High intraspecific variability and previous experience affect polyphenol metabolism in polyphagous Lymantria mathura caterpillars
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
38343568
PubMed Central
PMC10857923
DOI
10.1002/ece3.10973
PII: ECE310973
Knihovny.cz E-zdroje
- Klíčová slova
- chemical defenses, detoxification, flavonoids, frass, habituation, tannins,
- Publikační typ
- časopisecké články MeSH
Polyphagous insect herbivores feed on multiple host-plant species and face a highly variable chemical landscape. Comparative studies of polyphagous herbivore metabolism across a range of plants is an ideal approach for exploring how intra- and interspecific chemical variation shapes species interactions. We used polyphagous caterpillars of Lymantria mathura (Erebidae, Lepidoptera) to explore mechanisms that may contribute to its ability to feed on various hosts. We focused on intraspecific variation in polyphenol metabolism, the fates of individual polyphenols, and the role of previous feeding experience on polyphenol metabolism and leaf consumption. We collected the caterpillars from Acer amoenum (Sapindaceae), Carpinus cordata (Betulaceae), and Quercus crispula (Fagaceae). We first fed the larvae with the leaves of their original host and characterized the polyphenol profiles in leaves and frass. We then transferred a subset of larvae to a different host species and quantified how host shifting affected their leaf consumption and polyphenol metabolism. There was high intraspecific variation in frass composition, even among caterpillars fed with one host. While polyphenols had various fates when ingested by the caterpillars, most of them were passively excreted. When we transferred the caterpillars to a new host, their previous experience influenced how they metabolized polyphenols. The one-host larvae metabolized a larger quantity of ingested polyphenols than two-host caterpillars. Some of these metabolites could have been sequestered, others were probably activated in the gut. One-host caterpillars retained more of the ingested leaf biomass than transferred caterpillars. The pronounced intraspecific variation in polyphenol metabolism, an ability to excrete ingested metabolites and potential dietary habituation are factors that may contribute to the ability of L. mathura to feed across multiple hosts. Further comparative studies can help identify if these mechanisms are related to differential host-choice and response to host-plant traits in specialist and generalist insect herbivores.
Agriculture and Environment Department Harper Adams University Newport UK
Biology Centre Czech Academy of Sciences Ceske Budejovice Czech Republic
Department of Chemistry University of Turku Turku Finland
Faculty of Science Chiba University Chiba Japan
Faculty of Science University of South Bohemia Ceske Budejovice Czech Republic
Graduate School of Agricultural and Life Sciences The University of Tokyo Tokyo Japan
Zobrazit více v PubMed
Abe, T. , Volf, M. , Libra, M. , Kumar, R. , Abe, H. , Fukushima, H. , Lilip, R. , Salminen, J. P. , Novotny, V. , & Kamata, N. (2021). Effects of plant traits on caterpillar communities depend on host specialisation. Insect Conservation and Diversity, 14, 756–767.
Akhtar, Y. , Rankin, C. H. , & Isman, M. B. (2003). Decreased response to feeding deterrents following prolonged exposure in the larvae of a generalist herbivore, Trichoplusia ni (lepidoptera: Noctuidae). Journal of Insect Behavior, 16, 811–831.
Ali, J. G. , & Agrawal, A. A. (2012). Specialist versus generalist insect herbivores and plant defense. Trends in Plant Science, 17, 293–302. PubMed
Barbehenn, R. , Weir, Q. , & Salminen, J.‐P. (2008). Oxidation of ingested phenolics in the tree‐feeding caterpillar Orgyia leucostigma depends on foliar chemical composition. Journal of Chemical Ecology, 34, 748–756. PubMed
Barbehenn, R. V. , Jaros, A. , Lee, G. , Mozola, C. , Weir, Q. , & Salminen, J. P. (2009). Tree resistance to Lymantria dispar caterpillars: Importance and limitations of foliar tannin composition. Oecologia, 159, 777–788. PubMed
Barbehenn, R. V. , Jones, C. P. , Hagerman, A. E. , Karonen, M. , & Salminen, J.‐P. (2006). Ellagitannins have greater oxidative activities than condensed tannins and galloyl glucoses at high pH: Potential impact on caterpillars. Journal of Chemical Ecology, 32, 2253–2267. PubMed
Bernays, E. (1978). Tannins: An alternative viewpoint. Entomologia Experimentalis et Applicata, 24, 244–253.
Fontanilla, A. M. , Aubona, G. , Sisol, M. , Kuukkanen, I. , Salminen, J.‐P. , Miller, S. E. , Holloway, J. D. , Novotny, V. , Volf, M. , & Segar, S. T. (2022). What goes in must come out? The metabolic profile of plants and caterpillars, frass, and adults of Asota (Erebidae: Aganainae) feeding on Ficus (Moraceae) in New Guinea. Journal of Chemical Ecology, 48, 718–729. PubMed
Forister, M. L. , Novotny, V. , Panorska, A. K. , Baje, L. , Basset, Y. , Butterill, P. T. , Cizek, L. , Coley, P. D. , Dem, F. , Diniz, I. R. , Drozd, P. , Fox, M. , Glassmire, A. E. , Hazen, R. , Hrcek, J. , Jahner, J. P. , Kaman, O. , Kozubowski, T. J. , Kursar, T. A. , … Dyer, L. A. (2015). The global distribution of diet breadth in insect herbivores. Proceedings of the National Academy of Sciences of the United States of America, 112, 442–447. PubMed PMC
Hagerman, A. E. (1987). Radial diffusion method for determining tannin in plant extracts. Journal of Chemical Ecology, 13, 437–449. PubMed
Heckel, D. G. (2014). Insect detoxification and sequestration strategies. Annual Plant Reviews: Insect‐Plant Interactions, 47, 77–114.
Imran, I. B. , Karonen, M. , Salminen, J.‐P. , & Engström, M. T. (2021). Modification of natural proanthocyanidin oligomers and polymers via chemical oxidation under alkaline conditions. ACS Omega, 6, 4726–4739. PubMed PMC
Jeschke, V. , Gershenzon, J. , & Vassão, D. (2016). Insect detoxification of glucosinolates and their hydrolysis products. In Advances in Botanical Research (pp. 199–245). Elsevier.
Johnson, K. (1999). Comparative detoxification of plant (Magnolia virginiana) allelochemicals by generalist and specialist Saturniid silkmoths. Journal of Chemical Ecology, 25, 253–269.
Jones, P. L. , & Agrawal, A. A. (2017). Learning in insect pollinators and herbivores. Annuual Review of Entomology, 62, 53–71. PubMed
Kamata, N. (2002). Outbreaks of forest defoliating insects in Japan, 1950–2000. Bulletin of Entomological Research, 92, 109–117. PubMed
Karonen, M. , Imran, I. B. , Engström, M. T. , & Salminen, J.‐P. (2021). Characterization of natural and alkaline‐oxidized proanthocyanidins in plant extracts by ultrahigh‐resolution UHPLC‐MS/MS. Molecules, 26, 1873. PubMed PMC
Kim, J. , Pälijärvi, M. , Karonen, M. , & Salminen, J.‐P. (2018). Oxidatively active plant phenolics detected by UHPLC‐DAD‐MS after enzymatic and alkaline oxidation. Journal of Chemical Ecology, 44, 483–496. PubMed
Lahtinen, M. , Kapari, L. , Ossipov, V. , Salminen, J.‐P. , Haukioja, E. , & Pihlaja, K. (2005). Biochemical transformation of birch leaf phenolics in larvae of six species of sawflies. Chemoecology, 15, 153–159.
Lazarević, J. , Janković‐Tomanić, M. , Savković, U. , Đorđević, M. , Milanović, S. , & Stojković, B. (2017). Host‐associated divergence in the activity of digestive enzymes in two populations of the gypsy moth Lymantria dispar (lepidoptera: Erebidae). Entomological Science, 20, 189–194.
Leong, J. V. , Jorge, L. R. , Seifert, C. L. , & Volf, M. (2022). Quantity and specialisation matter: Effects of quantitative and qualitative variation in willow chemistry on resource preference in leaf‐chewing insects. Insect Conservation and Diversity, 15, 453–460.
Malisch, C. S. , Salminen, J.‐P. , Kölliker, R. , Engström, M. T. , Suter, D. , Studer, B. , & Lüscher, A. (2016). Drought effects on proanthocyanidins in sainfoin (Onobrychis viciifolia scop.) are dependent on the plant's ontogenetic stage. Journal of Agricultural and Food Chemistry, 64, 9307–9316. PubMed
Moilanen, J. , Karonen, M. , Tähtinen, P. , Jacquet, R. , Quideau, S. , & Salminen, J.‐P. (2016). Biological activity of ellagitannins: Effects as anti‐oxidants, pro‐oxidants and metal chelators. Phytochemistry, 125, 65–72. PubMed
Moilanen, J. , & Salminen, J.‐P. (2008). Ecologically neglected tannins and their biologically relevant activity: Chemical structures of plant ellagitannins reveal their in vitro oxidative activity at high pH. Chemoecology, 18, 73–83.
Moilanen, J. , Sinkkonen, J. , & Salminen, J.‐P. (2013). Characterization of bioactive plant ellagitannins by chromatographic, spectroscopic and mass spectrometric methods. Chemoecology, 23, 165–179.
Murakami, M. , Yoshida, K. , Hara, H. , & Toda, M. J. (2005). Spatio‐temporal variation in lepidopteran larval assemblages associated with oak, Quercus crispula: The importance of leaf quality. Ecological Entomology, 30, 521–531.
Oksanen, J. , Blanchet, F. , Friendly, M. , Kindt, R. , Legendre, P. , McGlinn, D. , Minchin, P. , O'Hara, R. , Simpson, G. , & Solymos, P. (2019). Vegan: Community ecology package. R Package Version 2.5–6. https://CRAN.R‐project.org/package=vegan
R Core Team . (2022). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R‐project.org
Ramsey, J. S. , Rider, D. S. , Walsh, T. K. , De Vos, M. , Gordon, K. , Ponnala, L. , Macmil, S. , Roe, B. , & Jander, G. (2010). Comparative analysis of detoxification enzymes in Acyrthosiphon pisum and Myzus persicae . Insect Molecular Biology, 19, 155–164. PubMed
Roy, A. , Walker, W., III , Vogel, H. , Chattington, S. , Larsson, M. , Anderson, P. , Heckel, D. G. , & Schlyter, F. (2016). Diet dependent metabolic responses in three generalist insect herbivores Spodoptera spp. Insect Biochemistry and Molecular Biology, 71, 91–105. PubMed
Salminen, J. P. (2014). The chemistry and chemical ecology of ellagitannins in plant–insect interactions: From underestimated molecules to bioactive plant constituents. Recent Advances in Polyphenol Research, 4, 83–113.
Salminen, J. P. (2018). Metabolism of 14C‐labelled pentagalloylglucose by Epirrita autumnata and Agriopis aurantiaria (lepidoptera: Geometridae) and implications for the nutrition of geometrid defoliators. Austral Entomology, 57, 255–264.
Salminen, J. P. , & Karonen, M. (2011). Chemical ecology of tannins and other phenolics: We need a change in approach. Functional Ecology, 25, 325–338.
Salminen, J. P. , Lahtinen, M. , Lempa, K. , Kapari, L. , Haukioja, E. , & Pihlaja, K. (2004). Metabolic modifications of birch leaf phenolics by an herbivorous insect: Detoxification of flavonoid aglycones via glycosylation. Zeitschrift Fur Naturforschung C‐A Journal of Biosciences, 59, 437–444. PubMed
Salminen, J.‐P. , & Lempa, K. (2002). Effects of hydrolysable tannins on a herbivorous insect: Fate of individual tannins in insect digestive tract. Chemoecology, 12, 203–211.
Segar, S. T. , Volf, M. , Isua, B. , Sisol, M. , Redmond, C. M. , Rosati, M. E. , Gewa, B. , Molem, K. , Dahl, C. , & Holloway, J. D. (2017). Variably hungry caterpillars: Predictive models and foliar chemistry suggest how to eat a rainforest. Proceedings of the Royal Society of London B: Biological Sciences, 284, 20171803. PubMed PMC
Seifert, C. L. , Moos, M. , & Volf, M. (2024). Different fates of metabolites and small variation in chemical composition characterise frass chemistry in a specialist caterpillar. Physiological Entomology. 10.1111/phen.12429 [In press]. DOI
Volf, M. , Pyszko, P. , Abe, T. , Libra, M. , Kotásková, N. , Šigut, M. , Kumar, R. , Kaman, O. , Butterill, P. , Šipoš, J. , Abe, H. , Fukushima, H. , Drozd, P. , Kamata, N. , Murakami, M. , & Novotny, V. (2017). Phylogenetic composition of host plant communities drives plant‐herbivore food web structure. Journal of Animal Ecology, 86, 556–565. PubMed
Volf, M. , Volfová, T. , Seifert, C. L. , Ludwig, A. , Engelmann, R. A. , Jorge, L. R. , Richter, R. , Schedl, A. , Weinhold, A. , & Wirth, C. (2022). A mosaic of induced and non‐induced branches promotes variation in leaf traits, predation and insect herbivore assemblages in canopy trees. Ecology Letters, 25, 729–739. PubMed
Weller, S. J. , Jacobson, N. L. , & Conner, W. E. (1999). The evolution of chemical defences and mating systems in tiger moths (lepidoptera: Arctiidae). Biological Journal of the Linnean Society, 68, 557–578.
Wetzel, W. C. , & Whitehead, S. R. (2020). The many dimensions of phytochemical diversity: Linking theory to practice. Ecology Letters, 23, 16–32. PubMed
Zhou, D. , Van Loon, J. J. , & Wang, C.‐Z. (2010). Experience‐based behavioral and chemosensory changes in the generalist insect herbivore Helicoverpa armigera exposed to two deterrent plant chemicals. Journal of Comparative Physiology A, 196, 791–799. PubMed PMC
Zhou, D. S. , Teng, T. , Liu, J. H. , & Long, J. M. (2021). Cross‐habituation to deterrents correlates with desensitisation of the corresponding deterrent neuron in the larva of the black cutworm, Agrotis ipsilon. Entomologia Experimentalis et Applicata, 169, 1039–1048.
Zlotina, M. A. , Mastro, V. C. , Elkinton, J. S. , & Leonard, D. E. (1999). Dispersal tendencies of neonate larvae of Lymantria mathura and the Asian form of Lymantria dispar (lepidoptera: Lymantriidae). Environmental Entomology, 28, 240–245.
Zlotina, M. A. , Mastro, V. C. , Leonard, D. E. , & Elkinton, J. S. (1998). Survival and development of Lymantria mathura (Lepidoptera: Lymantriidae) on north American, Asian, and European tree species. Journal of Economic Entomology, 91, 1162–1166.