinaea. Sydowia. 1978;30:186–188.
Matsushima T. Matsushima Mycological Memoirs. Matsushima Mycol. Mem. 1987;5:1–100.
Li D.W., Kendrick B., Chen J.Y. Two new hyphomycetes: Codinaea sinensis sp. nov. and Parapleurotheciopsis quercicola sp. nov., and two new records from Quercus phillyraeoides leaf litter. Mycol. Prog. 2012;11:899–905. doi: 10.1007/s11557-011-0805-7. DOI
Anthony M., Frey S., Stinson K. Fungal community homogenization, shift in dominant trophic guild, and appearance of novel taxa with biotic invasion. Ecosphere. 2017;8:e01951. doi: 10.1002/ecs2.1951. DOI
Trevathan-Tackett S.M., Allnutt T.R., Sherman C.D., Richardson M.F., Crowley T.M., Macreadie P.I. Spatial variation of bacterial and fungal communities of estuarine seagrass leaf microbiomes. Aquat. Microb. Ecol. 2020;84:59–74. doi: 10.3354/ame01926. DOI
Bissett A., Fitzgerald A., Meintjes T., Mele P.M., Reith F., Dennis P.G., Breed M.F., Brown B., Brown M.V., Brugger J., et al. Introducing BASE: The Biomes of Australian Soil Environments soil microbial diversity database. GigaScience. 2016;5:21. doi: 10.1186/s13742-016-0126-5. PubMed DOI PMC
George P.B., Lallias D., Creer S., Seaton F.M., Kenny J.G., Eccles R.M., Griffiths R.I., Lebron I., Emmett B.A., Robinson D.A. Divergent national-scale trends of microbial and animal biodiversity revealed across diverse temperate soil ecosystems. Nat. Commun. 2019;10:1–11. doi: 10.1038/s41467-019-09031-1. PubMed DOI PMC
Boeraeve M., Honnay O., Mullens N., Vandekerkhove K., De Keersmaeker L., Thomaes A., Jacquemyn H. The impact of spatial isolation and local habitat conditions on colonization of recent forest stands by ectomycorrhizal fungi. For. Ecol. Manag. 2018;429:84–92. doi: 10.1016/j.foreco.2018.06.043. DOI
Frøslev T.G., Kjøller R., Bruun H.H., Ejrnæs R., Hansen A.J., Læssøe T., Heilmann-Clausen J. Man against machine: Do fungal fruitbodies and eDNA give similar biodiversity assessments across broad environmental gradients? Biol. Conserv. 2019;233:201–212. doi: 10.1016/j.biocon.2019.02.038. DOI
Duan Y., Xie N., Song Z., Ward C.S., Yung C.-M., Hunt D.E., Johnson Z.I., Wang G. A high-resolution time series reveals distinct seasonal patterns of planktonic fungi at a temperate coastal ocean site (Beaufort, North Carolina, USA) Appl. Environ. Microbiol. 2018;84:e00967-18. doi: 10.1128/AEM.00967-18. PubMed DOI PMC
Tubaki K. Studies on the Japanese Hyphomycetes. V. Leaf & stem group with a discussion of the classification of the Hyphomycetes and their perfect stages. J. Hattori Bot. Lab. 1958;20:142–244.
VanMiddlesworth F., Omstead M.N., Schmatz D., Bartizal K., Fromtling R., Bills G., Nollstadt K., Honeycutt S., Zweerink M., Garrity G., et al. L-687,781, a new member of the papulacandin family of beta-1,3-d-glucan synthesis inhibitors. I. Fermentation, isolation, and biological activity. J. Antibiot. Tokyo. 1991;44:45–51. doi: 10.7164/antibiotics.44.45. PubMed DOI
VanMiddlesworth F., Dufresne C., Smith J., Wilson K.E. Structure elucidation of L-687,781, a new β-1,3-d-glucan synthesis inhibitor. Tetrahedron. 1991;47:7563–7568. doi: 10.1016/S0040-4020(01)88280-6. DOI
Wilhelm R.C., Cardenas E., Leung H., Maas K., Hartmann M., Hahn A., Hallam S., Mohn W.W. A metagenomic survey of forest soil microbial communities more than a decade after timber harvesting. Sci. Data. 2017;4:1–8. doi: 10.1038/sdata.2017.92. PubMed DOI PMC
Oono R., Rasmussen A., Lefèvre E. Distance decay relationships in foliar fungal endophytes are driven by rare taxa. Environ. Microbiol. 2017;19:2794–2805. doi: 10.1111/1462-2920.13799. PubMed DOI
Liu J., Jia X., Yan W., Zhong Y., Shangguan Z. Changes in soil microbial community structure during long-term secondary succession. Land Degrad. Dev. 2020;31:1151–1166. doi: 10.1002/ldr.3505. DOI
Onofri S., Zucconi L. Hyphomycetes rari o interessanti della foresta tropicale. I. Codinaea novae-guineensis. Emendamento della diagnosi specifica. Micl. Ital. 1984;1:53–54.
Cai L., Zhang K., McKenzie E.H.C., Hyde K.D. Linocarpon bambusicola sp. nov. and Dictyochaeta curvispora sp. nov. from bamboo submerged in freshwater. Nova Hedw. 2004;78:439–445. doi: 10.1127/0029-5035/2004/0078-0439. DOI
Réblová M., Gams W. Life-history of Ascomycetes: Two new species of Chaetosphaeria with Chloridium- and Chloridium-Dictyochaeta anamorphs. Mycoscience. 2000;41:129–138. doi: 10.1007/BF02464321. DOI
Cregger M., Veach A., Yang Z., Crouch M., Vilgalys R., Tuskan G., Schadt C. The Populus holobiont: Dissecting the effects of plant niches and genotype on the microbiome. Microbiome. 2018;6:1–14. doi: 10.1186/s40168-018-0413-8. PubMed DOI PMC
Saitta A., Anslan S., Bahram M., Brocca L., Tedersoo L. Tree species identity and diversity drive fungal richness and community composition along an elevational gradient in a Mediterranean ecosystem. Mycorrhiza. 2018;28:39–47. doi: 10.1007/s00572-017-0806-8. PubMed DOI
De Gannes V., Bekele I., Dipchansingh D., Wuddivira M.N., De Cairies S., Boman M., Hickey W.J. Microbial community structure and function of soil following ecosystem conversion from native forests to teak plantation forests. Front. Microbiol. 2016;7:1976. doi: 10.3389/fmicb.2016.01976. PubMed DOI PMC
Da Cruz A.C.R., Gusmão L.F.P. Fungos conidiais na Caatinga: Espécies associadas ao folhedo. Acta Bot. Bras. 2009;23:999–1012. doi: 10.1590/S0102-33062009000400010. DOI
Crous P.W., Wingfield M.J., Koch S.H. New and interesting records of South African fungi. X. New records of Eucalyptus leaf fungi. S. Afr. J. Bot. 1990;56:583–586. doi: 10.1016/S0254-6299(16)31027-4. DOI
Egidi E., Delgado-Baquerizo M., Plett J.M., Wang J., Eldridge D.J., Bardgett R.D., Maestre F.T., Singh B.K. A few Ascomycota taxa dominate soil fungal communities worldwide. Nat. Commun. 2019;10:1–9. doi: 10.1038/s41467-019-10373-z. PubMed DOI PMC
Yan D., Mills J.G., Gellie N.J., Bissett A., Lowe A.J., Breed M.F. High-throughput eDNA monitoring of fungi to track functional recovery in ecological restoration. Biol. Cons. 2018;217:113–120. doi: 10.1016/j.biocon.2017.10.035. DOI
Kamutando C.N., Vikram S., Kamgan-Nkuekam G., Makhalanyane T.P., Greve M., Le Roux J.J., Richardson D.M., Cowan D., Valverde A. Soil nutritional status and biogeography influence rhizosphere microbial communities associated with the invasive tree Acacia dealbata. Sci. Rep. 2017;7:6472. doi: 10.1038/s41598-017-07018-w. PubMed DOI PMC
Kobayasi Y. Mycological reports from New Guinea and the Solomon Islands (1–11) Bull. Nat. Sci. Mus. Tokyo. 1971;14:367–551.
Li C.X., Yu X.D., Dong W., Hu D.M., Boonmee S., Zhang H. Freshwater hyphomycetes in Sordariomycetes: Two new species of Tainosphaeria (Chaetosphaeriaceae, Chaetosphaeriales) from Thailand. Phytotaxa. 2021;509:56–68. doi: 10.11646/phytotaxa.509.1.2. DOI
Jiang Y.L., Wu Y.M., Zhang T.Y. New species of Dictyochaeta and Wardomyces from soil. Mycotaxon. 2016;131:385–390. doi: 10.5248/131.385. DOI
Morgan-Jones G., Ingram E.G. Notes on hyphomycetes. XV. Two new species of Codinaea. Mycotaxon. 1976;4:504–509.
Holubová-Jechová V. Studies on hyphomycetes from Cuba VII. Seven new taxa of dematiaceous hyphomycetes. Česká Mykol. 1988;42:23–30.
Kirk P.M. New or interesting microfungi III. A preliminary account of microfungi colonizing Laurus nobilis leaf litter. Trans. Br. Mycol. Soc. 1981;77:457–473. doi: 10.1016/S0007-1536(81)80093-9. DOI
Borowska A. Dematiaceae aus der Umgebung von Görlitz (DDR) Mikol. Mitt.-Bl. Halle. 1975;19:108–112.
Matsushima T. Saprophytic microfungi from Taiwan Part 1. Hyphomycetes. Matsushima Mycol. Mem. 1980;1:1–82.
Ellis M.B. More Dematiaceous Hyphomycetes. Commonwealth Mycological Institute; Kew, Surrey, UK: 1976.
Kirk P.M. New or interesting microfungi XIV. Dematiaceous hyphomycetes from Mt Kenya. Mycotaxon. 1985;23:305–352.
Réblová M. The genus Chaetosphaeria and its anamorphs. Stud. Mycol. 2000;45:149–168.
Gams W., Holubová-Jechová V. Chloridium and some other dematiaceous hyphomycetes growing on decaying wood. Stud. Mycol. 1976;13:1–99.
Réblová M., Miller A.N., Rossman A.Y., Seifert K.A., Crous P.W., Hawksworth D.L., Abdel-Wahab M.A., Cannon P.F., Daranagama D.A., De Beer Z.W., et al. Recommendations for competing sexual-asexually typified generic names in Sordariomycetes (except Diaporthales, Hypocreales, and Magnaporthales) IMA Fungus. 2016;7:131–153. doi: 10.5598/imafungus.2016.07.01.08. PubMed DOI PMC
Almeida D.A.C., Miller A.N., Gusmão L.F.P. New species and combinations of conidial fungi from the semi-arid Caatinga biome of Brazil. Nova Hedw. 2014;98:431–447. doi: 10.1127/0029-5035/2013/0162. DOI
Castañeda-Ruíz R.F. Fungi Cubenses III. Instituto de Investigaciones Funfamentales en Agricultura Tropical ‘Alejandro de Humboldt’; Habana, Cuba: 1988.
Pirozynski K.A., Patil S.D. Some setose Hyphomycetes of leaf litter in south India. Can. J. Bot. 1970;48:567–581. doi: 10.1139/b70-079. DOI
Calduch M., Gené J., Stchigel A.M., Guarro J. New species of Dictyochaetopsis and Paraceratocladium from Brazil. Mycologia. 2002;94:1071–1077. doi: 10.2307/3761873. PubMed DOI
Raper K.B., Fennel D.I. The Genus Aspergillus. The Williams and Wilkins Company; Baltimore, MD, USA: 1965.
Okuda T., Klich M.A., Seifert K.A., Ando K. Media and incubation effects on morphological characteristics of Penicillium and Aspergillus. In: Samson R.A., Pitt J.I., editors. Integration of Modern Taxonomic Methods for Penicillium and Aspergillus Classification. Harwood Academic Publishers; Amsterdam, The Netherlands: 2000. pp. 83–99.
Caisová L., Marin B., Melkonian M. A close-up view on ITS2 evolution and speciation—A case study in the Ulvophyceae (Chlorophyta, Viridiplantae) BMC Evol. Biol. 2011;11:262. doi: 10.1186/1471-2148-11-262. PubMed DOI PMC
Větrovský T., Kohout P., Kopecký M., Machac A., Man M., Bahnmann B.D., Brabcová V., Choi J., Meszárošová L., Human Z.R., et al. A meta-analysis of global fungal distribution reveals climate-driven patterns. Nat. Commun. 2019;10:5142. doi: 10.1038/s41467-019-13164-8. PubMed DOI PMC
Fungal Planet description sheets: 1697-1780