Experimental loss of generalist plants reveals alterations in plant-pollinator interactions and a constrained flexibility of foraging

. 2019 May 14 ; 9 (1) : 7376. [epub] 20190514

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid31089144
Odkazy

PubMed 31089144
PubMed Central PMC6517441
DOI 10.1038/s41598-019-43553-4
PII: 10.1038/s41598-019-43553-4
Knihovny.cz E-zdroje

Species extinctions undermine ecosystem functioning, with the loss of a small subset of functionally important species having a disproportionate impact. However, little is known about the effects of species loss on plant-pollinator interactions. We addressed this issue in a field experiment by removing the plant species with the highest visitation frequency, then measuring the impact of plant removal on flower visitation, pollinator effectiveness and insect foraging in several sites. Our results show that total visitation decreased exponentially after removing 1-4 most visited plants, suggesting that these plants could benefit co-occurring ones by maintaining high flower visitor abundances. Although we found large variation among plant species, the redistribution of the pollinator guild affected mostly the other plants with high visitor richness. Also, the plant traits mediated the effect of removal on flower visitation; while visitation of plants which had smaller inflorescences and more sugar per flower increased after removal, flower visitors did not switch between flower shapes and visitation decreased mostly in plants visited by many morpho-species of flower visitors. Together, these results suggest that the potential adaptive foraging was constrained by flower traits. Moreover, pollinator effectiveness fluctuated but was not directly linked to changes of flower visitation. In conclusion, it seems that the loss of generalist plants alters plant-pollinator interactions by decreasing pollinator abundance with implications for pollination and insect foraging. Therefore, generalist plants have high conservation value because they sustain the complex pattern of plant-pollinator interactions.

Zobrazit více v PubMed

Grime JP. Declining plant diversity: empty niches or functional shifts? J. Veg. Sci. 2002;13:457–460. doi: 10.1111/j.1654-1103.2002.tb02072.x. DOI

Smith MD, Knapp AK. Dominant species maintain ecosystem function with non-random species loss. Ecol. Lett. 2003;6:509–517. doi: 10.1046/j.1461-0248.2003.00454.x. DOI

Dupont YL, Hansen DM, Olesen JM. Structure of a plant–flower-visitor network in the high-altitude sub-alpine desert of Tenerife, Canary Islands. Ecography. 2003;26:301–310. doi: 10.1034/j.1600-0587.2003.03443.x. DOI

Ollerton J, Johnson SD, Cranmer L, Kellie S. The pollination ecology of an assemblage of grassland asclepiads in South Africa. Ann. Bot. 2003;92:807–834. doi: 10.1093/aob/mcg206. PubMed DOI PMC

Martín González AM, Dalsgaard B, Olesen JM. Centrality measures and the importance of generalist species in pollination networks. Ecol. Complex. 2010;7:36–43. doi: 10.1016/j.ecocom.2009.03.008. DOI

Gross K. Positive interactions among competitors can produce species-rich communities. Ecol. Lett. 2008;11:929–936. doi: 10.1111/j.1461-0248.2008.01204.x. PubMed DOI

Faegri, K. & van der Pijl, L. The principles of pollination ecology. (Pergamon Press, 1979).

Brosi BJ. Pollinator specialization: from the individual to the community. New Phytol. 2016;210:1190–1194. doi: 10.1111/nph.13951. PubMed DOI

Alaux, C., Ducloz, F., Crauser, D. & Conte, Y. L. Diet effects on honeybee immunocompetence. Biol. Lett. rsbl20090986, 10.1098/rsbl.2009.0986 (2010). PubMed PMC

Filipiak M, et al. Ecological stoichiometry of the honeybee: Pollen diversity and adequate species composition are needed to mitigate limitations imposed on the growth and development of bees by pollen quality. PLOS ONE. 2017;12:e0183236. doi: 10.1371/journal.pone.0183236. PubMed DOI PMC

Biella P, Ollerton J, Barcella M, Assini S. Network analysis of phenological units to detect important species in plant-pollinator assemblages: can it inform conservation strategies? Community Ecol. 2017;18:1–10. doi: 10.1556/168.2017.18.1.1. DOI

Seabloom EW, Dobson AP, Stoms DM. Extinction rates under nonrandom patterns of habitat loss. Proc. Natl. Acad. Sci. 2002;99:11229–11234. doi: 10.1073/pnas.162064899. PubMed DOI PMC

Gross K, Cardinale BJ. The functional consequences of random vs. ordered species extinctions. Ecol. Lett. 2005;8:409–418. doi: 10.1111/j.1461-0248.2005.00733.x. DOI

Smith KG, Lips KR, Chase JM. Selecting for extinction: nonrandom disease-associated extinction homogenizes amphibian biotas. Ecol. Lett. 2009;12:1069–1078. doi: 10.1111/j.1461-0248.2009.01363.x. PubMed DOI

Santamaría S, Galeano J, Pastor JM, Méndez M. Removing interactions, rather than species, casts doubt on the high robustness of pollination networks. Oikos. 2016;125:526–534. doi: 10.1111/oik.02921. DOI

Kaiser-Bunbury CN, Muff S, Memmott J, Müller CB, Caflisch A. The robustness of pollination networks to the loss of species and interactions: a quantitative approach incorporating pollinator behaviour. Ecol. Lett. 2010;13:442–452. doi: 10.1111/j.1461-0248.2009.01437.x. PubMed DOI

Lopezaraiza–Mikel ME, Hayes RB, Whalley MR, Memmott J. The impact of an alien plant on a native plant–pollinator network: an experimental approach. Ecol. Lett. 2007;10:539–550. doi: 10.1111/j.1461-0248.2007.01055.x. PubMed DOI

Ferrero V, et al. Effect of invader removal: pollinators stay but some native plants miss their new friend. Biol. Invasions. 2013;15:2347–2358. doi: 10.1007/s10530-013-0457-4. DOI

Goldstein J, Zych M. What if we lose a hub? Experimental testing of pollination network resilience to removal of keystone floral resources. Arthropod-Plant Interact. 2016;10:263–271. doi: 10.1007/s11829-016-9431-2. DOI

Brosi BJ, Briggs HM. Single pollinator species losses reduce floral fidelity and plant reproductive function. Proc. Natl. Acad. Sci. 2013;110:13044–13048. doi: 10.1073/pnas.1307438110. PubMed DOI PMC

Hallett, A. C., Mitchell, R. J., Chamberlain, E. R. & Karron, J. D. Pollination success following loss of a frequent pollinator: the role of compensatory visitation by other effective pollinators. AoB PLANTS9 (2017). PubMed PMC

Memmott J, Waser NM, Price MV. Tolerance of pollination networks to species extinctions. Proc. R. Soc. Lond. B Biol. Sci. 2004;271:2605–2611. doi: 10.1098/rspb.2004.2909. PubMed DOI PMC

Dafni, A., Kevan, P. G. & Husband, B. C. Practical pollination biology. (Enviroquest Ltd, 2005).

Waser NM, Chittka L, Price MV, Williams NM, Ollerton J. Generalization in pollination systems, and why it matters. Ecology. 1996;77:1043–1060. doi: 10.2307/2265575. DOI

Dormann CF. How to be a specialist? Quantifying specialisation in pollination networks. Netw. Biol. 2011;1:1–20.

Gómez JM, Bosch J, Perfectti F, Fernández J, Abdelaziz M. Pollinator diversity affects plant reproduction and recruitment: the tradeoffs of generalization. Oecologia. 2007;153:597–605. doi: 10.1007/s00442-007-0758-3. PubMed DOI

Alonso C, Herrera CM, Ashman T-L. A piece of the puzzle: a method for comparing pollination quality and quantity across multiple species and reproductive events. New Phytol. 2012;193:532–542. doi: 10.1111/j.1469-8137.2011.03932.x. PubMed DOI

Martin FW. Staining and observing pollen tubes in the style by means of fluorescence. Stain Technol. 1959;34:125–128. doi: 10.3109/10520295909114663. PubMed DOI

Kugler, H. Blütenökologie. (G. Fischer, 1970).

Bates D, Mächler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 2015;67:1–48. doi: 10.18637/jss.v067.i01. DOI

R Core Team. R: A language and environment for statistical computing. (ISBN 3-900051-07-0, 2017).

Hothorn T, Bretz F, Westfall P. Simultaneous inference in general parametric models. Biom. J. 2008;50:346–363. doi: 10.1002/bimj.200810425. PubMed DOI

Reitan T, Nielsen A. Do not divide count data with count data; a story from pollination ecology with implications beyond. PLOS ONE. 2016;11:e0149129. doi: 10.1371/journal.pone.0149129. PubMed DOI PMC

Osenberg CW, Sarnelle O, Cooper SD. Effect size in ecological experiments: the application of biological models in meta-analysis. Am. Nat. 1997;150:798–812. doi: 10.1086/286095. PubMed DOI

Pianka, E. R. The structure of lizard communities. Annu Rev Ecol Syst4, 53–74 (1973).

Dormann, C. F., Gruber, B. & Fründ, J. Introducing the bipartite package: analysing ecological networks. R news8, 8–11 (2008).

Gotelli, N. J., Hart E. M. & Ellison, A. M. EcoSimR: Null model analysis for ecological data. R package version 0.1.0. http://github.com/gotellilab/EcoSimR (2015).

Valdovinos FS, de Espanés M, Flores P, Ramos-Jiliberto JD. R. Adaptive foraging allows the maintenance of biodiversity of pollination networks. Oikos. 2013;122:907–917. doi: 10.1111/j.1600-0706.2012.20830.x. DOI

Kondoh M. Foraging adaptation and the relationship between food-web complexity and stability. Science. 2003;299:1388–1391. doi: 10.1126/science.1079154. PubMed DOI

Gilpin, A.-M., Denham, A. J. & Ayre, D. J. Are there magnet plants in Australian ecosystems: pollinator visits to neighbouring plants are not affected by proximity to mass flowering plants. Basic Appl. Ecol. 35, 34–44 (2019).

Akter A, Biella P, Klecka J. Effects of small-scale clustering of flowers on pollinator foraging behaviour and flower visitation rate. PLOS ONE. 2017;12:e0187976. doi: 10.1371/journal.pone.0187976. PubMed DOI PMC

Vizentin-Bugoni J, Maruyama PK, Sazima M. Processes entangling interactions in communities: forbidden links are more important than abundance in a hummingbird–plant network. Proc. R. Soc. Lond. B Biol. Sci. 2014;281:20132397. doi: 10.1098/rspb.2013.2397. PubMed DOI PMC

Janovský Z, et al. Conspecific and heterospecific plant densities at small-scale can drive plant-pollinator interactions. PLOS ONE. 2013;8:e77361. doi: 10.1371/journal.pone.0077361. PubMed DOI PMC

Lázaro A, Nielsen A, Totland Ø. Factors related to the inter-annual variation in plants’ pollination generalization levels within a community. Oikos. 2010;119:825–834. doi: 10.1111/j.1600-0706.2009.18017.x. DOI

Ye Z-M, et al. Competition and facilitation among plants for pollination: can pollinator abundance shift the plant–plant interactions? Plant Ecol. 2014;215:3–13. doi: 10.1007/s11258-013-0274-y. DOI

Carstensen DW, Sabatino M, Trøjelsgaard K, Morellato LPC. Beta diversity of plant-pollinator networks and the spatial turnover of pairwise interactions. PLOS ONE. 2014;9:e112903. doi: 10.1371/journal.pone.0112903. PubMed DOI PMC

Peters VE, et al. Using plant–animal interactions to inform tree selection in tree-based agroecosystems for enhanced biodiversity. BioScience. 2016;66:1046–1056. doi: 10.1093/biosci/biw140. DOI

Menz MH, et al. Reconnecting plants and pollinators: challenges in the restoration of pollination mutualisms. Trends Plant Sci. 2011;16:4–12. doi: 10.1016/j.tplants.2010.09.006. PubMed DOI

Montoya D, Rogers L, Memmott J. Emerging perspectives in the restoration of biodiversity-based ecosystem services. Trends Ecol. Evol. 2012;27:666–672. doi: 10.1016/j.tree.2012.07.004. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...