Relation between molecular electronic structure and nuclear spin-induced circular dichroism
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
28436463
PubMed Central
PMC5402291
DOI
10.1038/srep46617
PII: srep46617
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The recently theoretically described nuclear spin-induced circular dichroism (NSCD) is a promising method for the optical detection of nuclear magnetization. NSCD involves both optical excitations of the molecule and hyperfine interactions and, thus, it offers a means to realize a spectroscopy with spatially localized, high-resolution information. To survey the factors relating the molecular and electronic structure to the NSCD signal, we theoretically investigate NSCD of twenty structures of the four most common nucleic acid bases (adenine, guanine, thymine, cytosine). The NSCD signal correlates with the spatial distribution of the excited states and couplings between them, reflecting changes in molecular structure and conformation. This constitutes a marked difference to the nuclear magnetic resonance (NMR) chemical shift, which only reflects the local molecular structure in the ground electronic state. The calculated NSCD spectra are rationalized by means of changes in the electronic density and by a sum-over-states approach, which allows to identify the contributions of the individual excited states. Two separate contributions to NSCD are identified and their physical origins and relative magnitudes are discussed. The results underline NSCD spectroscopy as a plausible tool with a power for the identification of not only different molecules, but their specific structures as well.
Department of Chemistry University of Helsinki FI 00014 Helsinki Finland
DTU Chemistry Department of Chemistry Technical University of Denmark 2800 Kgs Lyngby Denmark
Emanuel Institute of Biochemical Physics RAS Kosygin street 4 119334 Moscow Russia
Institute of Organic Chemistry and Biochemistry AS CR Flemingovo nam 2 166 10 Prague Czech Republic
NMR Research Unit University of Oulu PO Box 3000 FI 90014 Oulu Finland
Zobrazit více v PubMed
Savukov I. M., Lee S. & Romalis M. V. Optical detection of liquid-state NMR. Nature 442, 1021–1024 (2006). PubMed
Pagliero D., Dong W., Sakellariou D. & Meriles C. A. Time-resolved, optically detected NMR of fluids at high magnetic field. The Journal of Chemical Physics 133, 154505 (2010). PubMed
Pagliero D. & Meriles C. A. Magneto-optical contrast in liquid-state optically detected NMR spectroscopy. Proceedings of the National Academy of Sciences of the United States of America 108, 19510–19515 (2011). PubMed PMC
Savukov I. M., Chen H., Karaulanov T. & Hilty C. Method for accurate measurements of nuclear-spin optical rotation for applications in correlated optical-NMR spectroscopy. Journal of Magnetic Resonance 232, 31–38 (2013). PubMed
Shi J., Ikäläinen S., Vaara J. & Romalis M. V. Observation of optical chemical shift by precision nuclear spin optical rotation measurements and calculations. The Journal of Physical Chemistry Letters 4, 437–441 (2013). PubMed
Lu T., He M., Chen D., He T. & Liu F. Nuclear-spin-induced optical Cotton–Mouton effect in fluids. Chemical Physics Letters 479, 14–19 (2009).
Ikäläinen S., Romalis M. V., Lantto P. & Vaara J. Chemical distinction by nuclear spin optical rotation. Physical Review Letters 105, 153001 (2010). PubMed
Yao G., He M., Chen D., He T. & Liu F. Analytical theory of the nuclear-spin-induced optical rotation in liquids. Chemical Physics 387, 39–47 (2011).
Yao G., He M., Chen D., He T. & Liu F. New nuclear-spin-induced Cotton–Mouton effect in fluids at high dc magnetic field. ChemPhysChem 13, 1325–1331 (2012). PubMed
Ikäläinen S., Lantto P. & Vaara J. Fully relativistic calculations of Faraday and nuclear spin-induced optical rotation in xenon. Journal of Chemical Theory and Computation 8, 91–98 (2012). PubMed
Pennanen T. S., Ikäläinen S., Lantto P. & Vaara J. Nuclear spin optical rotation and Faraday effect in gaseous and liquid water. The Journal of Chemical Physics 136, 184502 (2012). PubMed
Fu L., Rizzo A. & Vaara J. Communication: Nuclear quadrupole moment-induced Cotton-Mouton effect in noble gas atoms. The Journal of Chemical Physics 139, 181102 (2013). PubMed
Fu L. & Vaara J. Nuclear spin-induced Cotton-Mouton effect in molecules. The Journal of Chemical Physics 138, 204110 (2013). PubMed
Fu L. & Vaara J. Nuclear-spin-induced Cotton–Mouton effect in a strong external magnetic field. ChemPhysChem 15, 2337–2350 (2014). PubMed
Fu L. & Vaara J. Nuclear quadrupole moment-induced Cotton-Mouton effect in molecules. The Journal of Chemical Physics 140, 024103 (2014). PubMed
Vaara J., Rizzo A., Kauczor J., Norman P. & Coriani S. Nuclear spin circular dichroism. The Journal of Chemical Physics 140, 134103 (2014). PubMed
Barron L. D. Molecular light scattering and optical activity, 2nd revised edition edn. (Cambridge University Press, 2004).
Faraday M. Experimental researches in electricity. Nineteenth series. Philosophical Transactions of the Royal Society of London 136, 1–20 (1846).
Cotton A. & Mouton H. Sur le phénomène de Majorana. Comptes rendus de l’Académie des sciences 141, 317 (1905).
Cotton A. & Mouton H. Sur la biréfringence magnétique. Nouveaux liquides actifs. Comptes rendus de l’Académie des sciences 141, 349 (1905).
Buckingham A. D. & Stephens P. J. Magnetic optical activity. Annual Review of Physical Chemistry 17, 399–432 (1966).
Stephens P. J. Theory of magnetic circular dichroism. The Journal of Chemical Physics 52, 3489–3516 (1970).
Stephens P. J. Magnetic circular dichroism. Annual Review of Physical Chemistry 25, 201–232 (1974).
Levitt M. H. Spin Dynamics: Basics of Nuclear Magnetic Resonance, 2nd Edition (Wiley, 2007).
Buckingham A. D. & Parlett L. C. High-resolution nuclear magnetic resonance spectroscopy in a circularly polarized laser beam. Science 264, 1748–1750 (1994). PubMed
Buckingham A. D. & Parlett L. C. The effect of circularly polarized light on NMR spectra. Molecular Physics 91, 805–813 (1997).
Straka M., Štěpánek P., Coriani S. & Vaara J. Nuclear spin circular dichroism in fullerenes: A computational study. Chemical Communications 50, 15228–15231 (2014). PubMed
Ovchinnikov V. A. & Sundholm D. Coupled-cluster and density functional theory studies of the electronic 0–0 transitions of the DNA bases. Physical Chemistry Chemical Physics 16, 6931–6941 (2014). PubMed
Olsen J. & Jørgensen P. Linear and nonlinear response functions for an exact state and for an MCSCF state. The Journal of Chemical Physics 82, 3235–3264 (1985).
Gouterman M. Study of the effects of substitution on the absorption spectra of porphin. The Journal of Chemical Physics 30, 1139–1161 (1959).
Gouterman M. Spectra of porphyrins. Journal of Molecular Spectroscopy 6, 138–163 (1961).
Gouterman M. & Wagnière G. H. Spectra of porphyrins: Part II: Four orbital model. Journal of Molecular Spectroscopy 11, 108–127 (1963).
Dalton, a molecular electronic structure program, release DALTON2013.x, see http://daltonprogram.org (2013).
Aidas K. et al.. The Dalton quantum chemistry program system. WIREs Computational Molecular Science 4, 269–284 (2014). PubMed PMC
Ahlrichs R., Bär M., Häser M., Horn H. & Kölmel C. Electronic structure calculations on workstation computers: The program system Turbomole. Chemical Physics Letters 162, 165–169 (1989).
Lee C., Yang W. & Parr R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical Review B 37, 785–789 (1988). PubMed
Becke A. D. A new mixing of Hartree-Fock and local density-functional theories. The Journal of Chemical Physics 98, 1372–1377 (1993).
Weigend F. & Ahlrichs R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Physical Chemistry Chemical Physics 7, 3297–3305 (2005). PubMed
Norman P., Bishop D. M., Jensen H. J. Aa. & Oddershede J. Near-resonant absorption in the time-dependent self-consistent field and multiconfigurational self-consistent field approximations. The Journal of Chemical Physics 115, 10323–10334 (2001).
Norman P., Bishop D. M., Jensen H. J. Aa. & Oddershede J. Nonlinear response theory with relaxation: The first-order hyperpolarizability. The Journal of Chemical Physics 123, art no. 194103 (2005). PubMed
Kauczor J. & Norman P. Efficient calculations of molecular linear response properties for spectral regions. Journal of Chemical Theory and Computation 10, 2449–2455 (2014). PubMed
Pettersen E. F. et al.. UCSF Chimera - a visualization system for exploratory research and analysis. Journal of Computational Chemistry 13, 1605–1612 (2004). PubMed