Influence of Membrane Phase on the Optical Properties of DPH
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
UMO-2018/31/D/ST4/01475
Narodowym Centrum Nauki
CZ.02.1.01/0.0/0.0/16_019/0000754
European Regional Development Fund
17-21122S
Grantová Agentura České Republiky
PubMed
32957614
PubMed Central
PMC7570797
DOI
10.3390/molecules25184264
PII: molecules25184264
Knihovny.cz E-zdroje
- Klíčová slova
- QM/MM, absorption, conformationally versatile molecules, fluorescence anisotropy, fluorescence decay, hyper-Rayleigh scattering, photoselection, two-photon absorption,
- MeSH
- cholesterol chemie MeSH
- difenylhexatrien chemie MeSH
- fluorescenční barviva chemie MeSH
- fluorescenční polarizace MeSH
- lipidové dvojvrstvy chemie MeSH
- molekulární konformace MeSH
- sfingomyeliny chemie MeSH
- simulace molekulární dynamiky MeSH
- tranzitní teplota MeSH
- vztahy mezi strukturou a aktivitou MeSH
- změna skupenství MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- cholesterol MeSH
- difenylhexatrien MeSH
- fluorescenční barviva MeSH
- lipidové dvojvrstvy MeSH
- sfingomyeliny MeSH
The fluorescent molecule diphenylhexatriene (DPH) has been often used in combination with fluorescence anisotropy measurements, yet little is known regarding the non-linear optical properties. In the current work, we focus on them and extend the application to fluorescence, while paying attention to the conformational versatility of DPH when it is embedded in different membrane phases. Extensive hybrid quantum mechanics/molecular mechanics calculations were performed to investigate the influence of the phase- and temperature-dependent lipid environment on the probe. Already, the transition dipole moments and one-photon absorption spectra obtained in the liquid ordered mixture of sphingomyelin (SM)-cholesterol (Chol) (2:1) differ largely from the ones calculated in the liquid disordered DOPC and solid gel DPPC membranes. Throughout the work, the molecular conformation in SM:Chol is found to differ from the other environments. The two-photon absorption spectra and the ones obtained by hyper-Rayleigh scattering depend strongly on the environment. Finally, a stringent comparison of the fluorescence anisotropy decay and the fluorescence lifetime confirm the use of DPH to gain information upon the surrounding lipids and lipid phases. DPH might thus open the possibility to detect and analyze different biological environments based on its absorption and emission properties.
Zobrazit více v PubMed
van Meer G., Voelker D.R., Feigenson G.W. Membrane lipids: where they are and how they behave. Nat. Rev. Mol. Cell Biol. 2008;9:112–124. doi: 10.1038/nrm2330. PubMed DOI PMC
Enkavi G., Javanainen M., Kulig W., Róg T., Vattulainen I. Multiscale Simulations of Biological Membranes: The Challenge To Understand Biological Phenomena in a Living Substance. Chem. Rev. 2019;119:5607–5774. doi: 10.1021/acs.chemrev.8b00538. PubMed DOI PMC
Risselada H.J., Grubmueller H. How SNARE molecules mediate membrane fusion: Recent insights from molecular simulations. Curr. Opin. Struct. Biol. 2012;22:187–196. doi: 10.1016/j.sbi.2012.01.007. PubMed DOI
Li L., So L., Spector A. Membrane Cholesterol and Phospholipid in Consecutive Concentric Sections of Human Lenses. J. Lipid Res. 1985;26:600–609. PubMed
Deliconstantinos G. Physiological-Aspects of Membrane Lipid Fluidity in Malignancy. Anticancer Res. 1987;7:1011–1022. PubMed
Daefler S., Krueger G.R., Modder B., Deliconstantinos G. Cell membrane fluidity in chronic lymphocytic leukemia (CLL) lymphocytes and its relation to membrane receptor expression. J. Exp. Pathol. 1987;3:147–154. PubMed
Coughlin M.F., Bielenberg D.R., Lenormand G., Marinkovic M., Waghorne C.G., Zetter B.R., Fredberg J.J. Cytoskeletal stiffness, friction, and fluidity of cancer cell lines with different metastatic potential. Clin. Exp. Metastasis. 2013;30:237–250. doi: 10.1007/s10585-012-9531-z. PubMed DOI PMC
Braig S., Schmidt B.U.S., Stoiber K., Haendel C., Moehn T., Werz O., Mueller R., Zahler S., Koeberle A., Kaes J.A., et al. Pharmacological targeting of membrane rigidity: implications on cancer cell migration and invasion. New J. Phys. 2015;17:083007. doi: 10.1088/1367-2630/17/8/083007. DOI
Haendel C., Schmidt B.U.S., Schiller J., Dietrich U., Moehn T., Kiessling T.R., Pawlizak S., Fritsch A.W., Horn L.-C., Briest S., et al. Cell membrane softening in human breast and cervical cancer cells. New J. Phys. 2015;17:083008. doi: 10.1088/1367-2630/17/8/083008. DOI
Erazo-Oliveras A., Fuentes N.R., Wright R.C., Chapkin R.S. Functional link between plasma membrane spatiotemporal dynamics, cancer biology, and dietary membrane-altering agents. Cancer Metastasis Rev. 2018;37:519–544. doi: 10.1007/s10555-018-9733-1. PubMed DOI PMC
Brown D.A., London E. Functions of lipid rafts in biological membranes. Annu. Rev. Cell Dev. Biol. 1998;14:111–136. doi: 10.1146/annurev.cellbio.14.1.111. PubMed DOI
Sherbet G. Membrane Fluidity and Cancer Metastasis. Exp. Cell Biol. 1989;57:198–205. doi: 10.1159/000163526. PubMed DOI
Bloom M. The physics of soft, natural materials. Phys. Can. 1992;48:7–16.
Iwagaki H., Marutaka M., Nezu M., Suguri T., Tanaka N., Orita K. Cell-Membrane Fluidity in K562 Cells and Its Relation to Receptor Expression. Res. Commun. Mol. Pathol. Pharmacol. 1994;85:141–149. PubMed
Taraboletti G., Perin L., Bottazzi B., Mantovani A., Giavazzi R., Salmona M. Membrane Fluidity Affects Tumor-Cell Motility, Invasion and Lung-Colonizing Potential. Int. J. Cancer. 1989;44:707–713. doi: 10.1002/ijc.2910440426. PubMed DOI
Nakazawa I., Iwaizumi M. A Role of the Cancer Cell-Membrane Fluidity in the Cancer Metastases. Tohoku J. Exp. Med. 1989;157:193–198. doi: 10.1620/tjem.157.193. PubMed DOI
Zalba S., ten Hagen T.L.M. Cell membrane modulation as adjuvant in cancer therapy. Cancer Treat. Rev. 2017;52:48–57. doi: 10.1016/j.ctrv.2016.10.008. PubMed DOI PMC
Islam S.R., Manna S.K. Lipidomic Analysis of Cancer Cell and Tumor Tissues. In: Haznadar M., editor. Cancer Metabolism. Volume 1928. Springer; New York, NY, USA: 2019. pp. 175–204. Methods in Molecular Biology. PubMed
Gasecka A., Han T.-J., Favard C., Cho B.R., Brasselet S. Quantitative Imaging of Molecular Order in Lipid Membranes Using Two-Photon Fluorescence Polarimetry. Biophys. J. 2009;97:2854–2862. doi: 10.1016/j.bpj.2009.08.052. PubMed DOI PMC
Gaus K., Zech T., Harder T. Visualizing membrane microdomains by Laurdan 2-photon microscopy (Review) Mol. Membr. Biol. 2006;23:41–48. doi: 10.1080/09687860500466857. PubMed DOI
Margineanu A., Hotta J., Van der Auweraer M., Ameloot M., Stefan A., Beljonne D., Engelborghs Y., Herrmann A., Müllen K., De Schryver F.C., et al. Visualization of Membrane Rafts Using a Perylene Monoimide Derivative and Fluorescence Lifetime Imaging. Biophys. J. 2007;93:2877–2891. doi: 10.1529/biophysj.106.100743. PubMed DOI PMC
Parmryd I., Önfelt B. Consequences of membrane topography. FEBS J. 2013;280:2775–2784. doi: 10.1111/febs.12209. PubMed DOI
Simons K., Sampaio J.L. Membrane Organization and Lipid Rafts. Cold Spring Harb. Perspect. Biol. 2011;3:a004697. doi: 10.1101/cshperspect.a004697. PubMed DOI PMC
Simons K., Vaz W.L.C. Model systems, lipid rafts, and cell membranes. Annu. Rev. Biophys. Biomol. Struct. 2004;33:269–295. doi: 10.1146/annurev.biophys.32.110601.141803. PubMed DOI
Sanchez S., Tricerri M.A., Gunther G., Gratton E. Modern Research and Educational Topics in Microscopy. Formatex Research Center; Badajoz, Spain: 2007. Laurdan generalized polarization: From cuvette to microscope; pp. 1007–1014.
Okur H.I., Tarun O.B., Roke S. Chemistry of Lipid Membranes from Models to Living Systems: A Perspective of Hydration, Surface Potential, Curvature, Confinement and Heterogeneity. J. Am. Chem. Soc. 2019;141:12168–12181. doi: 10.1021/jacs.9b02820. PubMed DOI
Filipe H.A.L., Moreno M.J., Loura L.M.S. The Secret Lives of Fluorescent Membrane Probes as Revealed by Molecular Dynamics Simulations. Molecules. 2020;25:3424. doi: 10.3390/molecules25153424. PubMed DOI PMC
Murugan N.A., Apostolov R., Rinkevicius Z., Kongsted J., Lindahl E., Agren H. Association Dynamics and Linear and Nonlinear Optical Properties of an N-Acetylaladanamide Probe in a POPC Membrane. J. Am. Chem. Soc. 2013;135:13590–13597. doi: 10.1021/ja407326n. PubMed DOI
Osella S., Murugan N.A., Jena N.K., Knippenberg S. Investigation into Biological Environments through (Non)linear Optics: A Multiscale Study of Laurdan Derivatives. J. Chem. Theory Comput. 2016;12:6169–6181. doi: 10.1021/acs.jctc.6b00906. PubMed DOI
Osella S., Knippenberg S. Triggering On/Off States of Photoswitchable Probes in Biological Environments. J. Am. Chem. Soc. 2017:4418–4428. doi: 10.1021/jacs.6b13024. PubMed DOI
Osella S., Di Meo F., Murugan N.A., Fabre G., Ameloot M., Trouillas P., Knippenberg S. Combining (Non)linear Optical and Fluorescence Analysis of DiD To Enhance Lipid Phase Recognition. J. Chem. Theory Comput. 2018;14:5350–5359. doi: 10.1021/acs.jctc.8b00553. PubMed DOI
Paloncýová M., Aniander G., Larsson E., Knippenberg S. Cyanine dyes with tail length asymmetry enhance photoselection: A multiscale study on DiD probes in a liquid disordered membrane. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020;224:117329. doi: 10.1016/j.saa.2019.117329. PubMed DOI
Osella S., Knippenberg S. Laurdan as a Molecular Rotor in Biological Environments. ACS Appl. Bio Mater. 2019;2:5769–5778. doi: 10.1021/acsabm.9b00789. PubMed DOI
Knippenberg S., Osella S. Push/Pull Effect as Driving Force for Different Optical Responses of Azobenzene in a Biological Environment. J. Phys. Chem. C. 2020;124:8310–8322. doi: 10.1021/acs.jpcc.9b11391. DOI
Allen M.J., Tozer D.J. Helium dimer dispersion forces and correlation potentials in density functional theory. J. Chem. Phys. 2002;117:11113–11120. doi: 10.1063/1.1522715. DOI
Grimme S. Accurate description of van der Waals complexes by density functional theory including empirical corrections. J. Comput. Chem. 2004;25:1463–1473. doi: 10.1002/jcc.20078. PubMed DOI
Morini F., Knippenberg S., Deleuze M.S., Hajgato B. Quantum Chemical Study of Conformational Fingerprints in the Photoelectron Spectra and (e, 2e) Electron Momentum Distributions of n-Hexane. J. Phys. Chem. A. 2010;114:4400–4417. doi: 10.1021/jp9116358. PubMed DOI
Saltiel J., Klima R., van de Burgt L.J., Wang S., Dmitrenko O. Temperature Dependence of the 1,6-Diphenyl-1,3,5-hexatriene Triplet Lifetime in Solution and Theoretical Evaluation of Triplet Conformer Interconversion. J. Phys. Chem. B. 2010;114:14480–14486. doi: 10.1021/jp101754h. PubMed DOI
Paloncyova M., Ameloot M., Knippenberg S. Orientational distribution of DPH in lipid membranes: A comparison of molecular dynamics calculations and experimental time-resolved anisotropy experiments. Phys. Chem. Chem. Phys. 2019;21:7594–7604. doi: 10.1039/C8CP07754A. PubMed DOI
Peach M.J.G., Benfield P., Helgaker T., Tozer D.J. Excitation energies in density functional theory: An evaluation and a diagnostic test. J. Chem. Phys. 2008;128:044118. doi: 10.1063/1.2831900. PubMed DOI
Knippenberg S., Fabre G., Osella S., Di Meo F., Paloncyova M., Ameloot M., Trouillas P. Atomistic Picture of Fluorescent Probes with Hydrocarbon Tails in Lipid Bilayer Membranes: An Investigation of Selective Affinities and Fluorescent Anisotropies in Different Environmental Phases. Langmuir. 2018;34:9072–9084. doi: 10.1021/acs.langmuir.8b01164. PubMed DOI
Falkovich S.G., Martinez-Seara H., Nesterenko A.M., Vattulainen I., Gurtovenko A.A. What Can We Learn about Cholesterol’s Transmembrane Distribution Based on Cholesterol-Induced Changes in Membrane Dipole Potential? J. Phys. Chem. Lett. 2016;7:4585–4590. doi: 10.1021/acs.jpclett.6b02123. PubMed DOI
Gurtovenko A.A., Vattulainen I. Calculation of the electrostatic potential of lipid bilayers from molecular dynamics simulations: Methodological issues. J. Chem. Phys. 2009;130:215107. doi: 10.1063/1.3148885. PubMed DOI
Slenders E., Seneca S., Pramanik S.K., Smisdom N., Adriaensens P., vandeVen M., Ethirajan A., Ameloot M. Dynamics of the phospholipid shell of microbubbles: a fluorescence photoselection and spectral phasor approach. Chem. Commun. 2018;54:4854–4857. doi: 10.1039/C8CC01012A. PubMed DOI
Bacalum M., Wang L., Boodts S., Yuan P., Leen V., Smisdom N., Fron E., Knippenberg S., Fabre G., Trouillas P., et al. A Blue-Light-Emitting BODIPY Probe for Lipid Membranes. Langmuir. 2016;32:3495–3505. doi: 10.1021/acs.langmuir.6b00478. PubMed DOI
Campbell K.R., Chaudhary R., Handel J.M., Patankar M.S., Campagnola P.J. Polarization-resolved second harmonic generation imaging of human ovarian cancer. J. Biomed. Opt. 2018;23:066501. doi: 10.1117/1.JBO.23.6.066501. PubMed DOI PMC
Cox G., Moreno N., Feijo J. Second-harmonic imaging of plant polysaccharides. J. Biomed. Opt. 2005;10:024013. doi: 10.1117/1.1896005. PubMed DOI
Slenders E., Bové H., Urbain M., Mugnier Y., Sonay A.Y., Pantazis P., Bonacina L., Vanden Berghe P., vandeVen M., Ameloot M. Image Correlation Spectroscopy with Second Harmonic Generating Nanoparticles in Suspension and in Cells. J. Phys. Chem. Lett. 2018;9:6112–6118. doi: 10.1021/acs.jpclett.8b02686. PubMed DOI
Diaspro A. Optical Fluorescence Microscopy: From the Spectral to the Nano Dimension. Springer Science & Business Media; Berlin/Heidelberg, Germany: 2010.
Bouquiaux C., Tonnele C., Castet F., Champagne B. Second-Order Nonlinear Optical Properties of an Amphiphilic Dye Embedded in a Lipid Bilayer. A Combined Molecular Dynamics-Quantum Chemistry Study. J. Phys. Chem. B. 2020;124:2101–2109. doi: 10.1021/acs.jpcb.9b10988. PubMed DOI
Watanabe N., Goto Y., Suga K., Nyholm T.K.M., Slotte J.P., Umakoshi H. Solvatochromic Modeling of Laurdan for Multiple Polarity Analysis of Dihydrosphingomyelin Bilayer. Biophys. J. 2019;116:874–883. doi: 10.1016/j.bpj.2019.01.030. PubMed DOI PMC
Yefimova S.L., Tkacheva T.N., Kasian N.A. Study of the Combined Effect of Ibuprofen and Cholesterol on the Microviscosity and Ordering of Model Lipid Membranes by Timeresolved Measurement of Fluorescence Anisotropy Decay. J. Appl. Spectrosc. 2017;84:284–290. doi: 10.1007/s10812-017-0465-8. DOI
Mize H.E., Blanchard G.J. Interface-mediation of lipid bilayer organization and dynamics. Phys. Chem. Chem. Phys. 2016;18:16977–16985. doi: 10.1039/C6CP02915A. PubMed DOI PMC
Setiawan I., Blanchard G.J. Structural Disruption of Phospholipid Bilayers over a Range of Length Scales by n-Butanol. J. Phys. Chem. B. 2014;118:3085–3093. doi: 10.1021/jp500454z. PubMed DOI
Swain J., Borkar S.R., Aidhen I.S., Mishra A.K. A molecular level understanding of interaction between FTY720 (Fingolimod hydrochloride) and DMPC multilamellar vesicles. RSC Adv. 2014;4:17347–17353. doi: 10.1039/C4RA02404D. DOI
Vequi-Suplicy C.C., Lamy M.T., Marquezin C.A. The New Fluorescent Membrane Probe Ahba: A Comparative Study with the Largely Used Laurdan. J. Fluoresc. 2013;23:479–486. doi: 10.1007/s10895-013-1172-3. PubMed DOI
Montaldi L.R., Berardi M., Souza E.S., Juliano L., Ito A.S. End-to-end Distance Distribution in Fluorescent Derivatives of Bradykinin in Interaction with Lipid Vesicles. J. Fluoresc. 2012;22:1151–1158. doi: 10.1007/s10895-012-1054-0. PubMed DOI
Dunning T. Gaussian-Basis Sets for Use in Correlated Molecular Calculations .1. the Atoms Boron Through Neon and Hydrogen. J. Chem. Phys. 1989;90:1007–1023. doi: 10.1063/1.456153. DOI
Shao Y., Gan Z., Epifanovsky E., Gilbert A.T.B., Wormit M., Kussmann J., Lange A.W., Behn A., Deng J., Feng X., et al. Advances in molecular quantum chemistry contained in the Q-Chem 4 program package. Mol. Phys. 2015;113:184–215. doi: 10.1080/00268976.2014.952696. DOI
Osella S., Smisdom N., Ameloot M., Knippenberg S. Conformational Changes as Driving Force for Phase Recognition: The Case of Laurdan. Langmuir. 2019;35:11471–11481. doi: 10.1021/acs.langmuir.9b01840. PubMed DOI
Yanai T., Tew D.P., Handy N.C. A new hybrid exchange-correlation functional using the Coulomb-attenuating method (CAM-B3LYP) Chem. Phys. Lett. 2004;393:51–57. doi: 10.1016/j.cplett.2004.06.011. DOI
Chiu S.-W., Pandit S.A., Scott H.L., Jakobsson E. An Improved United Atom Force Field for Simulation of Mixed Lipid Bilayers. J. Phys. Chem. B. 2009;113:2748–2763. doi: 10.1021/jp807056c. PubMed DOI
Pandit S.A., Chiu S.-W., Jakobsson E., Grama A., Scott H.L. Cholesterol packing around lipids with saturated and unsaturated chains: a simulation study. Langmuir. 2008;24:6858–6865. doi: 10.1021/la8004135. PubMed DOI PMC
Pandit S.A., Chiu S.-W., Jakobsson E., Grama A., Scott H.L. Cholesterol surrogates: a comparison of cholesterol and 16:0 ceramide in POPC bilayers. Biophys. J. 2007;92:920–927. doi: 10.1529/biophysj.106.095034. PubMed DOI PMC
O’Boyle N.M., Banck M., James C.A., Morley C., Vandermeersch T., Hutchison G.R. Open Babel: An open chemical toolbox. J. Cheminform. 2011;3:33. doi: 10.1186/1758-2946-3-33. PubMed DOI PMC
The Open Babel Package, version 2.3.1. [(accessed on 17 July 2020)]; Available online: http://openbabel.org.
Aidas K., Angeli C., Bak K.L., Bakken V., Bast R., Boman L., Christiansen O., Cimiraglia R., Coriani S., Dahle P., et al. The Dalton quantum chemistry program system. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2014;4:269–284. doi: 10.1002/wcms.1172. PubMed DOI PMC
Dalton, a Molecular Electronic Structure Program, Release Dalton2016 (2015) [(accessed on 17 July 2020)]; Available online: http://daltonprogram.org.
Herzberg G. Molecular Spectra and Molecular Structure I. Spectra of Diatomic Molecules. Krieger; Malabar, Florida: 1989.
Sundholm D., Rizzo A., Jorgensen P. Multiconfiguration Self-Consistent-Field Quadratic Response Calculations. J. Chem. Phys. 1994;101:4931–4935. doi: 10.1063/1.467415. DOI
Hu Z., Autschbach J., Jensen L. Simulation of resonance hyper-Rayleigh scattering of molecules and metal clusters using a time-dependent density functional theory approach. J. Chem. Phys. 2014;141:124305. doi: 10.1063/1.4895971. PubMed DOI
Glauber R.J., Lewenstein M. Quantum optics of dielectric media. Phys. Rev. A. 1991;43:467–491. doi: 10.1103/PhysRevA.43.467. PubMed DOI
Dols-Perez A., Gramse G., Calo A., Gomila G., Fumagalli L. Nanoscale electric polarizability of ultrathin biolayers on insulating substrates by electrostatic force microscopy. Nanoscale. 2015;7:18327–18336. doi: 10.1039/C5NR04983K. PubMed DOI
Gramse G., Dols-Perez A., Edwards M.A., Fumagalli L., Gomila G. Nanoscale Measurement of the Dielectric Constant of Supported Lipid Bilayers in Aqueous Solutions with Electrostatic Force Microscopy. Biophys. J. 2013;104:1257–1262. doi: 10.1016/j.bpj.2013.02.011. PubMed DOI PMC
Devanathan S., Salamon Z., Lindblom G., Grobner G., Tollin G. Effects of sphingomyelin, cholesterol and zinc ions on the binding, insertion and aggregation of the amyloid A beta(1-40) peptide in solid-supported lipid bilayers. FEBS J. 2006;273:1389–1402. doi: 10.1111/j.1742-4658.2006.05162.x. PubMed DOI
Kooyman R., Vos M., Levine Y. Determination of Orientational Order Parameters in Oriented Lipid-Membrane Systems by Angle-Resolved Fluorescence Depolarization Experiments. Chem. Phys. 1983;81:461–472. doi: 10.1016/0301-0104(83)85337-3. PubMed DOI
Zannoni C., Arcioni A., Cavatorta P. Fluorescence Depolarization in Liquid-Crystals and Membrane Bilayers. Chem. Phys. Lipids. 1983;32:179–250. doi: 10.1016/0009-3084(83)90037-3. DOI
Ameloot M., vandeVen M., Acuña A.U., Valeur B. Fluorescence anisotropy measurements in solution: Methods and reference materials (IUPAC Technical Report) Pure Appl. Chem. 2013;85:589–608. doi: 10.1351/PAC-REP-11-11-12. DOI
Cusati T., Granucci G., Persico M. Photodynamics and Time-Resolved Fluorescence of Azobenzene in Solution: A Mixed Quantum-Classical Simulation. J. Am. Chem. Soc. 2011;133:5109–5123. doi: 10.1021/ja1113529. PubMed DOI
Huang Y.R., Knippenberg S., Hajgato B., Francois J.-P., Deng J.K., Deleuze M.S. Imaging momentum orbital densities of conformationally versatile molecules: A benchmark theoretical study of the molecular and electronic structures of dimethoxymethane. J. Phys. Chem. A. 2007;111:5879–5897. doi: 10.1021/jp0719964. PubMed DOI
Martin J.M.L. Basis set convergence and performance of density functional theory including exact exchange contributions for geometries and harmonic frequencies. Mol. Phys. 1995;86:1437–1450. doi: 10.1080/00268979500102841. DOI
Martin J., Elyazal J., Francois J. Structure and Vibrational-Spectra of Carbon Clusters C-N (n=2-10, 12, 14, 16, 18) Using Density-Functional Theory Including Exact Exchange Contributions. Chem. Phys. Lett. 1995;242:570–579. doi: 10.1016/0009-2614(95)00801-A. DOI