The Dalton quantum chemistry program system
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články
PubMed
25309629
PubMed Central
PMC4171759
DOI
10.1002/wcms.1172
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Dalton is a powerful general-purpose program system for the study of molecular electronic structure at the Hartree-Fock, Kohn-Sham, multiconfigurational self-consistent-field, Møller-Plesset, configuration-interaction, and coupled-cluster levels of theory. Apart from the total energy, a wide variety of molecular properties may be calculated using these electronic-structure models. Molecular gradients and Hessians are available for geometry optimizations, molecular dynamics, and vibrational studies, whereas magnetic resonance and optical activity can be studied in a gauge-origin-invariant manner. Frequency-dependent molecular properties can be calculated using linear, quadratic, and cubic response theory. A large number of singlet and triplet perturbation operators are available for the study of one-, two-, and three-photon processes. Environmental effects may be included using various dielectric-medium and quantum-mechanics/molecular-mechanics models. Large molecules may be studied using linear-scaling and massively parallel algorithms. Dalton is distributed at no cost from http://www.daltonprogram.org for a number of UNIX platforms.
Aarhus University School of Engineering Aarhus Denmark
Australian National University Supercomputer Facility Canberra Australia
CoE for Next Generation Computing Clemson University Clemson South Carolina
Computer Services Networks and Systems University of Modena and Reggio Emilia Modena Italy
CSC Scandihealth Aarhus Denmark
CTCC Department of Chemistry UiT The Arctic University of Norway Tromsø Norway
CTCC Department of Chemistry University of Oslo Oslo Norway
Danish Technological Institute Nano and Microtechnology Production Taastrup Denmark
Department of Chemical and Pharmaceutical Sciences University of Trieste Trieste Italy
Department of Chemistry Aarhus University Aarhus Denmark
Department of Chemistry Norwegian University of Science and Technology Trondheim Norway
Department of Chemistry Princeton University Princeton New Jersey
Department of Chemistry University of Copenhagen Copenhagen Denmark
Department of Chemistry University of Ferrara Ferrara Italy
Department of Geoscience Aarhus University Aarhus Denmark
Department of Philosophy The University of Auckland Auckland New Zealand
Department of Physics Chemistry and Biology Linköping University Linköping Sweden
Department of Physics Chemistry and Pharmacy University of Southern Denmark Odense Denmark
Department of Physics University of Northeastern and IMIT CONICET Corrientes Argentina
Department of Theoretical Chemistry Ruhr University Bochum Bochum Germany
Faculty of Mathematics and Natural Sciences University of Oslo Oslo Norway
High Performance Computing Group UiT The Arctic University of Norway Tromsø Norway
Institute for Nuclear Waste Disposal Karlsruhe Institute of Technology Karlsruhe Germany
Institute of Molecular Science University of Valencia Valencia Spain
Institute of Physical Chemistry Karlsruhe Institute of Technology Karlsruhe Germany
Institute of Physics Kazimierz Wielki University Bydgoszcz Poland
Kjeller Software Community Oslo Norway
Laboratory of Physical Chemistry ETH Zürich Zürich Switzerland
Norwegian Computing Center Oslo Norway
Norwegian Defence Research Establishment Kjeller Norway
Norwegian Meteorological Institute Oslo Norway
Paul Sabatier University Toulouse France
Physics Department FCEyN UBA and IFIBA CONICET Universidad de Buenos Aires Buenos Aires Argentina
PSS9 Development Cracow Poland
School of Chemistry University of Bristol Bristol UK
School of Chemistry University of Nottingham Nottingham UK
University Centre of Information Technology University of Oslo Oslo Norway
VLSCI and School of Chemistry University of Melbourne Parkville Australia
Zobrazit více v PubMed
Jensen HJAa, Ågren H. Documentation of SIRIUS: A General Purpose Direct Second Order MCSCF Program. Technical Notes TN783, TN784, TN785. Department of Quantum Chemistry, University of Uppsala, Uppsala, Sweden; 1986.
Teale AM, De Proft F, Tozer DJ. Orbital energies and negative electron affinities from density functional theory: insight from the integer discontinuity. J Chem Phys. 2008;129:044110. PubMed
Rinkevicius Z, Tunell I, Salek P, Vahtras O, Ågren H. Restricted density functional theory of linear time-dependent properties in open-shell molecules. J Chem Phys. 2003;119:34–46.
Oprea O, Telyatnyk L, Rinkevicius Z, Vahtras O, Ågren H. Time-dependent density functional theory with the generalized restricted-unrestricted approach. J Chem Phys. 2006;124:174103. PubMed
Jensen HJAa, Ågren H. MCSCF optimization using the direct, restricted step, second order norm-extended optimization method. Chem Phys Lett. 1984;110:140–144.
Jensen HJAa, Ågren H. A direct, restricted-step, 2nd-order MC SCF program for large-scale ab initio calculations. Chem Phys. 1986;104:229–250.
Jensen HJAa, Jørgensen P, Ågren H. Efficient optimization of large-scale MCSCF wave-functions with a restricted step algorithm. J Chem Phys. 1987;87:451–466.
Jensen HJAa, Jørgensen P, Ågren H, Olsen J. 2nd-order Møller–Plesset perturbation-theory as a configuration and orbital generator in multiconfiguration self-consistent-field calculations. J Chem Phys. 1988;88:5354–5354. 3834–3839 and 89.
Olsen J. The initial implementation and applications of a general active space coupled cluster method. J Chem Phys. 2000;113:7140–7148.
Olsen J, Roos BO, Jørgensen P, Jensen HJAa. Determinant based algorithms for complete and restricted configuration interaction spaces. J Chem Phys. 1988;89:2185–2192.
Havenith RWA, Taylor PR, Angeli C, Cimiraglia R, Ruud K. Calibration of the n-electron valence state perturbation theory approach. J Chem Phys. 2004;120:4619–4625. PubMed
Dyall KG. The choice of a zeroth-order Hamiltonian for second-order perturbation theory with a complete active space self-consistent-field reference function. J Chem Phys. 1995;102:4909–4918.
Angeli C, Cimiraglia R, Evangelisti S, Leininger T, Malrieu JP. Introduction of n-electron valence states for multireference perturbation theory. J Chem Phys. 2001;114:10252–10264.
Olsen J. LUCITA, A General Active Configuration Interaction Code. Aarhus, Denmark: Aarhus University; 2000.
Knecht S, Jensen HJAa, Fleig T. Large-scale parallel configuration interaction. I. Nonrelativistic and scalar-relativistic general active space implementation with application to (Rb-Ba)+ J Chem Phys. 2008;128:014108. PubMed
Koch H, Christiansen O, Kobayashi R, Jørgensen P, Helgaker T. A direct atomic orbital driven implementation of the coupled cluster singles and doubles (CCSD) model. Chem Phys Lett. 1994;228:233–238.
Koch H, Sánchez de Merás A, Helgaker T, Christiansen O. The integral-direct coupled cluster singles and doubles model. J Chem Phys. 1996;104:4157–4165.
Rekkedal J, Coriani S, Iozzi MF, Teale AM, Helgaker T, Pedersen TB. Communcation: analytic gradients in the random-phase approximation. J Chem Phys. 2013;139:081101. PubMed
Grüneis A, Marsman M, Harl J, Schimka L, Kresse G. Making the random phase approximation to electronic correlation accurate. J Chem Phys. 2009;131:154115. PubMed
Pedersen TB, Koch H. Coupled cluster response functions revisited. J Chem Phys. 1997;106:8059–8072.
Christiansen O, Hättig C, Jørgensen P. Response functions from Fourier component perturbation theory applied to a time-averaged quasienergy. Int J Quantum Chem. 1998;68:1–52.
Christiansen O, Koch H, Jørgensen P. The second order approximate coupled cluster singles and doubles model CC2. Chem Phys Lett. 1995;243:409–418.
Christiansen O, Koch H, Jørgensen P. Response functions in the CC3 iterative triple excitation model. J Chem Phys. 1995;103:7429–7441.
Christiansen O, Koch H, Jørgensen P. Perturbative triple excitation corrections to coupled cluster singles and doubles excitation energies. J Chem Phys. 1996;105:1451–1459.
Klopper W, Samson CCM. Explicitly correlated second-order Møller–Plesset methods with auxiliary basis sets. J Chem Phys. 2002;116:6397–6410.
Samson CCM, Klopper W, Helgaker T. Computation of two-electron Gaussian integrals for wave functions including the correlation factor r12 exp(−γ r212. Comp Phys Commun. 2002;149:1–10.
Tew DP, Klopper W, Neiss C, Hättig C. Quintuple-zeta quality coupled-cluster correlation energies with triple-zeta basis sets. Phys Chem Chem Phys. 2007;9:1921–1930. PubMed
Cacheiro JL, Pedersen TB, Fernández B, Sánchez de Merás A, Koch H. The CCSDT) model with Cholesky decomposition of orbital energy denominators. Int J Quantum Chem. 2011;111:349–355.
Pedersen TB, Sánchez de Merás AMJ, Koch H. Polarizability and optical rotation calculated from the approximate coupled cluster singles and doubles CC2 linear response theory using Cholesky decompositions. J Chem Phys. 2004;120:8887–8897. PubMed
Sánchez de Merás AMJ, Koch H, Cuesta IG, Boman L. Cholesky decomposition-based definition of atomic subsystems in electronic structure calculations. J Chem Phys. 2010;132:204105. PubMed
Norman P, Schimmelpfennig B, Ruud K, Jensen HJAa, Ågren H. Relativistic effects on linear and nonlinear polarizabilities studied by effective-core potential, Douglas–Kroll, and Dirac–Hartree–Fock response theory. J Chem Phys. 2002;116:6914–6923.
Coriani S, Helgaker T, Jørgensen P, Klopper W. A closed-shell coupled-cluster treatment of the Breit–Pauli first-order relativistic energy correction. J Chem Phys. 2004;121:6591–6598. PubMed
Vahtras O, Ågren H, Jørgensen P, Jensen HJAa, Helgaker T, Olsen J. Spin–orbit coupling constants in a multiconfiguration linear response approach. J Chem Phys. 1992;96:2118–2126.
Vahtras O, Ågren H, Jørgensen P, Jensen HJAa, Helgaker T, Olsen J. Multiconfigurational quadratic response functions for singlet and triplet perturbations: the phosphorescence lifetime of formaldehyde. J Chem Phys. 1992;97:9178–9187.
Ruud K, Schimmelpfennig B, Ågren H. Internal and external heavy-atom effects on phosphorescence radiative lifetimes calculated using a mean-field spin-orbit Hamiltonian. Chem Phys Lett. 1999;310:215–221.
Hennum AC, Helgaker T, Klopper W. Parity-violating interaction in H2O2 calculated from density-functional theory. Chem Phys Lett. 2002;354:274–282.
Helgaker TU, Almlöf J, Jensen HJAa, Jørgensen P. Molecular Hessians for large-scale MCSCF wave functions. J Chem Phys. 1986;84:6266–6279.
Reine S, Krapp A, Iozzi MF, Bakken V, Helgaker T, Pawłowski F, Sałek P. An efficient density-functional-theory force evaluation for large molecular systems. J Chem Phys. 2010;133:044102. PubMed
Hald K, Halkier A, Jørgensen P, Coriani S, Hättig C, Helgaker T. A Lagrangian, integral-density direct formulation and implementation of the analytic CCSD and CCSD(T) gradients. J Chem Phys. 2003;118:2985–2998.
Ruden TA, Taylor PR, Helgaker T. Automated calculation of fundamental frequencies: application to AlH3 using the coupled-cluster singles-and-doubles with perturbative triples method. J Chem Phys. 2003;119:1951–1960.
Bakken V, Helgaker T. The efficient optimization of molecular geometries using redundant internal coordinates. J Chem Phys. 2002;117:9160–9174.
Jensen HJAa, Jørgensen P, Helgaker T. Systematic determination of MCSCF equilibrium and transition structures and reaction paths. J Chem Phys. 1986;85:3917–3929.
Helgaker T. Transition-state optimizations by trust-region image minimization. Chem Phys Lett. 1991;182:503–510.
Cesar A, Ågren H, Helgaker T, Jørgensen P, Jensen HJAa. Excited state structures and vibronic spectra of H2CO+, HDCO+ and D2CO+ using molecular gradient and Hessian techniques. J Chem Phys. 1991;95:5906–5917.
Coriani S, Kjærgaard T, Jørgensen P, Ruud K, Huh J, Berger R. An atomic-orbital-based Lagrangian approach for calculating geometric gradients of linear response properties. J Chem Theory Comp. 2010;6:1020–1047.
Norman P, Ågren H. Geometry optimization of core electron excited molecules. J Mol Struct: THEOCHEM. 1997;401:107–115.
Helgaker T, Uggerud E, Jensen HJAa. Integration of the classical equations of motion on ab initio molecular potential energy surfaces using gradients and Hessians: application to translational energy release upon fragmentation. Chem Phys Lett. 1990;173:145–150.
Rybkin VV, Simakov AO, Bakken V, Reine SS, Kjærgaard T, Helgaker T, Uggerud E. Insights into the dynamics of evaporation and proton migration in protonated water clusters from large-scale Born–Oppenheimer direct dynamics. J Comput Chem. 2013;34:533–544. PubMed
Helgaker TU, Jensen HJAa, Jørgensen P. Analytical calculation of MCSCF dipole-moment derivatives. J Chem Phys. 1986;84:6280–6284.
Åstrand P-O, Ruud K, Taylor PR. Calculation of the vibrational wave function of polyatomic molecules. J Chem Phys. 2000;112:2655–2667.
Ruud K, Åstrand P-O, Taylor PR. An efficient approach for calculating vibrational wave functions and zero-point vibrational corrections to molecular properties of polyatomic molecules. J Chem Phys. 2000;112:2668–2683.
Helgaker T, Wilson PJ, Amos RD, Handy NC. Nuclear shielding constants by density functional theory with gauge including atomic orbitals. J Chem Phys. 2000;113:2983–2989.
Helgaker T, Watson M, Handy NC. Analytical calculation of nuclear magnetic resonance indirect spin–spin coupling constants at the generalized gradient approximation and hybrid levels of density-functional theory. J Chem Phys. 2000;113:9402–9409.
Watson MA, Sałek P, Macak P, Jaszuński M, Helgaker T. The calculation of indirect nuclear spin-spin coupling constants in large molecules. Chem Eur J. 2004;10:4627–4639. PubMed
Vahtras O, Ågren H, Jørgensen P, Jensen HJAa, Padkjær SB, Helgaker T. Indirect nuclear spin–spin coupling constants from multiconfiguration linear response theory. J Chem Phys. 1992;96:6120–6125.
Ruud K, Helgaker T, Kobayashi R, Jørgensen P, Bak KL, Jensen HJAa. Multiconfigurational self-consistent field calculations of nuclear shieldings using London atomic orbitals. J Chem Phys. 1994;100:8178–8185.
Enevoldsen T, Oddershede J, Sauer SPA. Correlated calculations of indirect nuclear spin–spin coupling constants using second order polarization propagator approximations: SOPPA and SOPPACCSD. Theor Chem Acc. 1998;100:275–284.
Fernández B, Jørgensen P, Byberg J, Olsen J, Helgaker T, Jensen HJAa. Spin polarization in restricted electronic structure theory: multiconfiguration self-consistent-field calculations of hyperfine coupling constants. J Chem Phys. 1992;97:3412–3419.
Rinkevicius Z, Telyatnyk L, Vahtras O, Ågren H. Density functional theory for hyperfine coupling constants with the restricted-unrestricted approach. J Chem Phys. 2004;121:7614–7623. PubMed
Vahtras O, Minaev B, Ågren H. Ab initio calculations of electronic g-factors by means of multiconfiguration response theory. Chem Phys Lett. 1998;281:186–192.
Vahtras O, Loboda O, Minaev B, Ågren H, Ruud K. Ab initio calculations of zero-field splitting parameters. Chem Phys. 2002;279:133–142.
Gauss J, Ruud K, Helgaker T. Perturbation-dependent atomic orbitals for the calculation of spin-rotation constants and rotational g tensors. J Chem Phys. 1996;105:2804–2812.
Ruud K, Helgaker T, Bak KL, Jørgensen P, Jensen HJAa. Hartree–Fock limit magnetizabilities from London orbitals. J Chem Phys. 1993;99:3847–3859.
Bak KL, Sauer SPA, Oddershede J, Ogilvie JF. The vibrational g factor of dihydrogen from theoretical calculation and analysis of vibration-rotational spectra. Phys Chem Chem Phys. 2005;7:1747–1758. PubMed
Bak KL, Jørgensen P, Helgaker T, Ruud K, Jensen HJAa. Gauge-origin independent multiconfigurational self-consistent-field theory for vibrational circular dichroism. J Chem Phys. 1993;98:8873–8887.
Bak KL, Hansen AaE, Ruud R, Helgaker T, Olsen J, Jørgensen P. Ab-initio calculation of electronic circular dichroism for trans-cyclooctene using London atomic orbitals. Theor Chim Acta. 1995;90:441–458.
Ruud K, Helgaker T. Optical rotation studied by density-functional and coupled-cluster methods. Chem Phys Lett. 2002;352:533–539.
Helgaker T, Ruud K, Bak KL, Jørgensen P, Olsen J. Vibrational Raman optical activity calculations using London atomic orbitals. Faraday Discuss. 1994;99:165–180.
Ligabue A, Sauer SPA, Lazzeretti P. Correlated and gauge invariant calculations of nuclear magnetic shielding constants using the continuous transformation of the origin of the current density approach. J Chem Phys. 2003;118:6830–6845. PubMed
Sałek P, Vahtras O, Helgaker T, Ågren H. Density-functional theory of linear and nonlinear time-dependent molecular properties. J Chem Phys. 2002;117:9630–9645.
Packer MJ, Dalskov EK, Enevoldsen T, Jensen HJAa, Oddershede J. A new implementation of the second-order polarization propagator approximation (SOPPA): the excitation spectra of benzene and naphthalene. J Chem Phys. 1996;105:5886–5900.
Helgaker T, Coriani S, Jørgensen P, Kristensen K, Olsen J, Ruud K. Recent advances in wave function-based methods of molecular-property calculations. Chem Rev. 2012;112:543–631. PubMed
Hettema H, Jensen HJAa, Jørgensen P, Olsen J. Quadratic response functions for a multiconfigurational self-consistent field wave-function. J Chem Phys. 1992;97:1174–1190.
Luo Y, Vahtras O, Ågren H, Jørgensen P. Multiconfigurational quadratic response theory calculations of two-photon electronic transition probabilities of H2O. Chem Phys Lett. 1993;204:587–594.
Sałek P, Vahtras O, Guo J, Luo Y, Helgaker T, Ågren H. Calculations of two-photon absorption cross sections by means of density-functional theory. Chem Phys Lett. 2003;374:446–452.
Jansík B, Rizzo A, Ågren H. Response theory calculations of two-photon circular dichroism. Chem Phys Lett. 2005;414:461–467.
Tunell I, Rinkevicius Z, Vahtras O, Sałek P, Helgaker T, Ågren H. Density functional theory of nonlinear triplet response properties with applications to phosphorescence. J Chem Phys. 2003;119:11024–11034.
Norman P, Jonsson D, Vahtras O, Ågren H. Non-linear electric and magnetic properties obtained from cubic response functions in the random phase approximation. Chem Phys. 1996;203:23–42.
Jonsson D, Norman P, Ågren H. Cubic response functions in the multiconfiguration self-consistent field approximation. J Chem Phys. 1996;105:6401–6419.
Jansík B, Sałek P, Jonsson D, Vahtras O, Ågren H. Cubic response functions in time-dependent density functional theory. J Chem Phys. 2005;122:054107. PubMed
Cronstrand P, Jansík B, Jonsson D, Luo Y, Ågren H. Density functional theory calculations of three-photon absorption. J Chem Phys. 2004;121:9239–9246. PubMed
Jonsson D, Norman P, Luo Y, Ågren H. Response theory for static and dynamic polarizabilities of excited states. J Chem Phys. 1996;105:581–587.
Rizzo A, Ågren H. Ab initio study of circular intensity difference in electric-field second harmonic generation of chiral natural amino acids. Phys Chem Chem Phys. 2013;15:1198–1207. PubMed
Halkier A, Koch H, Christiansen O, Jørgensen P, Helgaker T. First-order one-electron properties in the integral-direct coupled cluster singles and doubles model. J Chem Phys. 1997;107:849–866.
Christiansen O, Koch H, Halkier A, Jørgensen P, Helgaker T, Sánchez de Merás A. Large-scale calculations of excitation energies in coupled cluster theory: the singlet excited states of benzene. J Chem Phys. 1996;105:6921–6939.
Christiansen O, Halkier A, Koch H, Jørgensen P, Helgaker T. Integral-direct coupled cluster calculations of frequency-dependent polarizabilities, transition probabilities and excited-state properties. J Chem Phys. 1998;108:2801–2816.
Hättig C, Christiansen O, Koch H, Jørgensen P. Frequency-dependent first hyperpolarizabilities using coupled cluster quadratic response theory. Chem Phys Lett. 1997;269:428–434.
Hättig C, Christiansen O, Jørgensen P. Frequency-dependent second hyperpolarizabilities using coupled cluster cubic response theory. Chem Phys Lett. 1998;282:139–146.
Hättig C, Christiansen O, Jørgensen P. Coupled cluster response calculations of two-photon transition probability rate constants for helium, neon and argon. J Chem Phys. 1998;108:8355–8359.
Hald K, Jørgensen P, Christiansen O, Koch H. Implementation of singlet and triplet excitation energies in coupled cluster theory with approximate triples corrections. J Chem Phys. 2002;116:5963–5970.
Hättig C, Christiansen O, Coriani S, Jørgensen P. Static and frequency-dependent polarizabilities of excited singlet states using coupled cluster response theory. J Chem Phys. 1994;109:9237–9243.
Ågren H, Carravetta V, Vahtras O, Pettersson LGM. Direct, atomic orbital, static exchange calculations of photoabsorption spectra of large molecules and clusters. Chem Phys Lett. 1994;222:75–81.
Ågren H, Jensen HJAa. An efficient method for calculation of generalized overlap amplitudes for core photoelectron shake-up spectra. Chem Phys Lett. 1987;137:431–436.
Luo Y, Vahtras O, Gel'mukhanov F, Ågren H. Theory of natural circular dichroism in X-ray Raman scattering from molecules. Phys Rev A. 1997;55:2716–2722.
Vahtras O, Ågren H, Carravetta V. Natural circular dichroism in non-resonant X-ray emission. J Phys B. 1997;30:1493–1501.
Norman P, Bishop DM, Jensen HJAa, Oddershede J. Nonlinear response theory with relaxation: the first-order hyperpolarizability. J Chem Phys. 2005;123:194103. PubMed
Norman P, Bishop DM, Jensen HJAa, Oddershede J. Near-resonant absorption in the time-dependent self-consistent field and multiconfigurational self-consistent field approximations. J Chem Phys. 2001;115:10323–10334.
Coriani S, Christiansen O, Fransson T, Norman P. Coupled-cluster response theory for near-edge X-ray-absorption fine structure of atoms and molecules. Phys Rev A. 2012;85:022507.
Coriani S, Fransson T, Christiansen O, Norman P. Asymmetric-Lanczos-chain-driven implementation of electronic resonance convergent coupled cluster linear response theory. J Chem Theory Comput. 2012;8:1616–1628. PubMed
Kauczor J, Jørgensen P, Norman P. On the efficiency of algorithms for solving Hartree–Fock and Kohn–Sham response equations. J Chem Theory Comput. 2011;7:1610–1630. PubMed
Jiemchooroj A, Norman P. Electronic circular dichroism spectra from the complex polarization propagator. J Chem Phys. 2007;126:134102. PubMed
Mohammed A, Ågren H, Norman P. Resonance enhanced Raman scattering from the complex electric-dipole polarizability: a theoretical study on N2. Chem Phys Lett. 2009;468:119–123. PubMed
Solheim H, Ruud K, Coriani S, Norman P. Complex polarization propagator calculations of magnetic circular dichroism spectra. J Chem Phys. 2008;128:094103. PubMed
Ekström U, Norman P, Carravetta V, Ågren H. Polarization propagator for X-ray spectra. Phys Rev Lett. 2006;97:143001. PubMed
Ahrén M, Selegård L, Söderlind F, Linares M, Kauczor J, Norman P, Käll P-O, Uvdal K. A simple polyol-free synthesis route to Gd2O3 nanoparticles for MRI applications: an experimental and theoretical study. J Nanopart Res. 2012;14:1006.
Mikkelsen KV, Ågren H, Jensen HJAa, Helgaker T. A multiconfigurational self-consistent reaction-field method. J Chem Phys. 1988;89:3086–3095.
Mikkelsen KV, Cesar A, Ågren H, Jensen HJAa. Multiconfigurational self-consistent reaction-field theory for nonequilibrium solvation. J Chem Phys. 1995;103:9010–9023.
Christiansen O, Mikkelsen KV. A coupled-cluster solvent reaction field method. J Chem Phys. 1999;110:1365–1375.
Mikkelsen KV, Jørgensen P, Jensen HJAa. A multiconfiguration self consistent reaction field response method. J Chem Phys. 1994;100:6597–6607.
Mikkelsen KV, Sylvester-Hvid KO. A molecular response method for solvated molecules in nonequlibrium solvation. J Phys Chem. 1996;100:9116–9126.
Fernández B, Christensen O, Bludsky O, Jørgensen P, Mikkelsen KV. Theory of hyperfine coupling constants of solvated molecules: applications involving methyl and ClO2 radicals in different solvents. J Chem Phys. 1996;104:629–635.
Mikkelsen KV, Jørgensen P, Ruud K, Helgaker T. A multipole reaction-field model for gauge-origin independent magnetic properties of solvated molecules. J Chem Phys. 1997;106:1170–1180.
Sylvester-Hvid KO, Mikkelsen KV, Jonsson D, Norman P, Ågren H. Nonlinear optical response of molecules in a nonequilibrium solvation model. J Chem Phys. 1998;109:5576–5584.
Christiansen O, Mikkelsen KV. Coupled cluster response theory for solvated molecules in equilibrium and nonequilibrium solvation. J Chem Phys. 1999;110:8348–8360.
Cammi R, Frediani L, Mennucci B, Tomasi J, Ruud K, Mikkelsen KV. A second-order, quadratically convergent multiconfigurational self-consistent field polarizable continuum model for equilibrium and nonequilibrium solvation. J Chem Phys. 2002;117:13–26.
Cammi R, Frediani L, Mennucci B, Ruud K. Multiconfigurational self-consistent field linear response for the polarizable continuum model: theory and application to ground and excited-state polarizabilities of para-nitroaniline in solution. J Chem Phys. 2003;119:5818–5827.
Frediani L, Ågren H, Ferrighi L, Ruud K. Second-harmonic generation of solvated molecules using multiconfigurational self-consistent-field quadratic response theory and the polarizable continuum model. J Chem Phys. 2005;123:144117. PubMed
Ferrighi L, Frediani L, Ruud K. Degenerate four-wave mixing in solution by cubic response theory and the polarizable continuum model. J Phys Chem B. 2007;111:8965–8973. PubMed
Kongsted J, Osted A, Mikkelsen KV, Christiansen O. The QMMM approach for wavefunctions, energies and response functions within self-consistent field and coupled cluster theories. Mol Phys. 2002;100:1813–1828.
Osted A, Kongsted J, Mikkelsen KV, Christiansen O. A CC2 dielectric continuum model and a CC2 molecular mechanics model. Mol Phys. 2003;101:2055–2071.
Kongsted J, Osted A, Mikkelsen KV, Christiansen O. Linear response functions for coupled cluster/molecular mechanics including polarization interactions. J Chem Phys. 2003;118:1620–1633.
Olsen JM, Aidas K, Kongsted J. Excited states in solution through polarizable embedding. J Chem Theory Comput. 2010;6:3721–3734.
Olsen JMH, Kongsted J. Molecular properties through polarizable embedding. Adv Quantum Chem. 2011;61:107–143.
Eriksen JJ, Sauer SPA, Mikkelsen KV, Jensen HJAa, Kongsted J. On the importance of excited state dynamic response electron correlation in polarizable embedding methods. J Comput Chem. 2012;33:2012–2022. PubMed
Sneskov K, Schwabe T, Kongsted J, Christiansen O. The polarizable embedding coupled cluster method. J Chem Phys. 2012;134:104108–104123. PubMed
Sałek P, Høst S, Thøgersen L, Jørgensen P, Manninen P, Olsen J, Jansík B, Reine S, Pawłowski F, Tellgren E, Helgaker T, Coriani S. Linear-scaling implementation of molecular electronic self-consistent field theory. J Chem Phys. 2007;126:114110. PubMed
Høst S, Olsen J, Jansík B, Thøgersen L, Jørgensen P, Helgaker T. The augmented Roothaan–Hall method for optimizing Hartree–Fock and Kohn–Sham density matrices. J Chem Phys. 2008;129:124106. PubMed
Jansík B, Høst S, Johansson MP, Olsen J, Jørgensen P, Helgaker T. A stepwise atomic, valence-molecular, and full-molecular optimisation of the Hartree–Fock/Kohn–Sham energy. Phys Chem Chem Phys. 2009;11:5805–5813. PubMed
White CA, Johnson BG, Gill PMW, Head-Gordon M. The continuous fast multipole method. Chem Phys Lett. 1994;230:8–16.
Watson MA, Sałek P, Macak P, Helgaker T. Linear-scaling formation of Kohn–Sham Hamiltonian: application to the calculation of excitation energies and polarizabilities of large molecular systems. J Chem Phys. 2004;121:2915–2931. PubMed
Ochsenfeld C, White CA, Head-Gordon M. Linear and sublinear scaling formation of Hartree–Fock-type exchange matrices. J Chem Phys. 1998;109:1663–1669.
Reine S, Tellgren E, Krapp A, Kjærgaard T, Helgaker T, Jansík B, Høst S, Sałek P. Variational and robust density fitting of four-center two-electron integrals in local metrics. J Chem Phys. 2008;129:104101. PubMed
Coriani S, Høst S, Jansík B, Thøgersen L, Olsen J, Jørgensen P, Reine S, Pawłowski F, Helgaker T, Sałek P. Linear-scaling implementation of molecular response theory in self-consistent field electronic-structure theory. J Chem Phys. 2007;126:154108. PubMed
Thorvaldsen AJ, Ruud K, Kristensen K, Jørgensen P, Coriani S. A density matrix-based quasi-energy formulation of the Kohn–Sham density functional response theory using perturbation- and time-dependent basis sets. J Chem Phys. 2008;129:214108. PubMed
Kjærgaard T, Jørgensen P, Thorvaldsen AJ, Salek P, Coriani S. Gauge-origin independent formulation and implementation of magneto-optical activity within atomic-orbital-density based Hartree–Fock and Kohn–Sham response theories. J Chem Theory Comp. 2009;5:1997–2020. PubMed
Kjærgaard T, Kristensen K, Kauczor J, Jørgensen P, Coriani S, Thorvaldsen AJ. Comparison of standard and damped response formulations of magnetic circular dichroism. J Chem Phys. 2011;135:024112. PubMed
Kristensen K, Kauczor J, Kjærgaard T, Jørgensen P. Quasi-energy formulation of damped response theory. J Chem Phys. 2009;131:044112. PubMed
Jansík B, Høst S, Kristensen K, Jørgensen P. Local orbitals by minimizing powers of the orbital variance. J Chem Phys. 2011;134:194104. PubMed
Høyvik I-M, Jansík B, Jørgensen P. Trust region minimization of orbital localization functions. J Chem Theory Comput. 2012;8:3137–3146. PubMed
Ziólkowski M, Jansík B, Kjærgaard T, Jørgensen P. Linear scaling coupled-cluster method with correlation energy based error control. J Chem Phys. 2010;133:014107. PubMed
Kristensen K, Jørgensen P, Jansík B, Kjærgaard T, Reine S. Molecular gradient for second-order Møller–Plesset perturbation theory using the Divide-Expand-Consolidate (DEC) scheme. J Chem Phys. 2012;137:114102. PubMed
Kristensen K, Høyvik I-M, Jansík B, Jørgensen P, Kjærgaard T, Reine S, Jakowski J. MP2 energy and density for large molecular systems with internal error control using the Divide-Expand-Consolidate scheme. Phys Chem Chem Phys. 2012;14:15706–15714. PubMed
Helgaker T, Taylor PR. HERMIT, A Molecular Integral Code. Oslo, Norway: University of Oslo; 1986.
Helgaker T, Jensen HJAa, Jørgensen P, Olsen J, Taylor PR. ABACUS, A Molecular Property Code. Oslo, Norway: University of Oslo; 1986.
Jørgensen P, Jensen HJAa, Olsen J. RESPONS, A Molecular Response Code. Aarhus, Denmark: Aarhus University; 1988.
Koch H, Sánchez de Merás A, Pedersen TB. Reduced scaling in electronic structure calculations using Cholesky decompositions. J Chem Phys. 2003;118:9481–9484.
Peach MJG, Helgaker T, Salek P, Keal TW, Lutnæs OB, Tozer DJ, Handy NC. Assessment of a Coulomb-attenuated exchange–correlation energy functional. Phys Chem Chem Phys. 2006;8:558–562. PubMed
Peach MJG, Benfield P, Helgaker T, Tozer DJ. Excitation energies in density functional theory: an evaluation and a diagnostic test. J Chem Phys. 2008;128:044118. PubMed
Bak KL, Koch H, Oddershede J, Christiansen O, Sauer SPA. Atomic integral driven second order polarization propagator calculations of the excitation spectra of naphthalene and anthracene. J Chem Phys. 2000;112:4173–4185.
Christiansen O, Bak KL, Koch H, Sauer SPA. A second-order doubles correction to excitation energies in the random phase approximation. Chem Phys Lett. 1998;284:47–55.
Vahtras O, Rinkevicius Z. General excitations in time-dependent density functional theory. J Chem Phys. 2007;126:114101. PubMed
Rinkevicius Z, Vahtras O, Ågren H. Spin-flip time dependent density-functional theory applied to excited states with single, double, or mixed electron excitation character. J Chem Phys. 2010;133:114104. PubMed
Norman P, Jonsson D, Ågren H, Dahle P, Ruud K, Helgaker T, Koch H. Efficient parallel implementation of response theory: calculations of the second hyperpolarizability of polyacenes. Chem Phys Lett. 1996;253:1–7.
Steindal AH, Olsen JMH, Frediani L, Kongsted J, Ruud K. Parallelization of the polarizable embedding scheme for higher-order response functions. Mol Phys. 2012;110:2579–2586.
Fossgård E, Ruud K. Superlinear scaling in master-slave quantum chemical calculations using in-core storage of two-electron integrals. J Comput Chem. 2006;27:326–333. PubMed
Condensed Matter Systems Exposed to Radiation: Multiscale Theory, Simulations, and Experiment
Influence of Membrane Phase on the Optical Properties of DPH
Relation between molecular electronic structure and nuclear spin-induced circular dichroism