Individual-level specialisation and interspecific resource partitioning in bees revealed by pollen DNA metabarcoding

. 2022 ; 10 () : e13671. [epub] 20220805

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35959478

It is increasingly recognised that intraspecific variation in traits, such as morphology, behaviour, or diet is both ubiquitous and ecologically important. While many species of predators and herbivores are known to display high levels of between-individual diet variation, there is a lack of studies on pollinators. It is important to fill in this gap because individual-level specialisation of flower-visiting insects is expected to affect their efficiency as pollinators with consequences for plant reproduction. Accordingly, the aim of our study was to quantify the level of individual-level specialisation and foraging preferences, as well as interspecific resource partitioning, in three co-occurring species of bees of the genus Ceratina (Hymenoptera: Apidae: Xylocopinae), C. chalybea, C. nigrolabiata, and C. cucurbitina. We conducted a field experiment where we provided artificial nesting opportunities for the bees and combined a short-term mark-recapture study with the dissection of the bees' nests to obtain repeated samples from individual foraging females and complete pollen provisions from their nests. We used DNA metabarcoding based on the ITS2 locus to identify the composition of the pollen samples. We found that the composition of pollen carried on the bodies of female bees and stored in the brood provisions in their nests significantly differed among the three co-occurring species. At the intraspecific level, individual females consistently differed in their level of specialisation and in the composition of pollen carried on their bodies and stored in their nests. We also demonstrate that higher generalisation at the species level stemmed from larger among-individual variation in diets, as observed in other types of consumers, such as predators. Our study thus reveals how specialisation and foraging preferences of bees change from the scale of individual foraging bouts to complete pollen provisions accumulated in their nests over many days. Such a multi-scale view of foraging behaviour is necessary to improve our understanding of the functioning of plant-flower visitor communities.

Zobrazit více v PubMed

Abrams P. Some comments on measuring niche overlap. Ecology. 1980;61(1):44–49. doi: 10.2307/1937153. DOI

Amaya-Márquez M. Floral constancy in bees: a revision of theories and a comparison with other pollinators. Revista Colombiana de Entomología. 2009;35(2):206–216. doi: 10.25100/socolen.v35i2.9221. DOI

Araújo MS, Bolnick DI, Layman CA. The ecological causes of individual specialisation. Ecology Letters. 2011;14(9):948–958. doi: 10.1111/j.1461-0248.2011.01662.x. PubMed DOI

Baksay S, Pornon A, Burrus M, Mariette J, Andalo C, Escaravage N. Experimental quantification of pollen with dna metabarcoding using its1 and trnl. Scientific Reports. 2020;10(1):1–9. doi: 10.1038/s41598-019-56847-4. PubMed DOI PMC

Bell KL, De Vere N, Keller A, Richardson RT, Gous A, Burgess KS, Brosi BJ. Pollen DNA barcoding: current applications and future prospects. Genome. 2016;59(9):629–640. doi: 10.1139/gen-2015-0200. PubMed DOI

Bell KL, Fowler J, Burgess KS, Dobbs EK, Gruenewald D, Lawley B, Morozumi C, Brosi BJ. Applying pollen dna metabarcoding to the study of plant–pollinator interactions. Applications in Plant Sciences. 2017;5(6):1600124. doi: 10.3732/apps.1600124. PubMed DOI PMC

Bernardo J. Maternal effects in animal ecology. American Zoologist. 1996;36(2):83–105. doi: 10.1093/icb/36.2.83. DOI

Biella P, Akter A, Ollerton J, Nielsen A, Klecka J. An empirical attack tolerance test alters the structure and species richness of plant–pollinator networks. Functional Ecology. 2020;34(11):2246–2258. doi: 10.1111/1365-2435.13642. DOI

Biella P, Akter A, Ollerton J, Tarrant S, Janeček Š, Jersáková J, Klecka J. Experimental loss of generalist plants reveals alterations in plant–pollinator interactions and a constrained flexibility of foraging. Scientific Reports. 2019a;9:7376. doi: 10.1038/s41598-019-43553-4. PubMed DOI PMC

Biella P, Tommasi N, Akter A, Guzzetti L, Klecka J, Sandionigi A, Labra M, Galimberti A. Foraging strategies are maintained despite workforce reduction: a multidisciplinary survey on the pollen collected by a social pollinator. PLOS ONE. 2019b;14(11):e0224037. doi: 10.1371/journal.pone.0224037. PubMed DOI PMC

Bolnick DI, Amarasekare P, Araújo MS, Bürger R, Levine JM, Novak M, Rudolf VH, Schreiber SJ, Urban MC, Vasseur DA. Why intraspecific trait variation matters in community ecology. Trends in Ecology & Evolution. 2011;26(4):183–192. doi: 10.1016/j.tree.2011.01.009. PubMed DOI PMC

Bolnick DI, Svanbäck R, Araújo MS, Persson L. Comparative support for the niche variation hypothesis that more generalized populations also are more heterogeneous. Proceedings of the National Academy of Sciences of the United States of America. 2007;104(24):10075–10079. doi: 10.1073/pnas.0703743104. PubMed DOI PMC

Bolnick DI, Svanbäck R, Fordyce JA, Yang LH, Davis JM, Hulsey CD, Forister ML. The ecology of individuals: incidence and implications of individual specialization. American Naturalist. 2003;161(1):1–28. doi: 10.1086/343878. PubMed DOI

Bolnick DI, Yang LH, Fordyce JA, Davis JM, Svanbäck R. Measuring individual-level resource specialization. Ecology. 2002;83(10):2936–2941. doi: 10.1890/0012-9658(2002)083[2936:MILRS]2.0.CO;2. DOI

Boppré M, Colegate SM, Edgar JA, Fischer OW. Hepatotoxic pyrrolizidine alkaloids in pollen and drying-related implications for commercial processing of bee pollen. Journal of Agricultural and Food Chemistry. 2008;56(14):5662–5672. doi: 10.1021/jf800568u. PubMed DOI

Boyer F, Mercier C, Bonin A, Bras YLe, Taberlet P, Coissac E. OBITOOLS: a UNIX-inspired software package for DNA metabarcoding. Molecular Ecology Resources. 2016;16(1):176–182. doi: 10.1111/1755-0998.12428. PubMed DOI

Bridge PD, Roberts PJ, Spooner BM, Panchal G. On the unreliability of published DNA sequences. New Phytologist. 2003;160(1):43–48. doi: 10.1046/j.1469-8137.2003.00861.x. PubMed DOI

Brodschneider R, Crailsheim K. Nutrition and health in honey bees. Apidologie. 2010;41(3):278–294. doi: 10.1051/apido/2010012. DOI

Brosi BJ. Pollinator specialization: from the individual to the community. New Phytologist. 2016;210(4):1190–1194. doi: 10.1111/nph.13951. PubMed DOI

Brosi BJ, Briggs HM. Single pollinator species losses reduce floral fidelity and plant reproductive function. Proceedings of the National Academy of Sciences of the United States of America. 2013;110(32):13044–13048. doi: 10.1073/pnas.1307438110. PubMed DOI PMC

Chen S, Yao H, Han J, Liu C, Song J, Shi L, Zhu Y, Ma X, Gao T, Pang X, Luo K, Li Y, Li X, Jia X, Lin Y, Leon C. Validation of the ITS2 region as a novel DNA barcode for identifying medicinal plant species. PLOS ONE. 2010;5(1):e8613. doi: 10.1371/journal.pone.0008613. PubMed DOI PMC

Clarke KR. Non-parametric multivariate analyses of changes in community structure. Australian Journal of Ecology. 1993;18(1):117–143. doi: 10.1111/j.1442-9993.1993.tb00438.x. DOI

De Barba M, Miquel C, Boyer F, Mercier C, Rioux D, Coissac E, Taberlet P. DNA metabarcoding multiplexing and validation of data accuracy for diet assessment: application to omnivorous diet. Molecular Ecology Resources. 2014;14(2):306–323. doi: 10.1111/1755-0998.12188. PubMed DOI

Eckhardt M, Haider M, Dorn S, Müller A. Pollen mixing in pollen generalist solitary bees: a possible strategy to complement or mitigate unfavourable pollen properties? Journal of Animal Ecology. 2014;83(3):588–597. doi: 10.1111/1365-2656.12168. PubMed DOI

El-Shazly A, El-Domiaty M, Witte L, Wink M. Pyrrolizidine alkaloids in members of the Boraginaceae from Sinai (Egypt) Biochemical Systematics and Ecology. 1998;26(6):619–636. doi: 10.1016/S0305-1978(98)00028-3. DOI

El-Shazly A, Wink M. Diversity of pyrrolizidine alkaloids in the Boraginaceae structures, distribution, and biological properties. Diversity. 2014;6(2):188–282. doi: 10.3390/d6020188. DOI

Emlen JM. The role of time and energy in food preference. American Naturalist. 1966;100(916):611–617. doi: 10.1086/282455. DOI

Fontaine C, Collin CL, Dajoz I. Generalist foraging of pollinators: diet expansion at high density. Journal of Ecology. 2008;96(5):1002–1010. doi: 10.1111/j.1365-2745.2008.01405.x. DOI

Forsman A, Wennersten L. Inter-individual variation promotes ecological success of populations and species: evidence from experimental and comparative studies. Ecography. 2016;39(7):630–648. doi: 10.1111/ecog.01357. DOI

Gegear R, Laverty T. How many flower types can bumble bees work at the same time? Canadian Journal of Zoology. 1998;76(7):1358–1365. doi: 10.1139/z98-059. DOI

Goslee SC, Urban DL. The ecodist package for dissimilarity-based analysis of ecological data. Journal of Statistical Software. 2007;22:1–19. doi: 10.18637/jss.v022.i07. DOI

Gotelli NJ, Hart EM, Ellison AM. EcoSimR: null model analysis for ecological data. R package version 0.1.02015 doi: 10.5281/zenodo.16636. DOI

Goulson D, Wright NP. Flower constancy in the hoverflies Episyrphus balteatus (Degeer) and Syrphus ribesii (L.)(Syrphidae) Behavioral Ecology. 1998;9(3):213–219. doi: 10.1093/beheco/9.3.213. DOI

Graham L, Jones KN. Resource partitioning and per-flower foraging efficiency in two bumble bee species. American Midland Naturalist. 1996;136(2):401–406. doi: 10.2307/2426743. DOI

Groom SV, Rehan SM. Climate-mediated behavioural variability in facultatively social bees. Biological Journal of the Linnean Society. 2018;125(1):165–170. doi: 10.1093/biolinnean/bly101. DOI

Grulich V. Atlas rozšíření cévnatých rostlin Národního parku Podyjí. Masaryk University; Brno: 1997.

Grüter C, Ratnieks FL. Flower constancy in insect pollinators: adaptive foraging behaviour or cognitive limitation? Communicative & Integrative Biology. 2011;4(6):633–636. doi: 10.4161/cib.16972. PubMed DOI PMC

Heinrich B. The foraging specializations of individual bumblebees. Ecological Monographs. 1976;46(2):105–128. doi: 10.2307/1942246. DOI

Hofstede FE, Sommeijer MJ. Effect of food availability on individual foraging specialisation in the stingless bee Plebeia tobagoensis (Hymenoptera, Meliponini) Apidologie. 2006;37(3):387–397. doi: 10.1051/apido:2006009. DOI

Inouye DW. Resource partitioning in bumblebees: experimental studies of foraging behavior. Ecology. 1978;59(4):672–678. doi: 10.2307/1938769. DOI

Junker RR, Blüthgen N, Brehm T, Binkenstein J, Paulus J, Schaefer MH, Stang M. Specialization on traits as basis for the niche-breadth of flower visitors and as structuring mechanism of ecological networks. Functional Ecology. 2013;27(2):329–341. doi: 10.1111/1365-2435.12005. DOI

Kapheim KM, Bernal SP, Smith AR, Nonacs P, Wcislo WT. Support for maternal manipulation of developmental nutrition in a facultatively eusocial bee, Megalopta genalis (Halictidae) Behavioral Ecology and Sociobiology. 2011;65(6):1179–1190. doi: 10.1007/s00265-010-1131-9. PubMed DOI PMC

Keller A, Danner N, Grimmer G, Ankenbrand MVD, Von Der Ohe K, Von Der Ohe W, Rost S, Härtel S, Steffan-Dewenter I. Evaluating multiplexed next-generation sequencing as a method in palynology for mixed pollen samples. Plant Biology. 2015;17(2):558–566. doi: 10.1111/plb.12251. PubMed DOI

Kitson JJ, Hahn C, Sands RJ, Straw NA, Evans DM, Lunt DH. Detecting host–parasitoid interactions in an invasive lepidopteran using nested tagging DNA metabarcoding. Molecular Ecology. 2019;28(2):471–483. doi: 10.1111/mec.14518. PubMed DOI

Klecka J, Boukal DS. Who eats whom in a pool? A comparative study of prey selectivity by predatory aquatic insects. PLOS ONE. 2012;7(6):e37741. doi: 10.1371/journal.pone.0037741. PubMed DOI PMC

Klecka J, Hadrava J, Biella P, Akter A. Flower visitation by hoverflies (Diptera: Syrphidae) in a temperate plant–pollinator network. PeerJ. 2018a;6:e6025. doi: 10.7717/peerj.6025. PubMed DOI PMC

Klecka J, Hadrava J, Koloušková P. Vertical stratification of plant–pollinator interactions in a temperate grassland. PeerJ. 2018b;6:e4998. doi: 10.7717/peerj.4998. PubMed DOI PMC

Kobayashi-Kidokoro M, Higashi S. Flower constancy in the generalist pollinator Ceratina flavipes (Hymenoptera: Apidae): an evaluation by pollen analysis. Psyche. 2010;2010:891906. doi: 10.1155/2010/891906. DOI

Kress WJ. Plant dna barcodes: applications today and in the future. Journal of Systematics and Evolution. 2017;55(4):291–307. doi: 10.1111/jse.12254. DOI

Larsson M. Higher pollinator effectiveness by specialist than generalist flower-visitors of unspecialized Knautia arvensis (Dipsacaceae) Oecologia. 2005;146(3):394–403. doi: 10.1007/s00442-005-0217-y. PubMed DOI

Lawson SP, Ciaccio KN, Rehan SM. Maternal manipulation of pollen provisions affects worker production in a small carpenter bee. Behavioral Ecology and Sociobiology. 2016;70(11):1891–1900. doi: 10.1007/s00265-016-2194-z. DOI

Lefcheck JS, Whalen MA, Davenport TM, Stone JP, Duffy JE. Physiological effects of diet mixing on consumer fitness: a meta-analysis. Ecology. 2013;94(3):565–572. doi: 10.1890/12-0192.1. PubMed DOI

Lewis AC. Memory constraints and flower choice in Pieris rapae. Science. 1986;232(4752):863–865. doi: 10.1126/science.232.4752.863. PubMed DOI

Lewis AC, Hughes C, Rogers TL. Effects of intraspecific competition and body mass on diet specialization in a mammalian scavenger. Ecology and Evolution. 2022;12(1):e8338. doi: 10.1002/ece3.8338. PubMed DOI PMC

Li C, Xu B, Wang Y, Feng Q, Yang W. Effects of dietary crude protein levels on development, antioxidant status, and total midgut protease activity of honey bee (Apis mellifera ligustica) Apidologie. 2012;43(5):576–586. doi: 10.1007/s13592-012-0126-0. DOI

Lucas JR. The role of foraging time constraints and variable prey encounter in optimal diet choice. American Naturalist. 1983;122(2):191–209. doi: 10.1086/284130. DOI

Lucas A, Bodger O, Brosi BJ, Ford CR, Forman DW, Greig C, Hegarty M, Neyland PJ, De Vere N. Generalisation and specialisation in hoverfly (Syrphidae) grassland pollen transport networks revealed by dna metabarcoding. Journal of Animal Ecology. 2018;87(4):1008–1021. doi: 10.1111/1365-2656.12828. PubMed DOI PMC

Lucchetti MA, Glauser G, Kilchenmann V, Dübecke A, Beckh G, Praz C, Kast C. Pyrrolizidine alkaloids from Echium vulgare in honey originate primarily from floral nectar. Journal of Agricultural and Food Chemistry. 2016;64(25):5267–5273. doi: 10.1021/acs.jafc.6b02320. PubMed DOI

Macel M. Attract and deter: a dual role for pyrrolizidine alkaloids in plant–insect interactions. Phytochemistry Reviews. 2011;10(1):75–82. doi: 10.1007/s11101-010-9181-1. PubMed DOI PMC

McFrederick QS, Rehan SM. Characterization of pollen and bacterial community composition in brood provisions of a small carpenter bee. Molecular Ecology. 2016;25(10):2302–2311. doi: 10.1111/mec.13608. PubMed DOI

McIntosh M. Pollination of two species of Ferocactus: interactions between cactus-specialist bees and their host plants. Functional Ecology. 2005;19(4):727–734. doi: 10.1111/j.1365-2435.2005.00990.x. DOI

Mikát M, Benda D, Korittová C, Mrozková J, Reiterová D, Waldhauserová J, Brož V, Straka J. Natural history and maternal investment of Ceratina cucurbitina, the most common European small carpenter bee, in different European regions. Journal of Apicultural Research. 2022;61(2):151–162. doi: 10.1080/00218839.2020.1828235. DOI

Mikát M, Černá K, Straka J. Major benefits of guarding behavior in subsocial bees: implications for social evolution. Ecology and Evolution. 2016;6(19):6784–6797. doi: 10.1002/ece3.2387. PubMed DOI PMC

Mikát M, Franchino C, Rehan SM. Sociodemographic variation in foraging behavior and the adaptive significance of worker production in the facultatively social small carpenter bee, Ceratina calcarata. Behavioral Ecology and Sociobiology. 2017;71(9):135. doi: 10.1007/s00265-017-2365-6. DOI

Mikát M, Janošík L, Černá K, Matoušková E, Hadrava J, Bureš V, Straka J. Polyandrous bee provides extended offspring care biparentally as an alternative to monandry based eusociality. Proceedings of the National Academy of Sciences of the United States of America. 2019;116(13):6238–6243. doi: 10.1073/pnas.1810092116. PubMed DOI PMC

Mikát M, Matoušková E, Straka J. Nesting of ceratina nigrolabiata, a biparental bee. Scientific Reports. 2021;11(1):1–13. doi: 10.1038/s41598-020-79139-8. PubMed DOI PMC

Mikát M, Waldhauserová J, Fraňková T, Čermáková K, Brož V, Zeman Š, Dokulilová M, Straka J. Only mothers feed mature offspring in european ceratina bees. Insect Science. 2021;28(5):1468–1481. doi: 10.1111/1744-7917.12859. PubMed DOI

Morales CL, Traveset A. Interspecific pollen transfer: magnitude, prevalence and consequences for plant fitness. Critical Reviews in Plant Sciences. 2008;27(4):221–238. doi: 10.1080/07352680802205631. DOI

Nakagawa S, Schielzeth H. Repeatability for Gaussian and non-Gaussian data: a practical guide for biologists. Biological Reviews. 2010;85(4):935–956. doi: 10.1111/j.1469-185X.2010.00141.x. PubMed DOI

Narberhaus I, Zintgraf V, Dobler S. Pyrrolizidine alkaloids on three trophic levels–evidence for toxic and deterrent effects on phytophages and predators. Chemoecology. 2005;15(2):121–125. doi: 10.1007/s00049-005-0302-z. DOI

Nicholls E, Hempel de Ibarra N. Assessment of pollen rewards by foraging bees. Functional Ecology. 2017;31(1):76–87. doi: 10.1111/1365-2435.12778. DOI

Noreika N, Bartomeus I, Winsa M, Bommarco R, Öckinger E. Pollinator foraging flexibility mediates rapid plant–pollinator network restoration in semi-natural grasslands. Scientific Reports. 2019;9:15473. doi: 10.1038/s41598-019-51912-4. PubMed DOI PMC

Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H. vegan: community ecology package. R package version 2.5-6https://cran.r-project.org/web/packages/vegan/index.html 2019

Palmer TM, Stanton ML, Young TP. Competition and coexistence: exploring mechanisms that restrict and maintain diversity within mutualist guilds. American Naturalist. 2003;162(S4):S63–S79. doi: 10.1086/378682. PubMed DOI

Parker AJ, Williams NM, Thomson JD. Specialist pollinators deplete pollen in the spring ephemeral wildflower Claytonia virginica. Ecology and Evolution. 2016;6(15):5169–5177. doi: 10.1002/ece3.2252. PubMed DOI PMC

Pianka ER. The structure of lizard communities. Annual Review of Ecology and Systematics. 1973;4(1):53–74. doi: 10.1146/annurev.es.04.110173.000413. DOI

Pornon A, Andalo C, Burrus M, Escaravage N. DNA metabarcoding data unveils invisible pollination networks. Scientific Reports. 2017;7(1):1–11. doi: 10.1038/s41598-016-0028-x. PubMed DOI PMC

Pornon A, Baksay S, Escaravage N, Burrus M, Andalo C. Pollinator specialization increases with a decrease in a mass-flowering plant in networks inferred from DNA metabarcoding. Ecology and Evolution. 2019;9(24):13650–13662. doi: 10.1002/ece3.5531. PubMed DOI PMC

Pornon A, Escaravage N, Burrus M, Holota H, Khimoun A, Mariette J, Pellizzari C, Iribar A, Etienne R, Taberlet P, Vidal M, Winterton P, Zinger L, Andalo C. Using metabarcoding to reveal and quantify plant–pollinator interactions. Scientific Reports. 2016;6(1):1–12. doi: 10.1038/s41598-016-0001-8. PubMed DOI PMC

Praz CJ, Müller A, Dorn S. Specialized bees fail to develop on non-host pollen: do plants chemically protect their pollen? Ecology. 2008;89(3):795–804. doi: 10.1890/07-0751.1. PubMed DOI

R Core Team . R Foundation for Statistical Computing; Vienna: 2020.

Räsänen K, Kruuk L. Maternal effects and evolution at ecological time-scales. Functional Ecology. 2007;21(3):408–421. doi: 10.1111/j.1365-2435.2007.01246.x. DOI

Rehan SM, Leys R, Schwarz MP. A mid-cretaceous origin of sociality in xylocopine bees with only two origins of true worker castes indicates severe barriers to eusociality. PLOS ONE. 2012;7(4):e34690. doi: 10.1371/journal.pone.0034690. PubMed DOI PMC

Rehan SM, Richards MH. Nesting biology and subsociality in Ceratina calcarata (Hymenoptera: Apidae) The Canadian Entomologist. 2010;142(1):65–74. doi: 10.4039/n09-056. DOI

Roughgarden J. Evolution of niche width. American Naturalist. 1972;106(952):683–718. doi: 10.1086/282807. DOI

Roughgarden J. Niche width: biogeographic patterns among anolis lizard populations. American Naturalist. 1974;108(962):429–442. doi: 10.1086/282924. DOI

Roulston TH, Cane JH. Pollen nutritional content and digestibility for animals. In: Dafni A, Hesse M, Pacini E, editors. Pollen and pollination. Springer; Vienna: 2000. pp. 187–209.

Roulston TH, Cane JH. The effect of pollen protein concentration on body size in the sweat bee Lasioglossum zephyrum (Hymenoptera: Apiformes) Evolutionary Ecology. 2002;16(1):49–65. doi: 10.1023/A:1016048526475. DOI

Schielzeth H, Nakagawa S. rptR: repeatability for Gaussian and non-Gaussian data. R package version 0.6.405/r52https://R-Forge.R-project.org/projects/rptr/ 2013 PubMed

Schoener TW. Resource partitioning in ecological communities. Science. 1974;185(4145):27–39. doi: 10.1126/science.185.4145.27. PubMed DOI

Sedivy C, Dorn S, Widmer A, Müller A. Host range evolution in a selected group of osmiine bees (Hymenoptera: Megachilidae): the Boraginaceae-Fabaceae paradox. Biological Journal of the Linnean Society. 2013;108(1):35–54. doi: 10.1111/j.1095-8312.2012.02013.x. DOI

Sedivy C, Müller A, Dorn S. Closely related pollen generalist bees differ in their ability to develop on the same pollen diet: evidence for physiological adaptations to digest pollen. Functional Ecology. 2011;25(3):718–725. doi: 10.1111/j.1365-2435.2010.01828.x. DOI

Sickel W, Ankenbrand MJ, Grimmer G, Holzschuh A, Härtel S, Lanzen J, Steffan-Dewenter I, Keller A. Increased efficiency in identifying mixed pollen samples by meta-barcoding with a dual-indexing approach. BMC Ecology. 2015;15(1):20. doi: 10.1186/s12898-015-0051-y. PubMed DOI PMC

Slaa JE, Cevaal A, Sommeijer MJ. Floral constancy in Trigona stingless bees foraging on artificial flower patches: a comparative study. Journal of Apicultural Research. 1998;37(3):191–198. doi: 10.1080/00218839.1998.11100971. DOI

Smouse PE, Long JC, Sokal RR. Multiple regression and correlation extensions of the mantel test of matrix correspondence. Systematic Zoology. 1986;35(4):627–632. doi: 10.2307/2413122. DOI

Somerville D, Nicol H. Crude protein and amino acid composition of honey bee-collected pollen pellets from south-east Australia and a note on laboratory disparity. Australian Journal of Experimental Agriculture. 2006;46(1):141–149. doi: 10.1071/EA03188. DOI

Strickler K. Specialization and foraging efficiency of solitary bees. Ecology. 1979;60(5):998–1009. doi: 10.2307/1936868. DOI

Szigeti V, Kőrösi Á, Harnos A, Kis J. Lifelong foraging and individual specialisation are influenced by temporal changes of resource availability. Oikos. 2019;128(5):649–658. doi: 10.1111/oik.05400. DOI

Taberlet P, Bonin A, Coissac E, Zinger L. Environmental DNA: for biodiversity research and monitoring. Oxford: Oxford University Press; 2018.

Trunz V, Lucchetti MA, Bénon D, Dorchin A, Desurmont GA, Kast C, Rasmann S, Glauser G, Praz CJ. To bee or not to bee: the ‘raison d’être’of toxic secondary compounds in the pollen of Boraginaceae. Functional Ecology. 2020;34(7):1345–1357. doi: 10.1111/1365-2435.13581. DOI

Van Valen L. Morphological variation and width of ecological niche. American Naturalist. 1965;99(908):377–390. doi: 10.1086/282379. DOI

Vaudo AD, Patch HM, Mortensen DA, Tooker JF, Grozinger CM. Macronutrient ratios in pollen shape bumble bee (Bombus impatiens) foraging strategies and floral preferences. Proceedings of the National Academy of Sciences of the United States of America. 2016;113(28):E4035–E4042. doi: 10.1073/pnas.1606101113. PubMed DOI PMC

Vaudo AD, Tooker JF, Grozinger CM, Patch HM. Bee nutrition and floral resource restoration. Current Opinion in Insect Science. 2015;10:133–141. doi: 10.1016/j.cois.2015.05.008. PubMed DOI

Vaudo AD, Tooker JF, Patch HM, Biddinger DJ, Coccia M, Crone MK, Fiely M, Francis JS, Hines HM, Hodges M, Jackson SW, Michez D, Mu J, Russo L, Safari M, Treanore ED, Vanderplanck M, Yip E, Leonard AS, Grozinger CM. Pollen protein: lipid macronutrient ratios may guide broad patterns of bee species floral preferences. Insects. 2020;11(2):132. doi: 10.3390/insects11020132. PubMed DOI PMC

Waser NM. Interspecific pollen transfer and competition between co-occurring plant species. Oecologia. 1978;36(2):223–236. doi: 10.1007/BF00349811. PubMed DOI

Waser NM. Flower constancy: definition, cause, and measurement. American Naturalist. 1986;127(5):593–603. doi: 10.1086/284507. DOI

Waser NM, Chittka L, Price MV, Williams NM, Ollerton J. Generalization in pollination systems, and why it matters. Ecology. 1996;77(4):1043–1060. doi: 10.2307/2265575. DOI

Wild J, Kaplan Z, Danihelka J, Petřík P, Chytrý M, Novotný P, Rohn M, Šulc V, Brůna J, Chobot K, Ekr L, Holubová D, Knollová I, Kocian P, Stech M, Stepanek J, Zouhar V. Plant distribution data for the Czech Republic integrated in the Pladias database. Preslia. 2019;91:1–24. doi: 10.23855/preslia.2019.001. DOI

Woodward G, Hildrew AG. Body-size determinants of niche overlap and intraguild predation within a complex food web. Journal of Animal Ecology. 2002;71(6):1063–1074. doi: 10.1046/j.1365-2656.2002.00669.x. DOI

Zinger L, Bonin A, Alsos IG, Bálint M, Bik H, Boyer F, Chariton AA, Creer S, Coissac E, Deagle BE, Barba MD, Dickie IA, Dumbrell AJ, Ficetola GF, Fierer N, Fumagalli L, Gilbert MTP, Jarman S, Jumpponen A, Kauserud H, Orlando L, Pansu J, Pawlowski J, Tedersoo L, Thomsen PF, Willerslev E, Taberlet P. DNA metabarcoding—need for robust experimental designs to draw sound ecological conclusions. Molecular Ecology. 2019;28(8):1857–1862. doi: 10.1111/mec.15060. PubMed DOI

Zobrazit více v PubMed

figshare
10.6084/m9.figshare.13850324

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...