Variably hungry caterpillars: predictive models and foliar chemistry suggest how to eat a rainforest

. 2017 Nov 15 ; 284 (1866) : .

Jazyk angličtina Země Anglie, Velká Británie Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid29118136

Grantová podpora
U01 TW006671 FIC NIH HHS - United States

A long-term goal in evolutionary ecology is to explain the incredible diversity of insect herbivores and patterns of host plant use in speciose groups like tropical Lepidoptera. Here, we used standardized food-web data, multigene phylogenies of both trophic levels and plant chemistry data to model interactions between Lepidoptera larvae (caterpillars) from two lineages (Geometridae and Pyraloidea) and plants in a species-rich lowland rainforest in New Guinea. Model parameters were used to make and test blind predictions for two hectares of an exhaustively sampled forest. For pyraloids, we relied on phylogeny alone and predicted 54% of species-level interactions, translating to 79% of all trophic links for individual insects, by sampling insects from only 15% of local woody plant diversity. The phylogenetic distribution of host-plant associations in polyphagous geometrids was less conserved, reducing accuracy. In a truly quantitative food web, only 40% of pair-wise interactions were described correctly in geometrids. Polyphenol oxidative activity (but not protein precipitation capacity) was important for understanding the occurrence of geometrids (but not pyraloids) across their hosts. When both foliar chemistry and plant phylogeny were included, we predicted geometrid-plant occurrence with 89% concordance. Such models help to test macroevolutionary hypotheses at the community level.

Zobrazit více v PubMed

Price PW. 2002. Resource-driven terrestrial interaction webs. Ecol. Res. 17, 241–247. (10.1046/j.1440-1703.2002.00483.x) DOI

Ehrlich PR, Raven PH. 1964. Butterflies and plants: a study in coevolution. Evolution 18, 586–608. (10.1111/j.1558-5646.1964.tb01674.x) DOI

Janz N. 2011. Ehrlich and Raven revisited: mechanisms underlying codiversification of plants and enemies. Annu. Rev. Ecol. Syst. 42, 71–89. (10.1146/annurev-ecolsys-102710-145024) DOI

Suchan T, Alvarez N. 2015. Fifty years after Ehrlich and Raven, is there support for plant-insect coevolution as a major driver of species diversification? Entomol. Exp. Appl. 157, 98–112. (10.1111/eea.12348) DOI

Agrawal AA, Salminen J-P, Fishbein M. 2009. Phylogenetic trends in phenolic metabolism of milkweeds (Asclepias): evidence for escalation. Evolution 63, 663–673. (10.1111/j.1558-5646.2008.00573.x) PubMed DOI

Wheat CW, Vogel H, Wittstock U, Braby MF, Underwood D, Mitchell-Olds T. 2007. The genetic basis of a plant–insect coevolutionary key innovation. Proc. Natl Acad. Sci. USA 104, 20 427–20 431. (10.1073/pnas.0706229104) PubMed DOI PMC

Edger PP, et al. 2015. The butterfly plant arms-race escalated by gene and genome duplications. Proc. Natl Acad. Sci. USA 112, 8362–8366. (10.1073/pnas.1503926112) PubMed DOI PMC

Janz N, Nylin S. 2008. The oscillation hypothesis of host-plant range and speciation. In Specialization, speciation, and radiation: the evolutionary biology of herbivorous insects (ed. Tilmon KJ.), pp. 203–215. Los Angeles, CA: University of California Press.

Endara M-J, Coley PD, Ghabash G, Nicholls JA, Dexter KG, Donoso DA, Stone GN, Pennington RT, Kursar TA. 2017. Coevolutionary arms race versus host defense chase in a tropical herbivore–plant system. Proc. Natl Acad. Sci. USA 114, E7499–E7505. (10.1073/pnas.1707727114) PubMed DOI PMC

Lewinsohn TM, Novotny V, Basset Y. 2005. Insects on plants: diversity of herbivore assemblages revisited. Annu. Rev. Ecol. Evol. Syst. 36, 597–620. (10.1146/annurev.ecolsys.36.091704.175520) DOI

Pearse IS, Altermatt F. 2013. Predicting novel trophic interactions in a non-native world. Ecol. Lett. 16, 1088–1094. (10.1111/ele.12143) PubMed DOI

Schoonhoven LM, van Loon JJA, Dicke M. 2005. Insect–plant biology. Oxford, UK: Oxford University Press.

Winkler IS, Mitter C. 2008. The phylogenetic dimension of insect/plant interactions: a summary of recent evidence. In Specialization, speciation, and radiation: the evolutionary biology of herbivorous insects (ed. Tilmon K.), pp. 240–263. Berkeley, CA: University of California Press.

Novotny V, et al. 2010. Guild-specific patterns of species richness and host specialization in plant–herbivore food webs from a tropical forest. J. Anim. Ecol. 79, 1193–1203. (10.1111/j.1365-2656.2010.01728.x) PubMed DOI

Forister ML, Dyer LA, Singer MS, Stireman JO III, Lill JT. 2012. Revisiting the evolution of ecological specialization, with emphasis on insect–plant interactions. Ecology 93, 981–991. (10.1890/11-0650.1) PubMed DOI

Weiblen GD, Webb CO, Novotny V, Basset Y, Miller SE. 2006. Phylogenetic dispersion of host use in a tropical insect herbivore community. Ecology 87, S62–S75. (10.1890/0012-9658(2006)87%5B62:PDOHUI%5D2.0.CO;2) PubMed DOI

Joy JB, Crespi BJ. 2012. Island phytophagy: explaining the remarkable diversity of plant-feeding insects. Proc. R. Soc. B 279, 3250–3255. (10.1098/rspb.2012.0397) PubMed DOI PMC

Bernays EA, Chapman RF. 1994. Host plant selection by phytophagous insects. London, UK: Chapman and Hall.

Novotny V, Miller SE, Basset Y, Cizek L, Drozd P, Darrow K, Leps J. 2002. Predictably simple: assemblages of caterpillars (Lepidoptera) feeding on rainforest trees in Papua New Guinea. Proc. R. Soc. Lond. B 269, 2337–2344. (10.1098/rspb.2002.2166) PubMed DOI PMC

Marquis RJ, Salazar D, Baer C, Reinhardt J, Priest G, Barnett K. 2016. Ode to Ehrlich and Raven or how herbivorous insects might drive plant speciation. Ecology 97, 2939–2951. (10.1002/ecy.1534) PubMed DOI

Althoff DM, Segraves KA, Johnson MTJ. 2014. Testing for coevolutionary diversification: linking pattern with process. Trends. Ecol. Evol. 29, 82–89. (10.1016/j.tree.2013.11.003) PubMed DOI

Nylin S, Slove J, Janz N. 2014. Host plant utilization, host range oscillations and diversification in nymphalid butterflies: a phylogenetic investigation: host range oscillations in butterflies. Evolution 68, 105–124. (10.1111/evo.12227) PubMed DOI PMC

Wang H, Holloway JD, Janz N, Braga MP, Wahlberg N, Wang M, Nylin S. 2017. Polyphagy and diversification in tussock moths: support for the oscillation hypothesis from extreme generalists. Ecol. Evol. 7, 7975–7986. (10.1002/ece3.3350) PubMed DOI PMC

Hamm CA, Fordyce JA. 2015. Patterns of host plant utilization and diversification in the brush-footed butterflies: butterfly diversification and host use. Evolution 69, 589–601. (10.1111/evo.12593) PubMed DOI

Janz N, Braga MP, Wahlberg N, Nylin S. 2016. On oscillations and flutterings—a reply to Hamm and Fordyce: technical comment. Evolution 70, 1150–1155. (10.1111/evo.12927) PubMed DOI

Barbehenn RV, Constabel CP. 2011. Tannins in plant–herbivore interactions. Phytochem 72, 1551–1565. (10.1016/j.phytochem.2011.01.040) PubMed DOI

Salminen J-P, Karonen M. 2011. Chemical ecology of tannins and other phenolics: we need a change in approach: chemical ecology of tannins. Funct. Ecol. 25, 325–338. (10.1111/j.1365-2435.2010.01826.x) DOI

Miller SE, Novotny V, Basset Y. 2003. Studies on New Guinea moths. 1. Introduction (Lepidoptera). Proc. Ent. Soc. Wash. 105, 1035–1043.

Novotny V, et al. 2007. Low beta diversity of herbivorous insects in tropical forests. Nature 448, 692–695. (10.1038/nature06021) PubMed DOI

Whitfeld TJS, Novotny V, Miller SE, Hrcek J, Klimes P, Weiblen GD. 2012. Predicting tropical insect herbivore abundance from host plant traits and phylogeny. Ecology 93, 211–222. (10.1890/11-0503.1) DOI

Miller SE, Hrcek J, Novotny V, Weiblen GD, Hebert PDN. 2013. DNA barcodes of caterpillars (Lepidoptera) from Papua New Guinea. Proc. Ent. Soc. Wash. 115, 107–109. (10.4289/0013-8797.115.1.107) DOI

Novotny V, Basset Y. 2005. Host specificity of insect herbivores in tropical forests. Proc. R. Soc. B 272, 1083–1090. (10.1098/rspb.2004.3023) PubMed DOI PMC

Wahlberg N, Wheat CW. 2008. Genomic outposts serve the phylogenomic pioneers: designing novel nuclear markers for genomic DNA extractions of Lepidoptera. Syst. Biol. 57, 231–242. (10.1080/10635150802033006) PubMed DOI

Engstrom MT, Palijarvi M, Salminen J-P. 2015. Rapid fingerprint analysis of plant extracts for ellagitannins, gallic acid, and quinic acid derivatives and quercetin-, kaempferol- and myricetin-based flavonol glycosides by UPLC-QqQ-MS/MS. J. Agric. Food Chem. 63, 4068–4079. (10.1021/acs.jafc.5b00595) PubMed DOI

Hagerman AE. 1987. Radial diffusion method for determining tannin in plant extracts. Journ. Chem. Ecol. 13, 437–449. (10.1007/BF01880091) PubMed DOI

Volf M, et al. In press. Community structure of insect herbivores is driven by conservatism, escalation and divergence of defensive traits in Ficus. Ecol. Lett. PubMed

Ives AR, Garland T. 2014. Phylogenetic regression for binary dependent variables. In Modern phylogenetic comparative methods and their application in evolutionary biology: concepts and practice (ed. Garamszegi LZ.), pp. 231–261. Berlin, Germany: Springer.

Freckleton RP, Cooper N, Jetz W. 2011. Comparative methods as a statistical fix: the dangers of ignoring an evolutionary model. Am. Nat. 178, E10–E17. (10.1086/660272) PubMed DOI

Barton K. 2016. MuMIn: Multi-Model Inference See http://CRAN.R-project.org/package=MuMIn.

Ives AR, Godfray HCJ. 2006. Phylogenetic analysis of trophic associations. Am. Nat. 168, 1–14. (10.1086/505157) PubMed DOI

Kembel SW, Cowan PD, Helmus MR, Cornwell WK, Morlon H, Ackerly DD, Blomberg SP, Webb CO. 2010. PICANTE: R tools for integrating phylogenies and ecology. Bioinformatics 26, 1463 (10.1093/bioinformatics/btq166) PubMed DOI

Oksanen J, Blanchet FG, Kindt R, Legendre P, O'Hara RB, Simpson GL, Solymos P, Stevens HH, Wagner H. 2010. Vegan: Community Ecology Package. R package version 1.17-3 See http://CRAN.R-project.org/package=vegan.

Leppänen SA, Altenhofer E, Liston AD, Nyman T. 2013. Ecological versus phylogenetic determinants of trophic associations in a plant–leafminer–parasitoid food web. Evolution 67, 1493–1502. (10.1111/evo.12028) PubMed DOI

Segar ST, et al. 2017. Data from: Variably hungry caterpillars: predictive models and foliar chemistry suggest how to eat a rainforest Dryad Digital Repository. (10.5061/dryad.8f5f3) PubMed DOI PMC

Singer MS. 2008. Evolutionary ecology of polyphagy. In Specialization, speciation, and radiation—evolutionary biology of herbivorous insects (ed. Tilmon K.), pp. 29–42. Berkeley, CA: University of California Press.

Nosil P. 2002. Transition rates between specialization and generalization in phytophagous insects. Evolution 56, 1701–1706. (10.1111/j.0014-3820.2002.tb01482.x) PubMed DOI

Lopez-Vaamonde C, Godfray HC, Cook JM. 2003. Evolutionary dynamics of host-plant use in a genus of leaf-mining moths. Evolution 57, 1804–1821. (10.1111/j.0014-3820.2003.tb00588.x) PubMed DOI

Robinson GS, Ackery PR, Kitching I, Beccaloni G, Hernández L. 2001. Hostplants of the moth and butterfly caterpillars of the oriental region. Kuala Lumpur, Malaysia: Southdene Sdn Bhd for The Natural History Museum, UK.

Schmidt O. 2016. Larval food plants of Australian Larentiinae (Lepidoptera: Geometridae) — a review of available data. Biodiv. Data Journ. 4, e7938 (10.3897/BDJ.4.e7938) PubMed DOI PMC

Celorio-Mancera MP, Wheat CW, Huss M, Vezzi F, Neethiraj R, Reimegård J, Nylin S, Janz N. 2016. Evolutionary history of host use, rather than plant phylogeny, determines gene expression in a generalist butterfly. BMC. Evol. Biol. 16, 1–10. (10.1186/s12862-016-0627-y) PubMed DOI PMC

Moilanen J, Koskinen P, Salminen J-P. 2015. Distribution and content of ellagitannins in Finnish plant species. Z. Naturforsch. C. 116, 188–197. (10.1016/j.phytochem.2015.03.002) PubMed DOI

Barbehenn RV, Jones CP, Hagerman AE, Karonen M, Salminen J-P. 2006. Ellagitannins have greater oxidative activities than condensed tannins and galloylglucoses at high pH: potential impact on caterpillars. J. Chem. Ecol. 32, 2253–2267. (10.1007/s10886-006-9143-7) PubMed DOI

Ruuhola T, Salminen P, Salminen J-P, Ossipov V. 2013. Ellagitannins: defences of Betula nana against Epirrita autumnata folivory? Agr. Forest Entomol. 15, 187–196. (10.1111/afe.12001) DOI

Roslin T, Salminen J-P. 2008. Specialization pays off: contrasting effects of two types of tannins on oak specialist and generalist moth species. Oikos 117, 1560–1568. (10.1111/j.0030-1299.2008.16725.x) DOI

Salminen J-P, Roslin T, Karonen M, Sinkkonen J, Pihlaja K, Pulkkinen P. 2004. Seasonal variation in the content of hydrolyzable tannins, flavonoid glycosides, and proanthocyanidins in oak leaves. Journ. Chem. Ecol. 30, 1693–1711. (10.1023/B:JOEC.0000042396.40756.b7) PubMed DOI

Barbehenn RV, Maben RE, Knoester JJ. 2008. Linking phenolic oxidation in the midgut lumen with oxidative stress in the midgut tissues of a tree-feeding caterpillar Malacosoma disstria (Lepidoptera: Lasiocampidae). Env. Entomol. 37, 1113–1118. (10.1093/ee/37.5.1113) PubMed DOI

Barbehenn RV, Jaros A, Lee G, Mozola C, Weir Q, Salminen J-P. 2009. Hydrolyzable tannins as ‘quantitative defenses’: limited impact against Lymantria dispar caterpillars on hybrid poplar. Journ. Insect Physiol. 55, 297–304. (10.1016/j.jinsphys.2008.12.001) PubMed DOI

Quideau S, Feldman KS, Appel HM. 1995. Chemistry of gallotannin-derived o-quinones: reactivity toward nucleophiles. J. Org. Chem. 60, 4982–4983. (10.1021/jo00121a012) DOI

Feldman KS, Sambandam A, Bowers KE, Appel HM. 1999. Probing the role of polyphenol oxidation in mediating insect−pathogen interactions. Galloyl-derived electrophilic traps for the Lymantria dispar nuclear polyhedrosis virus matrix protein polyhedrin. J. Org. Chem 64, 5794–5803. (10.1021/jo982477n) DOI

Holloway JD, Kibby G, Peggie D. 2001. The families of malesian moths and butterflies. Leiden, Netherlands: Brill.

Anderson-Teixeira KJ, et al. 2015. CTFS-ForestGEO: a worldwide network monitoring forests in an era of global change. Glob. Chang. Biol. 21, 528–549. (10.1111/gcb.12712) PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...